تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,520,854 |
تعداد دریافت فایل اصل مقاله | 98,780,387 |
نقش تعداد و نوع ویژگیهای فیزیکی و هیدرولیکی خاک در بازنمایی کیفیت فیزیکی خاک (مطالعه موردی: دشت شبستر) | ||
تحقیقات آب و خاک ایران | ||
دوره 54، شماره 7، مهر 1402، صفحه 981-1003 اصل مقاله (1.94 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.361033.669516 | ||
نویسندگان | ||
رویا طلوعی* 1؛ داود زارع حقی1؛ ناصر دواتگر2؛ محمدرضا نیشابوری1؛ احمد بایبوردی3 | ||
1گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران | ||
2موسسه تحقیقات خاک و آب کشور، سازمان تحقیقات آموزش و ترویج کشاورزی، کرج ، ایران | ||
3مرکز تحقیقات کشاورزی و منابع طبیعی آذربایجان شرقی، سازمان تحقیقات آموزش و ترویج کشاورزی، تبریز، ایران | ||
چکیده | ||
انتخاب مجموعه صحیح و مناسب از ویژگیهای فیزیکی و هیدرولیکی در قالب شاخص کیفیت فیزیکی خاک، گامی موثر در اخذ تصمیمات مدیریتی جهت ارتقاء کمی و کیفی تولید محصول است. ازاینرو این پژوهش با هدف بررسی کیفیت فیزیکی اراضی کشاورزی دشت شبستر و تعیین نقش تعداد و نوع ویژگیهای فیزیکی و هیدرولیکی بر کیفیت خاک به منظور درجهبندی صحیح اراضی و اِعمال مدیریت مناسب بر آنها انجام شد. برای این هدف 94 نمونه خاک سطحی از اراضی زیر کشت گندم در سال زراعی 1401-1400 در دشت شبستر انتخاب شده و مورد تجزیه قرار گرفت. برای تعیین شاخص کیفیت فیزیکی خاک (SPQI) از حداقل مجموعه داده (MDS) به روش تجزیه به مؤلفههای اصلی (PCA) استفاده شد. تعداد 13 ویژگی فیزیکی، شیمیایی و هیدرولیکی (مقدار رس و سیلت، جرم مخصوص ظاهری، توزیع اندازه خاکدانهها، شوری، نسبت جذب سدیم، اسیدیته خاک، کربن آلی، هدایت هیدرولیکی اشباع، آب قابلاستفاده برای گیاه، شاخص دکستر، انرژی انتگرالی و پتانسیل کرشهف) طی 4 مرحله در تجزیه به مؤلفههای اصلی وارد شد تا خروجی، افزون بر حداقل بودن مجموعه داده، مناسبترین مجموعه باشد. هدایت الکتریکی در تمام آرایهها بهعنوان مؤلفه اصلی ظاهر شد و این نشان از اهمیت این ویژگی در منطقه مورد پژوهش بود. آرایه اول به دلیل سادگی بیشازحدِ حداقل مجموعه داده، حذف شد. مقایسه میانگین شاخص کیفیت فیزیکی خاک بین آرایهها با آزمون چند دامنهای دانکن نشان داد اختلاف معنیداری در سطح احتمال 99 درصد (01/0>p)، بین آرایه چهارم با آرایه دوم و سوم وجود داشت. ضریب حساسیت بالای آرایه چهارم (78/9) نسبت به آرایه دوم و سوم (هر دو 43/5) نشان داد اضافه شدن پتانسل کرشهف به مجموعه دادهها، منجر به درجهبندی متفاوت کیفیت فیزیکی خاک شد. طوریکه کیفیت خاکها از 72 درصد خاکهای بسیار مناسب و مناسب، و 28 درصد خاکهای با محدودیت شدید و بسیار شدید در آرایه دوم و سوم به 41 درصد خاکهای بسیار مناسب و مناسب، و 59 درصد خاکهای با محدودیت شدید و بسیار شدید در آرایه چهارم تبدیل شد. این مطلب نشاندهنده آن است که سادهسازی نظام ارزیابی کیفیت خاک با استفاده از ویژگیهای آسان اندازهگیریشونده لزوماً به نتایج صحیح منتهی نمیشود. | ||
کلیدواژهها | ||
پتانسیل کرشهف؛ تجزیه به مولفههای اصلی؛ حداقل مجموعه داده؛ ضریب حساسیت | ||
عنوان مقاله [English] | ||
The effect of number and type of soil physical and hydraulic properties on representing the soil physical quality (case study: Shabestar Plain) | ||
نویسندگان [English] | ||
Roya Toluee1؛ Davoud Zarehaghi1؛ Naser Davatgar2؛ Mohammad Reza Neyshabouri1؛ Ahmad bybordi3 | ||
1Department of Soil Science, Agricultural Faculty, Tabriz University, Tabriz, Iran | ||
2Soil and Water Research Institute, Agriculture Research Education and Extension Organization (AREEO), Karaj, Iran. | ||
3Eastern Azerbaijan Agricultural and Natural Resources research Center, Agricultural Research Education and Extension Organization (AREEO), Tabriz, Iran | ||
چکیده [English] | ||
Making management decisions for the quantitative and qualitative improvement of product production effectively begins with selecting the correct and appropriate set of physical and hydraulic characteristics in the form of a soil physical quality index. In order to investigate the physical quality of Shabaster Plain which were under wheat cultivation and to determine the role of the number and type of properties on the quality of the soils, 94 soils from these lands until the year 2022, were selected. To determine the soil physical quality index (SPQI), the minimum data set (MDS) was used by principal component analysis (PCA). 13 physical, chemical, and hydraulic properties (clay, silt, bulk density, aggregate size distribution, electrical conductivity, sodium adsorption ratio, pH, organic carbon, hydraulic conductivity (K_s), conventional plant available water (CPAW), integral energy (EI), dexter index (S_dex), Kirchhoff potential (M_h0)) were consciously entered into four stages in the principal component analysis so that the output is not only the minimum data set but also the best data set. EC appeared as one of the main components in all arrays. The first array was eliminated from the minimum data set. Comparing the mean soil physical quality index between the arrays with Duncan's test showed a significant difference at the 99% probability level (p<0.01) between the fourth array and the second and third arrays. The high sensitivity coefficient of the fourth array (9.78) with the second and third arrays (5.43) showed that the correct addition of the Kirchhoff potential to the data set, led to different results in terms of classifying soil physical quality. As a result, the quality of the soils decreased from 72% of very suitable and suitable soils and 28% of the soils with severe and very severe restrictions in the second and third arrays to 41% of very suitable and suitable soils and 59% of soils with restrictions in the fourth array. This data demonstrates using easily measured properties, to simplify the soil quality assessment system, does not always produce accurate results. | ||
کلیدواژهها [English] | ||
Kirchhoff potential, Minimum data set, Principal component analysis, Sensitivity coefficient | ||
مراجع | ||
Andrews, S. S., Karlen, D., & Mitchell, J. (2002). A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, Ecosystems & Environment, 90(1), 25-45. Asgarzadeh, H., Mosaddeghi, M. R., Mahboubi, A. A., Nosrati, A., & Dexter, A. R. (2010). Soil water availability for plants as quantified by conventional available water, least limiting water range and integral water capacity. Plant and soil, 335, 229-244. Bartlett, M. S. (1954). A note on the multiplying factors for various χ 2 approximations. Journal of the Royal Statistical Society. Series B (Methodological), 296-298. Bronick, C. J., & Lal, R. (2005). Soil structure and management: a review. Geoderma, 124(1-2), 3-22. Cullotta, S., Bagarello, V., Baiamonte, G., Gugliuzza, G., Iovino, M., La Mela Veca, D. S., Sferlazza, S. (2016). Comparing different methods to determine soil physical quality in a Mediterranean forest and pasture land. Soil Science Society of America Journal, 80(4), 1038-1056. da Paixão, F. J., de Andrade, A. R., de Azevedo, C. A., de Lima, V. L., & Dantas Neto, J. (2009). Uso da aproximação fractal no ajuste da curva de retenção de água no solo. Revista Brasileira de Engenharia Agrícola e Ambiental, 13(3), 282-288. Dane, J. (2002). Water retention and storage. Physical Methods, 671-720. Dexter, A. (2004). Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma, 120(3-4), 201-214. Doran, J. W., & Parkin, T. B. (1994). Defining and assessing soil quality. Defining soil quality for a sustainable environment, 35, 1-21. Emami, H., Shorafa, M., Neyshabouri, M. R., & Liyaghat, A. M. (2009). Determining soil quality index using the easily measured soil properties in salin and calcareous soils. Iranian Journal of Soil and Water Research, 39(1), 39-46. (In Persian) Emami, H., Lakzian, A., & Mohagerpour, M. (2010). Study of the relationship between slope of retention curve and some physical properties of soil quality. Journal of Water and soil, 24(5), 1027-1035. (In Persian) Flint, A. L., & Flint, L. E. (2002). 2.2 Particle Density. Methods of soil analysis: Part 4 physical methods, 5, 229-240. Gee, G., Or, D., Dane, J., & Topp, C. (2002). Methods of soil analysis. Part 4. Physical methods. Soil Science Society of America, Inc, 255-293. Govaerts, B., Sayre, K. D., & Deckers, J. (2006). A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico. Soil and Tillage Research, 87(2), 163-174. Guo, L., Sun, Z., Ouyang, Z., Han, D., & Li, F. (2017). A comparison of soil quality evaluation methods for Fluvisol along the lower Yellow River. Catena, 152, 135-143. Imaz, M., Virto, I., Bescansa, P., Enrique, A., Fernandez-Ugalde, O., & Karlen, D. (2010). Soil quality indicator response to tillage and residue management on semi-arid Mediterranean cropland. Soil and Tillage Research, 107(1), 17-25. Institute, S. Q. (1998). Soil quality test kit guide. Soil Quality Institute, National Resources Conservation Service, US …. Jeffries, C. (1941). A method of preparing soils for petrographic analysis. Soil Science, 52(6), 451-454. Jiang, P., & Thelen, K. (2004). Effect of soil and topographic properties on crop yield in a North‐Central corn–soybean cropping system. Agronomy Journal, 96(1), 252-258. Jiang, Y., Liang, W., Wen, D., Zhang, Y., & Chen, W. (2005). Spatial heterogeneity of DTPA-extractable zinc in cultivated soils induced by city pollution and land use. SCIENCE IN CHINA SERIES C LIFE SCIENCES-ENGLISH EDITION-, 48, 82. Jolliffe, I. T. (2002). Principal component analysis for special types of data. Springer. Kaiser, H. F. (1974). An index of factorial simplicity. psychometrika, 39(1), 31-36. Karlen, D. L., Ditzler, C. A., & Andrews, S. S. (2003). Soil quality: why and how? Geoderma, 114(3-4), 145-156. Khazaei, S., Ansari, H., Ghahraman, B., & Ziaee, A. N. (2013). Evaluation of water salinity and sodicity effect on diffusivity and unsaturated hydraulic conductivity. Journal of Water and soil, 27(2), 304-312. (In Persian) Kline, R. B. (2005). Principles and practice of structural equation modeling 2nd ed. New York: Guilford, 3. Lal, R. (1994). Methods and guidelines for assessing sustainable use of soil and water resources in the tropics. Magalhães, W. d. A., Freddi, O. d. S., Wruck, F. J., Petter, F. A., & Tavanti, R. F. (2018). Soil water retention curve and s index as soil physical quality indicators for integrated production systems. Engenharia Agrícola, 38, 64-73. Masto, R. E., Chhonkar, P. K., Singh, D., & Patra, A. K. (2007). Soil quality response to long-term nutrient and crop management on a semi-arid Inceptisol. Agriculture, Ecosystems & Environment, 118(1-4), 130-142. Masto, R. E., Chhonkar, P. K., Singh, D., & Patra, A. K. (2008). Alternative soil quality indices for evaluating the effect of intensive cropping, fertilisation and manuring for 31 years in the semi-arid soils of India. Environmental monitoring and assessment, 136(1), 419-435. Meskini-Vishkaee, F., & Mirkhani, R. (2019). The Effect of Field Capacity in Determination and Evaluation of the Soil Physical Quality Indices. Iranian Journal of Soil and Water Research, 50(4), 836-846. (In Persian) Minasny, B., & McBratney, A. (2003). Integral energy as a measure of soil-water availability. Plant and Soil, 249(2), 253-262. Nelson, D. a., & Sommers, L. E. (1983). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, 539-579. Nimmo, J. R., & Perkins, K. S. (2002). 2.6 Aggregate stability and size distribution. Methods of soil analysis: Part 4 physical methods, 5, 317-328. Noellemeyer, E., Quiroga, A. R., & Estelrich, D. (2006). Soil quality in three range soils of the semi-arid Pampa of Argentina. Journal of Arid Environments, 65(1), 142-155. Ortega, R. A., & Santibanez, O. A. (2007). Determination of management zones in corn (Zea mays L.) based on soil fertility. Computers and Electronics in agriculture, 58(1), 49-59. Osmani, A., Asgarzadeh, H., & Asadzadeh, F. (2020). Comparison of Physical Quality Indices of Topsoil and Subsoil under Wheat and Sunflower Cultivation. Iranian Journal of Soil Research, 34(3), 373-386. (In Persian) Page, A., Miller, R., & Keeney, D. (1982). Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Inc., and Soil Science Society of America. Inc., Publisher, Madison, Wisconsin USA. Pallant, J. (2020). SPSS survival manual: A step by step guide to data analysis using IBM SPSS. Routledge. Peters, D. (1965). Water availability. Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling, 9, 279-285. Pulido-Moncada, M., Ball, B. C., Gabriels, D., Lobo, D., & Cornelis, W. M. (2015). Evaluation of soil physical quality index S for some tropical and temperate medium‐textured soils. Soil Science Society of America Journal, 79(1), 9-19. Qi, Y., Darilek, J. L., Huang, B., Zhao, Y., Sun, W., & Gu, Z. (2009). Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma, 149(3-4), 325-334. Rahimi, H., Pazira, E., & Tajik, F. (2000). Effect of soil organic matter, electrical conductivity and sodium adsorption ratio on tensile strength of aggregates. Soil and Tillage Research, 54(3-4), 145-153. Reynold, W., Elrick, D., Youngs, E., Amoozegar, A., Booltink, H., & Bouma, J. (2002). Saturated and field saturated water flow parameters. pp: 797-878. Methods of soil analysis. Parth, 4. Rezaei, S. A., Gilkes, R. J., & Andrews, S. S. (2006). A minimum data set for assessing soil quality in rangelands. Geoderma, 136(1-2), 229-234. Şeker, C., Özaytekin, H. H., Negiş, H., Gümüş, İ., Dedeoğlu, M., Atmaca, E., & Karaca, Ü. (2017). Assessment of soil quality index for wheat and sugar beet cropping systems on an entisol in Central Anatolia. Environmental monitoring and assessment, 189, 1-11. Shukla, M., Lal, R., & Ebinger, M. (2006). Determining soil quality indicators by factor analysis. Soil and Tillage Research, 87(2), 194-204. Sione, S. M. J., Wilson, M. G., Lado, M., & González, A. P. (2017). Evaluation of soil degradation produced by rice crop systems in a Vertisol, using a soil quality index. Catena, 150, 79-86. SU, Y.-z., Fang, W., ZHANG, Z.-h., & DU, M.-w. (2007). Soil properties and characteristics of soil aggregate in marginal farmlands of oasis in the middle of Hexi Corridor Region, Northwest China. Agricultural Sciences in China, 6(6), 706-714. Topp, G., Reynolds, W., Cook, F., Kirby, J., & Carter, M. (1997). Physical attributes of soil quality. In Developments in soil science (Vol. 25, pp. 21-58). Elsevier. Van Dam, J. C., & Feddes, R. A. (2000). Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation. Journal of Hydrology, 233(1-4), 72-85. Van Genuchten, M. T. (1980). A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892-898. Van Genuchten, M. v., Leij, F., & Yates, S. (1991). The RETC code for quantifying the hydraulic functions of unsaturated soils. Van Lier, Q. d. J., Metselaar, K., & Van Dam, J. C. (2006). Root water extraction and limiting soil hydraulic conditions estimated by numerical simulation. Vadose Zone Journal, 5(4), 1264-1277. Wander, M. M., Walter, G. L., Nissen, T. M., Bollero, G. A., Andrews, S. S., & Cavanaugh‐Grant, D. A. (2002). Soil quality: science and process. Agronomy Journal, 94(1), 23-32. Zangiabadi, M., Gorji, M., & Keshavarz, P. (2021). Determination of Soil Physical Quality Index in Medium to Coarse-textured Soils of Khorasan-Razavi Province. Water and Soil, 35(1), 107-119. (In Persian) Zangiabadi, M., Gorji, M., Shorafa, M., Khorasani, S. K., & Saadat, S. (2020). Effect of soil pore size distribution on plant-available water and least limiting water range as soil physical quality indicators. Pedosphere, 30(2), 253-262. | ||
آمار تعداد مشاهده مقاله: 348 تعداد دریافت فایل اصل مقاله: 319 |