تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,514 |
تعداد مشاهده مقاله | 124,130,737 |
تعداد دریافت فایل اصل مقاله | 97,236,991 |
A Novel Nanocomposite Cellulose Acetate Membrane using Green Synthesized Silver Nanoparticles for Bioremediation of Leachate | ||
Pollution | ||
دوره 10، شماره 1، فروردین 2024، صفحه 168-182 اصل مقاله (2.8 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2023.361606.1976 | ||
نویسندگان | ||
Paul Lalremruot Pakhuongte؛ Mahalakshmi Velrajan* | ||
Madras Christian College, East Tambaram, Chennai, India | ||
چکیده | ||
Conventional remediation techniques have become outdated and insufficient to treat the influx of pollution from different fronts (air, water, and soil). Green synthesis of nanoparticles is an eco-friendly approach to remediate these contaminants and Membrane technology is increasingly becoming popular for the treatment of wastewater due to their efficiency and versatility against a wide array of contaminants. Cellulose acetate (CA) is a polymer obtained from cellulose and hence considered biodegradable, making it a more environmentally friendly option over other conventional polymers. In this present study, silver nanoparticles were synthesized using Staphylococcus aureus and characterized by UV-vis Spectrometer, Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDAX). The synthesized green silver nanoparticles were assimilated onto synthesized CA membrane films to fabricate nanocomposite membranes (CA-X, CA-X1 and CA-X2). EDAX results showed higher counts of silver at 3keV on the CA-X, confirming that silver nanoparticles were properly embedded on the membrane. Physio-chemical tests performed on the collected sewage, showed that the total dissolved solids (TDS) were found to decrease significantly during the first hour of treatment, CA-X1 showed 16.2% decrease and 21.95% decrease was observed by CA-X2. A decrease in total nitrogen content by 38.88% and 41.36% for CA-X1 and CA-X2 respectively was recorded after a week’s treatment. Therefore, the work displayed the capability of cellulose acetate nanocomposite membrane for leachate treatment, since it displayed its potential in remediating leachate in a short span of time and scalability could be achieved for a larger volume of leachate with larger nanocomposite membranes. | ||
کلیدواژهها | ||
Nanoparticles؛ Green synthesis؛ Nanocomposite membrane؛ Cellulose acetate membrane؛ Leachate | ||
مراجع | ||
Agrawal, Shruti, Manoj, B., Sumit, K.R., Arun, B., Pranshu, D., & Pavan, K.A. (2018). Silver Nanoparticles and Its Potential Applications: A Review. ~ 930 ~ J. pharmacogn. phytochem 7 (2). Ashraf, Jalaluddin, M., Ansari, M.A., Khan, H.M., Alzohairy, M.A., & Choi, I. (2016). Green Synthesis of Silver Nanoparticles and Characterization of Their Inhibitory Effects on AGEs Formation Using Biophysical Techniques.” Sci. Rep. https://doi.org/10.1038/SREP20414. Bindhu, M.R., & Umadevi, M. (2013). Synthesis of Monodispersed Silver Nanoparticles Using Hibiscus Cannabinus Leaf Extract and Its Antimicrobial Activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 101: 184–90. https://doi.org/10.1016/j.saa.2012.09.031. Biswas, Aayushi, Vanlalveni, C., Adhikari, P.P., Lalfakzuala, R., & Rokhum, L. (2019). Biosynthesis, Characterisation and Antibacterial Activity of Mikania Micrantha Leaf Extract-Mediated AgNPs. Micro Nano Lett. 14 (7): 799–803. https://doi.org/10.1049/mnl.2018.5661. Chen, Z., Deng, M., Chen,Y., He, G., Wu, M.,& Wang, J. (2004). Preparation, and performance of cellulose acetate/polyethyleneimine blend microfiltration membranes and their applications. J. Membr. Sci.,235, 73–86. Das, Vidhya, L., Thomas, R., Rintu, T., Varghese, E.V., Soniya, M.J., & Radhakrishnan, E.K. (2014). Extracellular Synthesis of Silver Nanoparticles by the Bacillus Strain CS 11 Isolated from Industrialized Area. 3 Biotech 4 (2): 121–26. https://doi.org/10.1007/s13205-013-0130-8. Dong, Xiaobo, Lu, D., Tequila, A.L., & Harris and Isabel C.E. (2021). Polymers and Solvents Used in Membrane Fabrication: A Review Focusing on Sustainable Membrane Development. Membranes 2021, Vol. 11, Page 309 11 (5): 309. https://doi.org/10.3390/MEMBRANES11050309. Faria, A.F., Liu, C., Xie, M., Perreault, F., Nghiem, l.D., Ma, J., & Elimelech, M. (2017). Thin-film composite forward osmosis membranes functionalized with graphene oxide–silver nanocomposites for biofouling control. J Membrane Science, Volume 525, Pages 146-156. https://doi.org/10.1016/j.memsci.2016.10.040 Govindaraju, K., Tamilselvan, S., Kiruthiga, V., & Singaravelu, G. (2010). Biogenic silver nanoparticles by Solanum torvumand their promising antimicrobial activity. J Biopest3:349–399 Javaid, Aqib, Sandra, F., Oloketuyi, Mohammad, M.K., & Fazlurrahman, K. (2018). Diversity of Bacterial Synthesis of Silver Nanoparticles.” BioNanoScience. Springer New York LLC. https://doi.org/10.1007/s12668-017-0496-x. Jemal, Kero, Sandeep, B.V., & Pola, S. (2017). Synthesis, Characterization, and Evaluation of the Antibacterial Activity of Allophylus Serratus Leaf and Leaf Derived Callus Extracts Mediated Silver Nanoparticles. Nanomater.https://doi.org/10.1155/2017/4213275. Jiang, J., Oberdorster, G., & Biswas, P. (2009). Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res11:77–89 Lv, Yaohui, Hong L., Zhen, W., Shujiang, L., Lujiang, H., Yuanhua, S., Duo, L., Jiyang, W., & R.I. Boughton. (2009). Silver Nanoparticle-Decorated Porous Ceramic Composite for Water Treatment. J. Membr. Sci. 331 (1–2): 50–56. https://doi.org/10.1016/j.memsci.2009.01.007. Nadaroğlu, Hayrunnisa, Güngör, A.A., & İnce, S. (2017). Synthesis of Nanoparticles by Green Synthesis Method. INJIRR 1 (1): 6–9. http://www.injirr.com/article/view/4. Nanda, Anima, & Saravanan, M. (2009). Biosynthesis of Silver Nanoparticles from Staphylococcus Aureus and Its Antimicrobial Activity against MRSA and MRSE. Nanomed.: Nanotechnol. Biol. Med. 5 (4): 452–56. https://doi.org/10.1016/j.nano.2009.01.012. Otari, S.V., Patil, R.M., Ghosh, S.J., Thorat, N.D., & Pawar, S.H. (2014). Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochim. Acta - A: Mol. Biomol. Spectrosc. 136(PtB), 1175–1180. Sachin. V., Dharni, P., Dhara, P., & Vishwakarma, G.S. (2022). Leachate treatment potential of nanomaterial based assemblies: a systematic review on recent development. Water Sci. Technol 85(11). DOI: 10.2166/wst.2022.168 Singh, Ayushi, Tyagi, P., Ranjan, R., Svetlana, N., Sushkova, Minkina,T., Burachevskaya, M., & Rajput, V.D. (2023). Bioremediation of Hazardous Wastes Using Green Synthesis of Nanoparticles. Processes. MDPI. https://doi.org/10.3390/pr11010141. Sivakumar, M., Mohan, D.R., & Rangarajan, R. (2006). Studies on cellulose acetate-polysulfone ultrafiltration membranes: II. Effect of additive concentration. J. Membr. Sci.,268, 208–219. Tosco, T., Papini, M.P., Viggi, C.C., & Sethi, R. (2014). Nanoscale zerovalent iron particles for groundwater remediation: a review. J. Clean. Prod. Volume 77, Pages 10-21. Vidali, M. (2001). Bioremediation. An Overview. Pure Appl. Chem. 73 (7): 1163–72. https://doi.org/10.1351/PAC200173071163/MACHINEREADABLECITATION/RIS. Wang, Huiya & Ding, K. (2022). Effect of Self-Made TiO2 Nanoparticle Size on the Performance of the PVDF Composite Membrane in MBR for Landfill Leachate Treatment. Membranes 12 (2). https://doi.org/10.3390/membranes12020216. Zahoor, Muhammad, Nazir, N., Iftikhar, M., Naz, S., Zekker, I., Burlakovs, J., & Uddin, F. (2021). A Review on Silver Nanoparticles: Classification, Various Methods of Synthesis, and Their Potential Roles in Biomedical Applications and Water Treatment. Water J. Vol. 13, Page 2216 13 (16): 2216. https://doi.org/10.3390/W13162216 | ||
آمار تعداد مشاهده مقاله: 287 تعداد دریافت فایل اصل مقاله: 449 |