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Abstract 

This study applied three Artificial Intelligence (AI) models to project the ductile to the 

brittle transition temperature (DBTT) of functionally graded steels (FGS). These prediction 

models are Minimax Probability Machine Regression (MPMR) model, Genetic Programming 

(GP), and Emotional Neural Network (ENN) algorithms with strong prediction performance. 

The data of FGS type, crack tip configuration, the thickness of the graded ferritic zone, the 

thickness of the graded austenitic region, the distance of the notch from the Bainite or 

Martensite intermediate layer, and temperature were used as inputs in the establishment of 

the AI models. Charpy impact test (CVN) values obtained from experiments used as output. 

The datasets have been divided into two groups: one for training and another for testing. The 

performance of the established AI models was evaluated through 16 statistical indicators and 

graphically used regression error characteristics, an area over the curve, Taylor diagrams, and 

scatter plots. As a result, the GP model showed superior prediction performance to other 

models. The primary objective of this study was to decrease the parameter count while also 

facilitating model comparisons. In this way, in areas with complex studies such as civil 

engineering; It allows the work to be completed more practically. 

Keywords: Artificial Intelligence; Minimax Probability Machine Regression; ENN; 

Genetic Programming; Taylor diagram 
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1. Introduction 
 

Depending upon the composition and microstructure of steel, such as grain size, phase 

fractions, etc., the mechanical properties' mechanisms are highly complex. Recent Studies 

throw light on establishing a data-driven technique-based mechanical property prediction 

model (Kumar et al., 2022; Hoang and Tran ,2023). A mechanical property prediction model 

is advantageous to guide the procedure design of steel at least cost in a shorter production 

cycle. Insufficient understanding of the physical principles governing effective mechanical 

properties hinders the development of a first-principle-based physical model. Consequently, 

models propelled by data, such as Artificial Intelligence models, are more preferable 

(Dastorani et al., 2018; Ziggah et al., 2022; Al Adwan et al., 2023). This paper describes 

research aimed at devising a reliable prediction model for predicting the ductile-to-brittle 

transition temperature (DBTT) of functionally graded steels (FGS). Determining the DBTT 

of steel is essential in manufacturing engineering and structural applications (Bae et al., 2023). 

Researchers generally use the Charpy impact test, alternatively referred to as the Charpy V- 

notch test (CVN), to predict the DBTT of steel (Dubey et al., 2023; Switzner et al., 2023). 

The experimental methods always give some limitations. Hence, The CVN does not provide 

a reliable result. 

Therefore, alternative methods are required to determine the DBTT of steel. Nazari et al. 

(2011) applied Artificial Neural Network (ANN) to find out the DBTT of the steel. ANN 

gave encouraging and comparatively better performance. However, ANN has several 

drawbacks, such as low generalization capability, overtraining, a black-box approach, etc. 

(Park and Rilett, 1999; Kecman ,2001; Kovalev, 2021). This article employs the following 

three Artificial Intelligence (AI) techniques for determining the DBTT of steel. This article 

adopted widely used AI techniques such as Minimax Probability Machine Regression 

(MPMR), Emotional Neural Network (ENN), and Genetic Programming (GP) to determine 
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the DBTT of steel. 

Thanks to the developing AI technology, experimental studies and predictions made in 

many engineering fields in recent years have been more accurate, and their reliability has 

increased. AI techniques are closed-box models used for prediction and verification and have 

been used to solve many problems in the literature (Vouros, 2022; Alyousef et al.,2023). 

Methods such as MPMR, GA, and ENN, which are the subject of this study, have an essential 

place in the literature of their superior performance. MPMR model is constructed by Lanckriet 

et al. (2001) and it gives the bound over future prediction. There are many implementations 

of MPMR in the written works (Deng et al., 2018; Bonakdari et al., 2019; Kar et al., 2023). 

Koza (1992) is credited with the development of Genetic Programming (GP), which is 

founded on the fundamental concept of Genetic Algorithms (GA) and functions by 

manipulating parse trees. GP model exhibited good performance for solving various problems 

(Koshiyama et al., 2015; Papa et al., 2017; Lin et al., 2018; Astarabadi and Ebadzadeh ,2019). 

The ENN model is built on top of the Emotional Back Propagation (EBP), which is an 

innovative training algorithm that incorporates emotional cues and weights to enhance 

individuals' learning processes and decision-making abilities (Kumar et al., 2021). Recently, 

there has been extensive research into the incorporation of emotions into machine learning 

(Babaie et al., 2008; Khashman, 2008, 2009; Biswas et al., 2019). AI models have been 

created based on the database compiled from the research conducted by Nazari et al. (2011) 

as shown in Table 1. The dataset comprises of 140 experimental results of the CVN. 

This study aims to evaluate the prediction potential of experimentally obtained CVN 

values with GP, MPMR, and ENN algorithms. To achieve this objective, three AI 

algorithms were employed to analyze data encompassing FGS type, crack configuration, 

graded ferritic zone thickness, graded austenitic region thickness, notch-to-intermediate 

layer distance, and temperature parameters, ultimately yielding CVN values. Estimated and 
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experimentally obtained CVN values were compared with 16 different statistical indicators, 

and Regression Error Characteristic (REC), Area over Curve (AOC), and Taylor diagrams, 

and the most successful model was decided.  

2. Materials and Methods 

This study estimated CVN values of FGS using various experimental parameters. Figure 1 

illustrates the graphs employed to depict the interrelationships among the data sets. We 

examined key statistical measures such as mean, standard deviation, distortion and kurtosis 

to assess the central tendency, spread, and shape of the data to ensure a comprehensive 

understanding of its properties and distribution characteristics. In addition, the 

experimental data used in this work are shown in Table A1. 

 

Figure 1. Change graphs of the data used in the study 

 

2.1. Comprehensive Overview of MPMR model 
 

The foundation of the MPMR model lies in the Minimax Probability Machine 
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Classification algorithm (MPMC). It builds a regression function using the Mercer Kernel, 

establishing a direct boundary (±∈) on the minimum probability and maximizing it 

(Lanckriet et al., 2001). The MPMR model does not rely on assumptions about the 

distribution of data, which can result in reduced validity and generality. 

 The prominent characteristic of the MPMR model is the regression function provides a 

low limit to the probability. An unspecified regression function 𝑔 ∶  𝑅𝑛 → 𝑅 is employed to 

generate the training data from the data set (𝑢𝑖, 𝑣𝑖); 𝑖 = 1,2, . . 𝑛. The interrelationship 

between 𝑢𝑖 and 𝑣𝑖 is outlined as follows (Equation 1); 

Here, 𝛿𝑖   indicates the error such that 𝐸[𝛿] = 0 , 𝑉𝑎𝑟[𝛿] = 𝜎𝛿2
  

 The primary objective of MPMR is to maximize the minimum probability under the error ± constraint.    

The calculation of the bound on minimum probability (Ω) is given by equation 2-3, 

 

Much like the kernel formulation for the MPMC, the MPMR formulation is depicted as 

follows (Equation 4); 

 

Here in the study, K (𝑢𝑖,𝑢) = 𝜑(𝑢𝑖).𝜑(𝑢) is Mercer’s Kernel, where 𝑢𝑖 denotes the training data  

whereas 𝛽𝑖, 𝑏 ∈ R indicated the result of the MPMR algorithm. Here, W is the weight 

𝑣𝑖 = 𝑔 (𝑢𝑖) +  𝛿𝑖    (1) 

𝑣 = �̂�(𝑢) (2) 

Ω = inf 𝑃𝑟  { | 𝑣 − 𝑣| ≤ 휀} (3) 

𝑣 = �̂�(𝑢) = ∑ 𝛽𝑖

𝑁

𝑖=1

𝐾(𝑢𝑖, 𝑢) + 𝑏 

  (4) 
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 and b are bias. 

For the development of the MPMR model, the dataset was split into two segments: 

one for training and the other for testing. Thus, this eliminates the generalization and 

memorization problems of the model. Also, Radial basis function has been employed as a 

kernel function for the development of the MPMR model. The training dataset is used to learn 

the MPMR model. This study employs 98 datasets as the training dataset. To evaluate the 

conduct of the MPMR model, the test data was normalized within the range of 0 to 1. Equation 

5 was used for normalization. 

 

Where 𝑋𝑛𝑜𝑟𝑚 is normalized value, 𝑋𝑎𝑐𝑡 is actual value, 𝑋𝑚𝑖𝑛is the minimum value, and 𝑋𝑚𝑎𝑥 

is the maximum value. 

 

2.2. Comprehensive Overview of ENN model 

The ENN model is the neural network that has been developed based on emotions in order 

to enhance decision-making and learning capabilities. Although we do not anticipate that 

machines will feel emotions and respond emotionally, regulatory signals and informational 

signals do progress within the ENN model. Emotions may be imitated in machines analogous 

to machine intelligence. This enhances the model's ease of use, swift learning and immediate 

response. This model is based on EBP and takes into account things like self-esteem, stress 

Rlevels, and anxiety, also emotional weights in the cerebral emotional neurons. The neural 

network contains a multitude of hormone-producing glands that release virtual hormones, 

subsequently influencing the functioning of specific nodes within the neural system (Babaie et 

al.,2008). 

                                               𝑋𝑛𝑜𝑟𝑚 =
𝑋𝑎𝑐𝑡−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (5) 
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An ENN is composed of three layers according to the course of information: the input 

layer, the hidden layer, and the output layer. The input, hidden, and output layers each consists 

i, j, and h neurons. Here, 𝑋𝑖 and 𝑌𝑖 denote input and output values of  𝑖 neurons respectively 

in a way that 𝑋𝑖 = 𝑌𝑖 . Input and output estimates of the hidden neurons are designated by 

𝑋ℎ  and 𝑌ℎ respectively and are interconnected by the following equation 6. Input and output 

estimates of output neurons are designated by 𝑋𝑗 and 𝑌𝑗 respectively and are interconnected 

by the following equation 7, 

 

The ENN model employs the same training data set, testing data set, input, output, and 

standardization approach as the MPMR model does. 

2.3. Comprehensive Overview of GP Model 

GP is an AI-based method used to formulate experimental studies with multivariate parameters for 

which analytical models are unavailable (Cevik and Sonebi, 2008). GP imitates the biological 

advancement of living creatures and creates a computer model of functions and terminals known as 

chromosomes (Kohestani et al., 2017) 

There are 5 stages involved in GP model to lead to the solution: 

• Stage 1: A population of randomly generated programs is created. 

• Stage 2: The programs with higher fitness/better accuracy concerning the output are chosen 

using any methods such as Roulette Wheel Selection, Tournament, Ranking, etc. 

• Stage 3: Two selected winner programs are copied onto the next generation by exchanging parts 

to generate cross overs and then randomly changing the winner programs. Only similar parts of 

𝑌ℎ =
1

1 − exp (−𝑋ℎ)
 

(6) 

𝑌𝑗 =
1

1 + exp (−𝑋𝑗)
 

(7) 
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the programs can be replaced. 

• Stage 4: The programs that relatively lose/have higher error are replaced by the transformed 

winner programs obtained in Stage 3. 

• Stage 5: Stages 2 to 4 are repeated until the consecutive error values do not have an appreciable 

reduction in them, i.e, many generations rise till the convergence of predicted value and the 

actual output occurs to a satisfactory limit. 

The GP model utilizes identical training and testing datasets, input features, output 

variables, and normalization techniques as those employed by the MPMR and ENN models. 

2.4. Performance Indicators 

This study utilized a vast array of statistical indicators to assess the efficacy of Artificial 

Intelligence models employed. The success of the model was made according to the most 

appropriate values of the estimation criteria obtained during the training and testing stages. 

Table 1 display the equations of the parameters used in model selection. 

 

Table 1. Statistical Parameters 

Statistical 

Parameter 

Equation  

 

Nash-Sutcliffe 

Efficiency (NS) 

 

  

𝑁𝑆 = 1 −
∑  𝑛

𝑖=1 (𝑑𝑖 − 𝑦𝑖)
2

∑  𝑛
𝑖=1 (𝑑𝑖 − 𝑑𝑚𝑒𝑎𝑛)2

; −∞ < 𝑁𝑆 ≤ 1 

 

 

(8) 

Variance Account 

Factor (VAF) 

 

 

VAF = (1 −
var(𝑑𝑖 − 𝑦𝑖)

var(𝑑𝑖)
) × 100 

 

 

(9) 

Coefficient of 

Determination 

(𝑅2) 

 

 

𝑅2 =
∑  𝑛

𝑖=1 (𝑑𝑖 − 𝑑𝑚𝑒𝑎𝑛)2 − ∑  𝑛
𝑖=1 (𝑑𝑖 − 𝑦𝑖)2

∑  𝑛
𝑖=1 (𝑑𝑖 − 𝑑𝑚𝑒𝑎𝑛)2

 

 

 

(10) 
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Adjusted 

Determination 

Coefficient 

(Adj. 𝑅2) 

 

𝐴𝑑𝑗𝑅2 = 1 −
(𝑛 − 1)

(𝑛 − 𝑝 − 1)
(1 − 𝑅2) 

 

(11) 

Performance Index 

(PI)  

 

𝑃𝐼 = 𝑎𝑑𝑗 ⋅ 𝑅2 + 0.01𝑉𝐴𝐹 − 𝑅𝑀𝑆𝐸 

 

(12) 

)Bias Factor 

 

 

Bias Factor =
1

𝑁
∑  

𝑛

𝑖=1

𝑦𝑖

𝑑𝑖
 

 

 

(13) 

Normalized Mean 

Bias Error 

(NMBE) 

 

𝑁𝑀𝐵𝐸(%) =

1
𝑁

∑  𝑛
𝑖=1 (𝑦𝑖 − 𝑑𝑖)

1
𝑁

∑  𝑛
𝑖=1 𝑑𝑖

× 100 

 

 

(14) 

Mean Absolute 

Percentage Error 

(MAPE) 

 

 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑  

𝑛

𝑖=1

|
𝑑𝑖 − 𝑦𝑖

𝑑𝑖
| 

 

 

(15) 

Relative Percent 

Difference (RPD) 

 

 

𝑅𝑃𝐷 =
𝑆𝐷

𝑅𝑀𝑆𝐸
 

 

(16) 

Willmott’s Index 

of agreement (WI) 

 

 

               𝑊𝐼 = 1 − [
∑  𝑁

𝑖=1 (𝑑𝑖 − 𝑦𝑖)
2

∑  𝑁
𝑖=1 (|𝑦𝑖 − 𝑑mean | + |𝑑𝑖 − 𝑑mean |)2

], 

 

0 < 𝑊𝐼 ≤ 1 

 

 

(17) 

Mean Absolute 

Error (MAE) 

 

𝑀𝐴𝐸 =
1

𝑁
∑  

𝑛

𝑖=1

|(𝑦𝑖 − 𝑑𝑖)| 
 

(18) 

Mean Bias Error 

(MBE) 

 

𝑀𝐵𝐸 =
1

𝑁
∑  

𝑛

𝑖=1

(𝑦𝑖 − 𝑑𝑖) 
 

(19) 

Legate and 

McCabe’s Index 

(LMI) 

 

 

𝐿𝑀𝐼 = 1 − [
∑  𝑁

𝑖=1 |𝑑𝑖 − 𝑦𝑖|

∑  𝑁
𝑖=1 |𝑑𝑖 − 𝑑mean |

] , 0 < 𝐿𝑀𝐼 ≤ 1 

 

 

(20) 

Expanded 

Uncertainty (U95) 

 

U95 = 1.96(𝑆𝐷2 + 𝑅𝑀𝑆𝐸2)1/2 

 

(21) 

 

t-statistic (t-stat)    

 

 

𝑡-stat = √
(𝑁 − 1)𝑀𝐵𝐸2

𝑅𝑀𝑆𝐸2 − 𝑀𝐵𝐸2
 

 

 

(22) 
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Global 

Performance 

Indicator (GPI) 

 

GPI = MBE × RMSE × 𝑈95 × 𝑡stat × (1 − 𝑅2) 

 

(23) 

 

Here, d is the observed value and y is the predicted value, 𝑑𝑖 and 𝑦𝑖 are the observed and 

predicted 𝑖𝑡ℎ value, 𝑑𝑚𝑒𝑎𝑛 is the mean of observed, R2 is the Coefficient of determination, n is 

the number data samples and p is the model input quantity =3, RMSE is the Root mean square 

error, VAF is the Variance account factor. In determining the best model, especially the models 

with the lowest error and high R2 and WI values were taken into account. Comparing sixteen 

parameters and streamlining the parameter selection process is one of the primary objectives of 

this study. Thus, the absence of conflict between these parameters is essential and indicates that 

the two conflicting parameters cannot be substituted for one another. In essence, the study has 

concluded that parameters yielding comparable results to all sixteen parameters can be 

employed. This approach enables achieving similar outcomes in a more straightforward manner, 

avoiding the complexity associated with the original set of parameters. 

2.5. Taylor Diagrams 

Taylor Diagrams (Taylor, 2001) is a diagram of the interrelationship between predicted and 

observed values. It facilitates statistical comparison of different models by plotting the normal. 

deviation of simulated values versus observed values; the correlation coefficient between 

observed values and simulated values; and the averaged mean square difference. Taylor diagram 

provides a systematic and mathematical way of demonstrating goodness of fit measures.  

Following equation number 24 is the underlying mathematical relationship of Taylor diagram. 

Where, E is the averaged mean square difference, 𝜎𝑜 is the normal deviation of observed values, 

𝐸 =  𝜎𝑜
2 + 𝜎𝑠

2 − 2𝜎𝑜𝜎𝑠𝜌 (24) 
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𝜎𝑠 is the normal deviation of simulated values, and 𝜌 is the correlation coefficient. 

 

2.6. Rank Analysis 

When performing rank analysis, each performance parameter is assigned a rank. In models 

where, multiple statistical indicators are combined, it is difficult to determine the best model. 

Therefore, rank values of statistical indicators were calculated separately in this work, and the 

most efficient model was marked based on the total rank value. In our study, rankings ranged 

from a maximum of three models to a minimum of one. Here, the model with the greatest 

performance is given the third position, and the model with the worst functionality takes up the 

first position. The model ranked highest in total score represents the best performance, whereas 

the model ranked lowest indicates the poorest performance (Zhang et al., 2020). 

 

3. Results & Discussion 

In present study, it is aimed to estimate experimental CVN values with GP, MPMR, ENN 

models and to compare model performances based on statistical parameters. For this purpose, 

many experimental results are presented to AI algorithms and an equation is proposed to 

determine CVN values. 

 The implementation of the Minimax Probability Machine Regression (MPMR) model, Genetic 

Programming (GP), and Emotional Neural Network (ENN) algorithms for predicting the 

ductile to brittle transition temperature (DBTT) of functionally graded steels (FGS) was 

accomplished using MATLAB, a powerful numerical computing software which offers a 

comprehensive environment for implementing and experimenting with various AI models. 

Depending on factors such as the specific requirements of the project, familiarity of the 

researchers, and availability of suitable libraries and tools, the choice of software was made. It 
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provides extensive libraries and toolboxes for machine learning and optimization, enabling the 

implementation of MPMR, GP, and ENN algorithms for DBTT prediction. 

Figure 2 shows the correlation coefficients connecting inputs and outputs used in the setup of AI 

models. Accordingly, while there was a very high positive correlation between CVN data and 

the thickness of graded ferritic region values, it was determined that there was a negative and 

very high relationship with FGS and the thickness of graded austenitic region values.  

 

 

 

 

 

 

 

Figure 3 shows the comprehensive evaluation of the algorithms with respect to various influence 

factors. 

 

 

 

Figure 2.  Correlation matrix of the created models 

 
 

Figure 3. Performance of different algorithm considering multiple influence factors 
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Figure 4 shows the effectuation of the training dataset. It has been clear from figure 4, 

that the value of the correlation coefficient (R) is approximately one, and the predicted & actual 

values are scattered around the 45-degree linear line. Hence, the developed MPMR model gives 

good performance for the training dataset. The performance of the testing dataset has been 

depicted in Figure 5. The value of the R is approximately one and the predicted and actual values 

are scattered around the 45-degree linear line for the testing dataset also. Hence, the developed 

GP model has the ability to predict CVN value. In addition, Figure 4 and 5 illustrates the 

performance of ENN model as well. The R value is not near to one for training and testing 

dataset. Hence, the ENN model does not give a reliable result. 

 The developed GP model gives the best performance for the size of population= 800 and the size of 

generation=400. The obtained results hold validity not only for the specific data set used in this study 

but also for data sets exhibiting similar characteristics. This suggests that the findings can be 

generalized to other datasets sharing comparable traits, enhancing the applicability and relevance of 

the study's conclusions. The performance of GP model has been shown in Figures 3 and 4. The value 

of R is close to one for training as well as testing dataset. Hence, the developed GP has successfully 

captured the relationship between inputs and output. The developed GP gives the following equation 

for the prediction of CVN value, where A is the thickness of graded ferritic region; G is the thickness 

of graded austetic region; C is the crack tip Configuration; D is the distance of the notch from bainite 

or martensite intermediate layer and T is temperature. 

𝐶𝑉𝑁 = 376.5 𝐶2𝐺4𝐷2 − 2.203(𝐹 + 8.651)2 − 368.3𝐹4𝐶2𝐷2 −

639𝐴4𝐺4 +  0.5171 cos(𝐶𝐺) + 0.5171 sin(𝐹 + 𝑇) + 39.7𝐴2𝐺2 −

2.303𝐶𝐴(𝐴 + 𝐷) + 164.8  

 

    

(25) 
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An attempt has been made for constructing REC of the developed models. Figure 6 displays 

the REC curves of the developed MPMR, GP and ENN models. 

 

 

 
 

Figure 4. Scatter plot of training dataset 

  
 

 

Figure 5. Scatter plot of testing dataset 
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Figure 7 shows the bar chart of AOC values of the developed MPMR, ENN and GP 

models. For a better model, the AOC value should be small. The value of AOC is almost same 

for MPMR and GP models. The performance of MPMR and GP is comparatively better than 

the ENN models.  

 

 
 

 

Figure 6. REC curves of the developed MPMR, GP and ENN models 

 

  
 

 

Figure 7. Bar chart of AOC values of the different models 
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Figures 8 and 9 shows the cumulative probability plot and probability density function 

plots of Predicted/Actual of the MPMR, GP and ENN models. It is clear from Figures 8 and 9 

that the developed MPMR and GP give reasonable performance. 

 

Figure 10 shows the Taylor diagrams of the MPMR, GP and ENN models. It can be seen 

from Fig. 3 that the developed GP and MPMR models have lower RMSE, higher R2 and closer 

to reference point than ENN model. Therefore, GP and MPMR models outperform the ENN 

model. In addition, the almost overlapping performance points of the GP and MPMR models 

indicate that the success of the two models is very close. However, the fact that the GP model 

is slightly closer to the reference line indicates that the standard deviation of the model is closer 

 
 

Figure 8. Cumulative probability plots of Predicted/Actual of the MPMR, GP and ENN models 
 

  
 

 

Figure 9.  Probability density function plots of Predicted/Actual of the MPMR, GP and ENN model 
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to the actual data. This concludes that the GP model is slightly better than the MPMR. 

 

 

In Table 2, the developed models were assessed according to different statistical 

indicators and the success order of these indicators. In addition, the ideal values of the 

statistical parameters used are expressed. It is clear from Table 2 that the developed GP and 

MPMR models predict CVN values quite well from the ENN model. When the prediction 

performances of all my models were sorted according to rank analysis, it was found as 

GP>MPMR>ENN. 

 

 
 

 

 

Figure 10. Taylor diagrams of the developed GP, MPMR and ENN models 
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Table 2. Various parameters of the developed models 
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       Parameters MPMR              GP ENN Ideal Values 

NS 0.8786 0.88147 0.57904 
1 

(Rank) -2 -3 -1 

RMSE 13.6594 13.4967 25.4352 
0 

(Rank) -3 -2 -1 

VAF 87.8917 88.1472 58.0706 
100% 

(Rank) -2 -3 -1 

R2 0.8786 0.88147 0.57904 
1 

(Rank) -2 -3 -1 

Adj. R2 0.87682 0.87974 0.57289 

1 
(Rank) -2 -3 -1 

PI -11.904 -11.736 -24.282  > 1.0 

Bias Factor 1.02611 1.07368 1.20422 

1 

(Rank) -3 -2 -3 

RSR 0.34843 0.34428 0.64881 
0 

(Rank) -2 -3 -1 

NMBE (%) -0.8707 0.05263 -1.9827 
0 

(Rank) -2 -3 -1 

MAPE 0.12394 0.17859 0.42507 
0 

(Rank) -3 -2 -1 

RPD 2.87001 2.90461 1.54127    > 2.5 

WI 0.9997 0.9997 0.99875 
1 

(Rank) -2 -3 -1 

MAE 8.63595 9.86508 20.49 
0 

(Rank) -3 -2 -1 

MBE -0.7027 0.04248 -1.6002 
0 

(Rank) -2 -3 -1 
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Note: * and red indicates the best model  

4. Conclusions 

This article inspects the applicability of MPMR, GP, and ENN models for the prediction of CVN 

values of functionally graded steels. The performance and accuracy of the developed models were 

tested according to statistical and graphical approaches such as different statistical criteria, rank 

analysis and scatter diagrams, REC analysis. The major findings of the study are listed as follows: 

• The performance of MPMR and GP is almost same.  

• Users can use the developed GP equation for practical purposes. 

• The performance of ENN is not comparatively good.  

• It has been concluded that the developed GP and MPMR models can provide high 

accuracy in the determination of CVN values of functionally graded steels. Thus, 

CVN values can be easily calculated when different the data of FGS type, crack type 

configuration, the thickness of the graded ferritic zone, the thickness of the graded 

austenitic region, the distance of the notch from the Bainite or Martensite 

intermediate layer and temperature parameters are used.  

• The equations obtained from the study will contribute to the determination of CVN 

LMI 0.75127 0.71587 0.40986 
1 

(Rank) -3 -2 -1 

U95 81.3679 81.2635 91.5931 
0 

(Rank) -2 -3 -1 

t-stat 0.60734 0.03711 0.7432 
Smaller value 

(Rank) -2 -3 -1 

GPI -57.589 0.2049 -1166.3 
Higher value 

(Rank) -2 -3 -1 

Total Rank 37 43* 18   
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values with theoretical approaches by reducing the number of experiments and 

analyzes. 

• The study is a reference for studies on data analysis and modeling in civil 

engineering. This study proposes to make the operations more practical by using a 

small number of parameters instead of using all parameters. 
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APPENDIX 

Table A1. Dataset used in this study 

FGS 

Type 

(F) 

The crack tip 

Configuration 

( C ) 

The 

thickness of 

graded 

ferritic 

region 

( A ) 

The 

thickness of 

graded 

austetic 

region 

( G ) 

The distance of 

the notch from 

bainite or 

martensite 

intermediate 

layer ( D ) 

Temperature 

( T ) 

CVN values 

obtained 

from 

experiments. 

1 3 5 4.4 10 123 30 

1 3 5 4.4 10 173 41 

1 3 5 4.4 10 223 53 

1 3 5 4.4 10 273 84 

1 3 5 4.4 10 323 95 

1 3 5 4.4 10 373 98 

1 3 5 4.4 10 423 101 

1 3 5 4.4 10 473 109 
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1 3 5 4.4 10 523 118 

1 3 5 4.4 10 573 135 

1 4 2 7.4 0 123 110 

1 4 2 7.4 0 173 113 

1 4 2 7.4 0 223 116 

1 4 2 7.4 0 273 117 

1 4 2 7.4 0 323 118 

1 4 2 7.4 0 373 119 

1 4 2 7.4 0 423 121 

1 4 2 7.4 0 473 123 

1 4 2 7.4 0 523 124 

1 4 2 7.4 0 573 124 

1 4 3 6.4 1 123 34 

1 4 3 6.4 1 173 42 

1 4 3 6.4 1 223 49 

1 4 3 6.4 1 273 69 

1 4 3 6.4 1 323 81 

1 4 3 6.4 1 373 94 

1 4 3 6.4 1 423 99 

1 4 3 6.4 1 473 110 

1 4 3 6.4 1 523 116 

1 4 3 6.4 1 573 119 

1 4 4 5.4 2 123 29 

1 4 4 5.4 2 173 38 
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1 4 4 5.4 2 223 47 

1 4 4 5.4 2 273 64 

1 4 4 5.4 2 323 78 

1 4 4 5.4 2 373 87 

1 4 4 5.4 2 423 93 

1 4 4 5.4 2 473 106 

1 4 4 5.4 2 523 111 

1 4 4 5.4 2 573 115 

1 4 5 4.4 3 123 26 

1 4 5 4.4 3 173 34 

1 4 5 4.4 3 223 43 

1 4 5 4.4 3 273 59 

1 4 5 4.4 3 323 72 

1 4 5 4.4 3 373 81 

1 4 5 4.4 3 423 89 

1 4 5 4.4 3 473 97 

1 4 5 4.4 3 523 104 

1 4 5 4.4 3 573 109 

1 4 7.4 2 0 123 68 

1 4 7.4 2 0 173 72 

1 4 7.4 2 0 223 78 

1 4 7.4 2 0 273 89 

1 4 7.4 2 0 323 99 

1 4 7.4 2 0 373 111 
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1 4 7.4 2 0 423 113 

1 4 7.4 2 0 473 116 

1 4 7.4 2 0 523 118 

1 4 7.4 2 0 573 120 

1 4 6.4 3 1 123 116 

1 4 6.4 3 1 173 117 

1 4 6.4 3 1 223 118 

1 4 6.4 3 1 273 119 

1 4 6.4 3 1 323 120 

1 4 6.4 3 1 373 122 

1 4 6.4 3 1 423 123 

1 4 6.4 3 1 473 125 

1 4 6.4 3 1 523 125 

1 4 6.4 3 1 573 126 

1 4 5.4 4 2 123 120 

1 4 5.4 4 2 173 121 

1 4 5.4 4 2 223 121 

1 4 5.4 4 2 273 123 

1 4 5.4 4 2 323 123 

1 4 5.4 4 2 373 124 

1 4 5.4 4 2 423 126 

1 4 5.4 4 2 473 126 

1 4 5.4 4 2 523 126 

1 4 5.4 4 2 573 127 



 

30 

1 4 4.4 5 3 123 125 

1 4 4.4 5 3 173 126 

1 4 4.4 5 3 223 126 

1 4 4.4 5 3 273 127 

1 4 4.4 5 3 323 128 

1 4 4.4 5 3 373 129 

1 4 4.4 5 3 423 131 

1 4 4.4 5 3 473 132 

1 4 4.4 5 3 523 132 

1 4 4.4 5 3 573 133 

2 3 0 8.5 10 123 26 

2 3 0 8.5 10 173 40 

2 3 0 8.5 10 223 49 

2 3 0 8.5 10 273 53 

2 3 0 8.5 10 323 58 

2 3 0 8.5 10 373 59 

2 3 0 8.5 10 423 59 

2 3 0 8.5 10 473 61 

2 3 0 8.5 10 523 63 

2 3 0 8.5 10 573 62 

2 4 0 8.5 0 123 9 

2 4 0 8.5 0 173 10 

2 4 0 8.5 0 223 10 

2 4 0 8.5 0 273 10 
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2 4 0 8.5 0 323 10 

2 4 0 8.5 0 373 11 

2 4 0 8.5 0 423 11 

2 4 0 8.5 0 473 12 

2 4 0 8.5 0 523 13 

2 4 0 8.5 0 573 13 

2 4 0 8.5 1 123 24 

2 4 0 8.5 1 173 24 

2 4 0 8.5 1 223 24 

2 4 0 8.5 1 273 25 

2 4 0 8.5 1 323 26 

2 4 0 8.5 1 373 27 

2 4 0 8.5 1 423 27 

2 4 0 8.5 1 473 27 

2 4 0 8.5 1 523 28 

2 4 0 8.5 1 573 29 

2 4 0 8.5 2 123 46 

2 4 0 8.5 2 173 47 

2 4 0 8.5 2 223 47 

2 4 0 8.5 2 273 47 

2 4 0 8.5 2 323 48 

2 4 0 8.5 2 373 49 

2 4 0 8.5 2 423 50 

2 4 0 8.5 2 473 50 
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2 4 0 8.5 2 523 51 

2 4 0 8.5 2 573 51 

2 4 0 8.5 3 123 82 

2 4 0 8.5 3 173 83 

2 4 0 8.5 3 223 84 

2 4 0 8.5 3 273 84 

2 4 0 8.5 3 323 84 

2 4 0 8.5 3 373 85 

2 4 0 8.5 3 423 85 

2 4 0 8.5 3 473 86 

2 4 0 8.5 3 523 87 

2 4 0 8.5 3 573 88 

 

 

 

 

 

 

 

 

 

 

 


