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 Olive shoots have a hard-rooting nature that causes significant                          
problems associated with olive micro-propagation under in vitro                       
conditions. Several factors may contribute to alleviating this problem, in
cluding zinc and its derivatives. The current research involved the                 
application of zinc oxide nanoparticles and zinc sulfate on olive explants 
‘Caillette’, ‘Beldi’ and ‘Dezfoli’ cultivars. FT-IR spectroscopy, UV-Vis               
spectroscopy, FESEM, EDS, and DLS techniques characterized the zinc      
oxide nanoparticles. Then, micro cuttings containing two buds were             
cultured on a half-strength MS medium containing 1.5 mg L-1 of BAP             
hormone and 1 mg L-1 of GA3 hormone. The treatments led to olive                
shoots, 3 cm in length that were transferred to a 1/2 MS medium                      
containing 3 mg L-1 of IBA. The olive shoots were treated with two types 
of zinc compounds, including zinc sulfate (0.0, 2.43, and 4.86 mg L-1) and 
zinc oxide nanoparticles (0.0, 2.43, 4.86, and 7.29 mg L-1). The results         
showed that zinc oxide nanoparticles induced callus growth in response 
to all concentrations but prevented root growth. Alternatively, zinc               
sulfate at all concentrations induced root and callus growth, although to 
a smaller extent than nanoparticles. The ‘Caillette’ cultivar had the                
highest rooting percentage and heaviest fresh and dry root weight. The   
‘Beldi’ cultivar had the lowest of these values. Several factors potentially 
contributed to these results, such as hormonal (auxin biosynthesis),             
biochemical (enzyme and other proteins), and molecular factors (bZIP   
TFs), which changed by zinc application. A complementary bioinformati
cs study was conducted as well. 
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Introduction1 
As a valuable species in the Oleaceae family, olives 
(Olea europaea L.) can be described as 
permanent evergreen woody trees. This plant 
species is one of the most important sources of 
healthy edible oil (Zhou et al., 2020). Despite its 
cultivation on a wide scale for economical fruit 
production, orchardists have traditionally planted 
olive trees on large areas of low-yielding land 
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where other crops cannot be produced 
economically. This placement is due to its ability 
to adapt to adverse environmental conditions like 
drought and high temperatures (Brito et 
al., 2019). The most common traditional method 
for propagating olive trees is rooting leafy stem 
cuttings under a mist system. However, rooting 
ability varies depending on genotypes, season, 
and health status of stock plants and rootstocks. 
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Another problem is associated with hard-to-root 
cultivars. Grafting is another technique for clonal 
propagation of olive trees, but has limitations that 
make it more expensive and complex because it 
requires nurseries with controlled environments 
and skilled staff. To overcome these problems, in 
vitro micropropagation stands as an alternative 
to facilitate the vegetative propagation of olive 
trees (Bayraktar et al., 2020). In tissue culture 
conditions, several problems may hamper the 
production of olive plantlets, including apical 
dominance, low rate of shoot growth, and 
difficulty in root production that requires several 
repeated sub-cultures. Sub-culturing olive micro 
shoots reportedly made them more juvenile and 
enhanced their rooting ability (Rugini, 1984; 
Binet et al., 2007). Researchers are continuously 
searching for different methods to speed up the 
production of adventitious roots in olive shoots 
and improve their quality. In terms of 
adventitious roots, different olive cultivars 
produce them differently (Porfírio et al., 2016). 
Auxins play an important role in root induction 
and growth of olive cuttings. Other hormones, 
such as abscisic acid, cytokinins, and GA3 
negatively influence root induction and prevent 
adventitious root formation (Zhao et al., 2022). 
On cuttings, IAA (auxin) is reportedly responsible 
for adventitious root formation. Olive cuttings can 
also be stimulated to produce adventitious roots 
by endogenous and exogenous auxin. While the 
free auxin concentration increases at the bottom 
of the cutting, adventitious roots are more likely 
to be induced. The increase in endogenous IAA 
concentration in the olive ‘Nabali’ cultivar, from 
11.54 µg g-1 to 48.77 µg g-1, caused an increase in 
the rooting percentage of the cuttings from 5.7% 
to 55.6%. (Ayoub et al., 2006). Endogenous auxin 
proliferates adventitious primordial cells in roots. 
Proper auxin concentrations can stimulate 
cellular division in the vascular cambium, 
resulting in primordial cell formation (Haissig et 
al., 1972). Among the essential and trace 
elements for healthy growth and crop production 
in plants, zinc plays an important role in the 
biosynthesis of indole acetic acid (IAA) hormones 
(Castillo-González et al., 2018). Zinc is essential 
for the biosynthesis of the IAA hormone through 
involvement in tryptophan production. It is also 
essential in methionine synthesis, super-oxidase 
dismutase enzyme, and carbonic anhydrase 
enzyme in chloroplast activity (Hassan et al., 
2020; Hsieh et al., 2013). In addition to 
maintaining cellular homeostasis, zinc plays 
another role in plants (Chevallet et al., 2017). Its 
use in nano form has greatly developed in recent 
years because of its unique properties. Unlike 
bulk materials, nanoparticles have different 

physical and chemical properties than atomic or 
molecular assemblies with sizes between 1-100 
nm. Many countries use zinc oxide (ZnO) 
nanoparticles on an industrial scale in electronic, 
textile, pharmaceutical, cosmetics, catalysts, 
ceramics, sensors, and other applications 
(Gharbavi et al., 2023). In addition to their 
applications in dentistry, the gas, rubber, and oil 
industries, zinc-based compounds are used as 
fungicides and fertilizers in agriculture (Gharbavi 
et al., 2022). A hyper-accumulating plant like the 
olive can quickly absorb zinc particles and 
transfer them to its various organs to provide or 
store zinc. At high concentrations, however, they 
can be toxic (Al-Habahbeh et al., 2021). In 
addition to their chemical composition, 
nanoparticles can cause toxicity by releasing ions 
in high concentrations, causing molecular tension 
and stimulation caused by their surface, size, and 
shape (Harish et al., 2022). Zinc oxide 
nanoparticles have positive effects on seed 
germination and plant growth parameters. 
However, in some cases, these nanoparticles 
showed negative effects, probably depending on 
the concentration, size, and nanoparticle 
synthesis (Tondey et al., 2022). In this research, 
zinc oxide nanoparticles are studied in vitro for 
their ability to induce callus and root formation in 
olive micro cuttings. Before applying them to the 
plants, the nanoparticles were synthesized and 
characterized using DLS, FT-IR, UV-Vis, SEM, and 
EDS techniques. 

 

Materials and methods 
Synthesis of zinc oxide 
After dissolving 0.2 M zinc acetate dehydrate in 
methanol at room temperature, ZnO 
nanoparticles were prepared by ultrasonically 
mixing this solution at 25 °C for two hours. The 
mixture was clear and transparent without any 
observable precipitate or turbidity. In the next 
step, we added 0.02 M of NaOH (0.1 N NaOH) to 
the solution and stirred it ultrasonically for 60 
minutes to dissolve the NaOH. After vortexing the 
mixture a few times, it remained undisturbed 
until white precipitates accumulated at its 
bottom. The precipitates were filtered and 
washed with excess methanol after the 
precipitation to remove the starting material. A 
hot plate provided a condition for drying the 
precipitate for 15 minutes at 80 °C (Hasnidawani 
et al., 2016).  
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Physicochemical characterizations of ZnO 
nanoparticles 
Several techniques enabled the characterization 
of the physical and chemical properties of ZnO 
nanoparticles. DLS (Malvern NanoZS model) 
involved measuring the hydrodynamic diameter 
of ZnO nanoparticles, their polydispersity index, 
and charge surface (zeta potential). Two hundred 
µL per sample was diluted into deionized water 
until the absorbance at 633 nm reached 0.09 ± 
0.02 units. The chemical structure of ZnO 
nanoparticles was determined using FT-IR 
(Bruker, Tensor 27). The nanoparticles were 
mixed and mechanically ground with potassium 
bromide (KBr) at a unique weight ratio (1:10) to 
create pellets at 10-ton pressure. In addition, the 
UV-SPECORD 210 PLUS Spectrophotometer 
(Analytik Jena) operated between 200 and 800 
nm with a spectral resolution of 1 nm. The ZnO 
nanoparticle size and morphology were 
estimated using scanning electron microscopy 
(SEM; MIRA TESCAN, Czech Republic). The 
elemental distribution of the prepared ZnO 

nanoparticles appeared in estimation using the 
EDS technique. At a scale of 100,000 
magnification, we covered the samples with 
platinum and observed the changes at 15 kV 
(Gharbavi et al., 2021; Felenji et al., 2022).  
 

Explant preparation  
Microcuttings (nodal segments) were three-
centimeter-long pieces of shoots. Each 
microcutting had two healthy buds taken from 
green branches of mature olive trees in the olive 
orchard of the Shahid Chamran University, 
Faculty of Agriculture, Ahvaz. Mature olive trees 
were from three cultivars, i.e., ‘Caillette,’ ‘Beldi,’ 
and ‘Dezfuli’ (Fig. 1). After remaining for 30 min 
in a mixture of citric acid and ascorbic acid, the 
explants were rinsed with sterile water to prevent 
browning. Surface disinfection involved 
immersing the explants in 70% alcohol for 30 
seconds, followed by immersion in 2.5% sodium 
hypochlorite and one drop of Tween 20 per 100 
mL for 5 min. Finally, the explants were washed 
three times with distilled water.

 
 
 

 
Fig. 1. (A) Initial olive explants (micro-cuttings) and (B) shoots ready for transfer to the rooting medium. 
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Culture Medium 
Explants were cultured in a half-strength MS 
culture medium containing 1.5 mg of BAP 
hormone and 1 mg of GA3 hormone at pH 5.7. 
Then, they were sub-cultured in a fresh medium 
after four weeks. In the rooting culture medium, 
1/2 MS medium was prepared with ZnO 
nanoparticles in three concentrations (2.43, 4.86, 
and 7.29 mg L-1), zinc sulfate in two 
concentrations (43.342 and 4.86 mg L-1), and 
without zinc (as a control sample). Each culture 
medium was supplemented with 3 mg L-1 of IBA 
hormone to enhance root growth. In each culture 
medium, three shoot explants of the previous 
stage, each 3 cm long, were cultured separately 
per cultivar, ‘Caillette,’ ‘Blaidi,’ and ‘Dezfuli.’ The 
experiments were conducted in the factorial 
arrangement using a completely randomized 
design with six replications (culture vessel). All 
culture media were measured in terms of callus 
formation percentage, callus fresh and dry 
weight, root length, root fresh and dry weights at 
the end of the experiment. The culture media 
were sterilized using an autoclave at 121°C and 
15 psi pressure for 20 min. All cultures were 
incubated at 16 h of photoperiod and 25 °C 
temperature.   

 
Statistical analysis 
A statistical analysis of the data followed a 
normality test and involved the GraphPad Prism 8 
software. The results appeared as mean values 
and standard deviations. Analysis of variance and 
Spline/LOWESS analysis had repeated measures 
(one/two ways) as statistical tests. IC50 values 
derived from generating a relevant curve. 
Differences were considered significant at *p 
<0.5, **p < 0.01, ***p < 0.001, and ****p < 
0.0001. 
   

Results 
Synthesis and characterization of ZnO NPs 
A sol-gel method was used for synthesizing ZnO 
nanoparticles, characterized by various 
techniques to determine their physicochemical 
characteristics. DLS analysis facilitated the 
evaluation of the average hydrodynamic diameter 
and zeta potential. Based on Fig. 2A and B, the 
particles have an average hydrodynamic diameter 
of 243.8 nm and a zeta potential of 10.40 mV. In 
addition, the PDI for ZnO nanoparticles was 

approximately 0.233.  
As observed in Fig. 3A, the FT-IR spectra revealed 
confirmations of ZnO NPs synthesis and indicated 
the number of functional groups at the NP surface. 
FT-IR measurements of ZnO NPs revealed 
different absorption peaks at 3475.32, 1587.11, 
1454.21, and 720.52 cm−1. Additionally, UV-
visible spectra showed that ZnO NPs, produced by 
the sol-gel method, had a stronger absorption 
band at 278 nm, indicating the fulfilment of 
nanoparticle synthesis (Fig. 3B). 
ZnO nanoparticles were synthesized by the sol-
gel method and analyzed by FESEM to determine 
their morphology and distribution size. As 
observed in Fig. 4A, the particles appeared 
spherical, with uniform shapes and an even 
distribution. Similarly, the EDS profile revealed 
that a significant Zn signal was absorbed (78.32% 
Wt.) (Fig. 4B).  
 

Callus production 
The type of zinc source in the culture medium 
significantly affected callogenesis (P≤0.01) in the 
olive explants. The concentration of zinc oxide 
nanoparticles in the media was most effective on 
callus induction. All explants (100%) produced 
callus after exposure to the medium with different 
concentrations of zinc oxide nanoparticles (Fig. 
5A). On the medium without zinc, the explants did 
not generate callus. On the medium containing 
zinc sulfate, the explants produced small amounts 
of callus (Fig. 5B). 
 

Fresh weight & dry weight of callus 
Depending on the type and concentration of zinc 
composition, the fresh weight and dry weight of 
the produced callus were significantly different. 
Explants cultured on media containing zinc oxide 
nanoparticles had the highest callus fresh weight 
and dry weight. With an increase in zinc oxide 
nanoparticle concentration, the callus fresh 
weight increased likewise. Lower values of fresh 
weight and dry weight were observed in explants 
grown on zinc sulfate-containing media, but 
callus did not form on zinc-deficient media. In 
addition, the average values observed from the 
cultivars revealed that the highest callus fresh 
weight and dry weight occurred in the ‘Beldi’ 
cultivar. The lowest callus fresh weight and dry 
weight occurred in the ‘Dezfuli’ cultivar (Fig. 6A 
and B). 
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Fig. 2. Size and surface charge of SeNPs analysis by the DLS technique. (A) Hydrodynamic diameter average size (nm) 

of synthesized ZnO NPs, (B) Zeta-potential average (mV) of synthesized ZnO NPs. 
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Fig. 3. Confirmation of synthesis ZnO NPs. (A) FT-IR spectrum of ZnO NPs, (B) UV-vis spectra of ZnO NPs. 

 
Fig. 4. Morphology and elemental distribution analysis. (A) FESEM analysis of synthesized ZnO NPs, (B) 

analysis of elemental distribution synthesized ZnO NPs by EDS. 
 
 

 
 
Fig. 5. (A) Callus induction in olive cultivar explants under in vitro conditions mediated by zinc sulfate and 

ZnO NPs, (B) Callus from olive micro-cuttings cultured in the ZnO NPs medium. 
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Fig. 6. In vitro study of the effect of ZnO NPs and zinc sulfate on (A) callus fresh and (B) dry weight of olive 

cultivar explants. 
 
 

Rooting percentage 
Based on the results, zinc oxide nanoparticles 
inhibited root induction in olive cultivar explants 
under in vitro conditions, unlike callus. 
Therefore, none of the explants grew roots when 
placed on various media containing zinc oxide 
nanoparticle concentrations. Zinc sulfate 
reportedly stimulated root initiation in olive 
explants in the meantime. Explants grown on 
media containing zinc sulfate (2.43 mg L-1) 
exhibited the highest average rooting percentage 
(80%), while explants grown on medium without 
zinc exhibited the lowest rooting percentage 
(41.2%). In making a comparison among the 
average rooting rates of the cultivars, the 
‘Caillette’ had the highest rooting rate (68.8%), 
whereas ‘Beldi’ had the lowest rooting rate 
(60.2%) (Fig.7A). 

 

Total root length 
Regarding root length, the most extensive roots 
(17.2 mm) were obtained in the medium 
containing zinc sulfate at 4.86 mg L-1, while the 
shortest roots (4.9 mm) appeared in zinc-free 
media. Furthermore, based on the cultivars, the 
highest average root length (15.8 mm) appeared 
in the ‘Caillette’ cultivar and the lowest (9.4 mm) 
in the ‘Beldi’ cultivar. However, zinc nanoparticles 
did not cause much root growth (Fig. 7B and C). 
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Fig. 7. In vitro study of the effect of ZnO NPs and zinc sulfate on (A) the rooting percentage and (B) root 

length in explants of olive cultivars. (C) Olive roots are produced in a culture medium containing zinc 
sulfate. 

 
 

Fresh and dry roots weight 
The root fresh and dry weights were similar. The 
highest root fresh weight (with an average of 23.3 
mg) occurred in explants of the ‘Caillette’ cultivar, 
which grew on 2.43 or 4.86 mg L-1 sulfate. 
Explants of the ‘Beldi’ cultivar on medium without 
zinc exhibited the lowest fresh weight (11 mg on 
average), whereas the explants that grew on zinc 
medium had the highest fresh weight (21 mg on 
average). The highest root dry weight (2.3 mg) 
occurred in explants of the ‘Caillette’ cultivar, 
where zinc sulfate was either 2.43 or 4.86 mg L-1. 
The lowest root dry weight (1.3 mg) occurred in 
explants of the ‘Beldi’ cultivar, which grew on 
zinc-free media (Fig. 8A and B). 
 

Discussion 
According to the results, ZnO nanoparticles 
induced good callus growth. The nanoparticles 
suppressed adventitious root growth at the basal 
end of olive explants, while zinc sulfate-induced 
callus growth and root growth. Since ZnO 
nanoparticles are highly penetrative and toxic, 
root production did not occur in explants treated 
with these particles. Several factors may affect 

this, including chemical composition, size, and 
surface area of nanoparticles, besides the main 
effect of plant species (tissue sensitivity). 
Suspended ZnO nanoparticles reportedly 
inhibited ryegrass seed germination, and ZnO 
nanoparticles inhibited corn seed germination 
(Lin and Xing, 2007). However, these two types of 
nanoparticles did not affect radish, lettuce, turnip, 
and cucumber seeds. All six plant species showed 
a reduction in root growth after exposure to these 
two nanoparticles. According to other 
researchers, ZnO nanoparticles reduced the 
germination of many seed types and prevented 
the roots and stems from elongating. In addition 
to growth retardation (the main symptom of zinc 
toxicity), they also showed growth enhancement 
(El-Ghamery et al., 2003; Munzuroglu and Geckil, 
2002). Several reports have shown that ZnO 
nanoparticles enhanced seed germination in 
some plants and reduced the effect of salinity 
stress (Adil et al., 2022; Zafar et al., 2022). The 
toxic effects of ZnO nanoparticles decreased by 
several approaches, including coating ZnO 
nanoparticles with two-dimensional materials 
and green synthesis using microemulsion (Al 
Jabri et al., 2022; Mukherjee et al., 2014).  
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Fig. 8. In vitro study of ZnO NPs and zinc sulfate affecting (A) fresh root weight and (B) dry root weight of 

olive explants per cultivar. 
 
 

ZnO nanoparticles act on plant cells and tissues in 
a variety of ways. The mechanism by which they 
do so is not well understood. The effect of zinc 
nanoparticles on plant cells and tissues derives 
from hormonal composition, biochemical 
balance, and molecular factors. Some factors play 
a more significant role in normal conditions, and 
others play a greater role in zinc toxicity. 
Zinc is an essential element for plant growth and 
development, specifically its involvement in the 
biosynthesis of the hormone auxin, which 
stimulates the growth and rooting of plants. The 
zinc affects tryptophan through zinc finger 
transcription factors, capable of binding to 
tryptophan decarboxylase gene promoters and 
affecting tryptophan production (Pauw et al., 
2004). First, the tryptophan is converted to 
indole-3-acetamide by tryptophan-2-
monooxygenase (iaaM), followed by indole-3-
acetamide conversion to indole by amidase 
(amiE). The auxin hormone induces adventitious 
roots in plants by increasing carbohydrates, 

phenolic compounds, and rooting gene 
expressions while boosting the H2O2 content 
(Neves et al., 2012; Su et al., 2006; Bákány et al., 
2021). Additionally, the enzyme super-oxidase 
dismutase (SOD) activity increases at the same 
time as free radicals increase in the plant cell in 
response to auxin simulation (Ilczuk and 
Jacygrad, 2016; Elmongy et al., 2020). The impact 
of zinc nanoparticles on plant growth and 
development is associated with their possible 
interference with auxin biosynthesis. The high 
level of auxin may lower the activity of the 
peroxidase enzyme and prevent the lignification 
process, which may explain another reason for 
the suppression of root formation in callus tissues 
formed on olive explants. Besides affecting the 
growth of roots and shoots, auxin hormones, 
including IAA, are also necessary for callus 
induction. Therefore, callus growth in all media 
that contained zinc oxide nanoparticles in this 
study demonstrated that the prevention of root 
induction on explants is not a result of 



Taheri et al.,                                              Int. J. Hort. Sci. Technol. 2024 11 (1): 107-124 

 

116 

nanoparticles affecting the synthesis process of 
indole acetic acid.  
Phenolic compounds act as cofactors by 
preventing IAA oxidase activity or removing free 
radicals responsible for the peroxidase reaction. 
Additionally, the phenolic compounds act as 
precursors to form lignin, thereby increasing 
adventitious root growth. According to Denaxa et 
al. (2021), the final effect of phenolic compounds 
on adventitious rooting depends on the type of 
bioactive compounds present in each plant. The 
hypothesis of rooting incapacity in olive explants 
due to zinc oxide nanoparticles negatively 
affecting the reduction of auxin hormone is not 
citable because olive plants contain a high 
polyphenolic content. Adventitious root 
production through auxin hormone signaling is 
affected by nitric acid. The increased expression 
of the NIA (nitrate reductase) gene supports this 
hypothesis (Scholl et al., 1974). Zinc acetate 
enhances the activity of the NIA enzyme, thereby 
increasing adventitious root formation, but zinc 
nanoparticles inhibit the activity of this enzyme 
and decrease root production (Abu-Abied et al., 
2012).  
Furthermore, previous research explored the 
effects of zinc nanoparticles on different types of 
proteins in plants, including enzymes and non-
enzymatic proteins, as well as its impact on metal 
homeostasis and the regulation of gene 
expression in root cells. For some enzymes to 
remain stable and active, zinc plays an important 
role directly or indirectly. In plants, zinc exists in 
RNA polymerase, alcohol dehydrogenase, 
carbonic anhydrase, and superoxidase dismutase 
enzymes. Most carbonic anhydrases contain zinc 
ions in their active sites, which is why they work 
so well. This enzyme plays a role in maintaining 
an acid-base balance and transporting carbon 
dioxide (Occhipinti and Boron, 2019). The super 
oxidase dismutase enzyme contains zinc and 
copper metals (Zn/Cu SOD). In response to stress 
conditions such as drought and cold, this enzyme 
removes superoxide free radicals from plant cells 
(Azarin et al., 2022).  
 
Moreover, the amount of MDA is the final product 
of lipid oxidation and is responsible for 
membrane damage. It decreases with the increase 
in superoxidase dismutase activity (Zhang et al., 
2017). The zinc nanoparticles can adversely affect 
the activity of some proteins necessary for growth 
and development, such as metal-chelating 
compounds, YSL, ferric reductase defective 3 
(FRD3), zinc-induced facilitator 1 (ZIF1), 
multidrug and toxin efflux (MATE), and LBD 
domain proteins. The molecular mechanism of 
metal homeostasis inside the cell involves the 

formation of metal complexes with ligands such 
as oligopeptides, organic acids, amino acids, or 
proteins, which are required to pass through cell 
membranes. Metal-chelating compounds such as 
metal-nicotinamide are thus essential when 
exposing plants to metals like zinc. YSL (yellow 
stripe-like) proteins allow the metal-
nicotinamide complex to pass through the cell 
membrane (Balafrej et al., 2020). Nicotinamide is 
transferred from the cytosol to the vacuole by 
zinc-induced facilitator 1 (ZIF1) protein, forming 
a Zn-NA complex inside the vacuole. Accordingly, 
through this process, zinc maintains vacuolar 
homeostasis in plant cells (Haydon and Cobbett, 
2007). The proteins of the LBD gene family, which 
have the LOB (LATERAL ORGAN BOUNDARIES) 
domain, play a crucial role in regulating the 
induction and growth of lateral and adventitious 
roots, as well as callus production, among other 
plant organs. Zhang et al. (2020) reported that 
these proteins influenced the auxin hormone 
response (Lee et al., 2009). Several proteins play 
a role in maintaining zinc balance in the cell, 
including MTPs (metal tolerance proteins), HMAs 
(heavy metal ATPases), NRAMP4 (Natural 
Resistance Associated Macrophage Protein 4), 
YSL (yellow stripe-like), and PCR2 (Plant 
Cadmium Resistance2) (Lan et al., 2013). 
 
Zinc relocates mostly through the plasma 
membrane by ZIP family proteins. In plants, ZIP 
transporters play a vital role in zinc absorption 
and redistribution (Grotz et al., 1998). These 
proteins affect all organs and stages (Li et al., 
2013). Some transcription factors regulate 
several ZIP family proteins. The transcription 
factors, known as bZIP transcription factors, 
regulate ZIP protein expression.  
Two transcription factors, bZIP19 and bZIP23, 
usually control gene expressions related to these 
proteins. After connecting in a dimer state, these 
two proteins can regulate the ZIP gene 
expression. The bZIP family proteins have a motif 
for binding to cis-regulatory elements called zinc 
deficiency response elements (ZDRE) and 
another motif, known as the leucine (Leu) zipper 
dimerization region, required to form dimers 
with other proteins in the family (Jakoby et al., 
2002). Thus, bZIP19 and bZIP23 proteins first 
form a dimer, and upon activation, they induce the 
expression of ZIP family genes by binding to the 
ZDER regulatory sequence (located upstream of 
these genes). This dimer is known as a sensor for 
determining zinc status in plants. Zinc binds to a 
zinc-sensitive motif to connect divalent zinc ions 
(Lilay et al., 2021). 
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 After the alignment of the olive genome, 
specifically the bZIP19 and bZIP23 amino acid 
sequences in this study, we found that the NCBI 
database contains two very similar sequences; 
they have a DNA binding site with 
NREAVRKYREKK and a lucine zipper domain with 
LEDEVIRRLTLNQQLMKRLQGQALLAEIARLCKCLL
, which confirms previous findings by Bákány et 
al. (2021). Zinc concentration affects the 
expression of all ZIP genes except ZIP6 (Lira-
Morales et al., 2019). 
According to Fig. 9, 10, and Table 1, the protein 
network closely related to these two proteins has 
a very similar structure and function. ARFs (auxin 
regulating factors) are transcription factors that 
affect rooting by binding to the cis regions in 
genes related to auxin (Elmongy et al., 2020). In 
the procambial and surrounding parenchyma 
cells, auxin accumulation in the cut sites 
of Arabidopsis leaves triggers the expression of 
genes related to two home box transcription 
factors, including WOX11 (WUSCHEL RELATED 
HOMEOBOX11) and WOX12. These genes 
increase the transformation of procambial/leaf 
parenchyma cells into root-forming cells (Ikeuchi 
et al., 2016). Evidence suggests 
that WOX11 and WOX12 genes assist in 
generating new meristems at the time of root 
production. The induction of WOX11 gene 
expression relies on the presence of AuxREs 
(auxin response elements) in its promoter. This 
condition indicates that the ARF family of genes 
directly regulates the WOX11 gene expression 
level in leaf samples (Liu et al., 2014). Also, some 
zinc finger proteins, such as bZIP11 or Zfp277, 
have reportedly bound to some ARF proteins and 
regulated their expression by facilitating their 
acetylation by histone acetylation machinery or 
by forming complexes with other proteins, 
respectively (Weiste Dröge-Laser, 2014; Negishi 
et al., 2010). Where large vacuoles are present, 
the excess zinc absorbed in callus cells is stored 
appropriately in these vacuoles. Thus, callus 
tissues can continue growing even with excess 
amounts of zinc. However, this excess zinc in 
hyper-accumulator plants such as olive is likely to 
accumulate more in the cell wall, leading to 
positive-feedback regulations of lignin synthesis 
gene expression in the cell wall, thereby 
increasing the physical resistance of tissues to 
root formation and suppressing the emergence of 
primary roots. 
 

Conclusion 
The results indicated that the type of zinc source 
in the culture medium significantly affected the 
olive explant response. Enrichment of the 
medium with zinc oxide nanoparticles induced 
callus on all olive explants (100%) at all 
concentrations but inhibited rooting. However, 
the zinc sulfate medium produced less callus but 
significantly enhanced the rooting. Therefore, the 
nanoparticles and zinc oxide stimulated 
dedifferentiation (callus formation) in olive 
explants but encouraged differentiation 
(organogenesis) in vitro. These results can 
explain the nature of these nanoparticles that 
derive from their unique synthesis. 
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Fig. 9. (A) TMHMM output based on amino acid sequences of bZIP19 (a) and bZIP23 (b) proteins, 
indicating their membrane location. (B) Dimer proteins BZIP19/bZIP23, DNA binding sites, and Lucine 

zipper domains. Using the NCBI database and the Swiss database, the model is based on two genes 
(bZIP19, NCBI Reference Sequence: XM_023017314.1) from the olive genome (common olive taxid: 4146). 

(C) The identity of the amino acid sequences of bZIP19 (NCBI Reference Sequence: XM_023004552.1, 
/protein id=XP_022860320.1) and bZIP23 (NCBI Reference Sequence: XM_023004531.1, 

/protein_id="XP_022860299.1") related to the olive genome. The Olea europaea var. ‘Sylvestris’ (common 
olive taxid: 4146) using the COBALT tool (Constraint-based Multiple Alignment Tool) via the NCBI 

database. 
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 Fig. 10. Clusters of proteins associated with bZIP19 and bZIP23 transcription factors and their 

gene expression in other plants and non-plant environments. 
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Table 1. Dimer-related bZIP19/23 proteins and their functions. 
Proteins direct 

interact with bZIP19 

(Olea europaea)  

 

Proteins direct 

interact with bZIP23 

(Olea europaea)  

 

Function 

(Based on STRING database https://string-db.org) 

ZIP1 

(zinc transporter 1-like) 

ZIP1 

(zinc transporter 1-

like) 

Zinc transporter 1 precursor. Transcript is induced in response 

to zinc deficiency in the root. 

probable bZIP43 (basic 

leucine zipper 43-like) 

probable bZIP43 

(basic leucine zipper 

43-like) 

Sequence-specific DNA binding transcription factor activity; 

Involved in regulation of transcription, DNA-dependent; 

Located in chloroplast; Expressed in root and leaf. 

ZIP4 

 

ZIP4 

 

Zinc transporter 4, chloroplastic. Transcript is induced in 

response to zinc deficiency in the root and shoot. Expression is 

regulated by copper, but response to copper deficiency is 

detected only after three weeks of deficiency. 

probable,ZIP9 probable,ZIP9 Zinc transporter, involved in zinc uptake in roots. Targeted by 

BZIP19 transcription factor in response to zinc- deficient 

conditions. 

probable, ZIP12 probable, ZIP12  

rRNA biogenesis 

RRP36-like protein  

rRNA biogenesis 

RRP36-like protein  

rRNA biogenesis RRP36-like protein. 

probable, bZIP34 

 

probable, bZIP34 

 

Sequence-specific DNA binding transcription factor activity 

involved in the regulation of transcription; DNA-dependent.  

IRT2 (fe(2+) transport 

protein 1-like) 

IRT2 (fe(2+) transport 

protein 1-like) 

Encodes a plasma membrane localized zinc/iron transporter, 

chloroplastic. 

NAS (nicotianamine 

synthase) 

- Transcript levels rise in roots in response to zinc deficiency and 

rise in leaves in response to elevated zinc levels. 

-  

 

HMA3 

(inactive cadmium 

zinc-transporting 

ATPase)  

 

Cadmium/zinc-transporting ATPase HMA2 plays an important 

role in zinc transport and homeostasis; could be involved in 

cadmium detoxification (https://string-db.org). 

In hyper-accumulated species, HMA3 was much more expressed 

in shoots than in roots. HMA3 mRNA levels was highest in the 

mesophyll and bundle sheath of the vein (Mishra et al., 2017). 

It plays a vital role in the translocation or detoxification of Zn 

and Cd in plants. OsHMA3 transports Cd and plays a role in the 

sequestration of Cd into vacuoles in root cells (Takahashi et al., 

2012). 

-  

LPLAT1 

(lysophospholipid 

acyltransferase 1-like) 

Catalyzes the reacylation step of the phospholipid remodeling 

pathway also known as the Lands cycle (Probable). The primary 

function of the Lands cycle is to provide a route for acyl 

remodeling to modify fatty acid (FA) composition of 

phospholipids derived from the Kennedy pathway 

(https://www.uniprot.org). 
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