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ABSTRACT 

This study analyzes bearing capacity and settlement for a strip footing at the proposed NIT Patna Bihta campus site. 

It uses the Random Finite Element Method (RFEM) based software, which combines viscoplastic finite element 

analysis with random field theory. The program generates random realizations of the soil domain using local average 

subdivision method. The average response of the soil domain with variable properties is estimated using Monte-Carlo 

simulation. The study assumes random variation of soil parameters like cohesion, friction angle, and elastic modulus, 

while Poisson's ratio and dilation angle are treated as deterministic variables. The study also considers the cross 

correlation between cohesion and friction angle. For no cross correlation, theoretical predictions are made for mean 
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and standard deviation of bearing capacity which are verified using Monte Carlo simulation based RFEM results. The 

probability of bearing capacity failure is also calculated using random finite element analysis and compared with 

theoretical results. The stochastic analysis of bearing capacity problem indicates that conservative results can be 

obtained with Prandtl’s bearing capacity formula with consideration correlation length equal to the width of the 

footing.  In settlement analysis, elastic settlement of strip footing on spatially variable soil is presented. Locally 

averaged lognormally distributed random fields of elastic modulus are generated to conduct probabilistic settlement 

analysis using RFEM, and it is seen that there is very good agreement between the predicted and the actual value of 

settlement at small and large correlation lengths.  It is concluded that RFEM is a very suitable and efficient tool for 

investigation of the effect of variation of soil properties in determining the overall mean response for the bearing 

capacity and settlement behaviour. 

 

Keywords: Bearing capacity analysis; settlement analysis; Mohr-Coulomb yield criteria; Random Finite Element 

Method; Monte Carlo Simulation. 

 

1. INTRODUCTION 

The foundation is the most important part of a structure as it connects the structure to the ground and transfers the load 

from the superstructure to the ground. In the literature, deterministic analysis is mostly used to calculate bearing 

capacity and settlement of foundation (Panwar & Dutta, 2023). Such analysis assumes the soil to have a uniform value 

of parameters like cohesion, friction angle, elastic modulus etc. But these values are not uniform over the soil domain. 

So, for an important structure, one needs to carry out the reliability analysis to find out the probability of failure and 

the associated risks. For such a purpose Fenton and Griffiths developed a program called Random Finite Element 

Method (RFEM) which is based on the combination of finite element method and random field theory. It has edge 

over the other reliability methods in the way that it can produce soil domains with spatially varying properties thus 

considering the uncertainty associated and hence the response of the soil domain to the loads will be more realistic. 

Many researchers have successfully been able to model this uncertainty using finite element method and other 

techniques (Halder & Chakraborty, 2022; Jimenez & Sitar, 2009; Johari & Talebi, 2021; D. R. Kumar et al., 2023; 

Mellah et al., 2000; Puła & Zaskórski, 2015; Rezaie Soufi et al., 2020; Q. L. Zhang & Peil, 1997). Viviescas et al., 

(2021) performed uncertainty quantification in the estimation of bearing capacity for shallow foundations in sandy 

soils using the finite element method. (Mofidi rouchi et al., 2014) perfprmed lower bound limit analysis for strip 

footings near slopes. 

 Griffiths and Fenton (2008) have used the program to carry out the probabilistic analysis of many 

geotechnical problems like flow problems, bearing capacity analysis, slope stability analysis etcetera. Fenton and 

Vanmarcke (1990) have developed a method called Local Average Subdivision (LAS) which have been popular for 

generating a realization of random field. Pieczyńska, Puła, Griffiths, & Fenton (2011) published their work on 

probabilistic analysis of bearing capacity including new factors, like introduction of anisotropy in the random fields 

of cohesion and friction angle. Another addition made in this study was that the soil was not considered weightless 

anymore. The inclusion of anisotropy produces more realistic results and effectiveness of RFEM predictions increases.  
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In recent years as well, many researchers have made use of this program to publish their work. Tan et al., 

(2009) performed slope stability analysis using fuzzy random finite element method. They said that fuzziness and 

randomness exist simultaneously in the soil and that is why it was important to carry out fuzzy random reliability 

analysis of slope. Pramanik et al., (2019) used fuzzy set theory along with RFEM to perform the reliability analysis 

of elastic settlement of surface strip footing resting on cohesionless soil. Johari et al., (2015) published their work for 

the case of loose sand. They carried out an analysis to find the reliability against static liquefaction. They used the 

RFEM for doing so. Monotonic loading was considered in their study. They employed a truncated normal probability 

density function to represent all the random parameters considered in the study. Rafael Jimenez and Nicholas Sitar 

(2009) performed RFEM analysis on foundation settlement. In their study they assumed different distributions for 

elastic modulus like lognormal, gamma and beta. They characterized the elastic modulus using random fields. The 

scale of fluctuation takes on the extreme values in their study. They performed their analysis for 2-dimensional shallow 

footing and the finite element model used was for plane strain condition. In recent years as well, a lot of research has 

been done on this topic (Q. L. Zhang & Peil, 1997). Wojciech Pula and Lukasz Zaskorski (2015) has published their 

work in which they investigated for a suitable distribution of the bearing capacity in case of cohesionless soil. In their 

study they assumed a bounded distribution for friction angle. The underlying Gaussian field was assumed to be tied 

with an ellipsoidal correlation function. They found that the probability distribution for the bearing capacity had a 

close resemblance with the Weibull distribution.  

Luo and Bathurst (2018) carried out deterministic and random finite element analysis of unreinforced and 

reinforced embankments brought to failure using strip footing. Chenari et al., (2019) presented immediate settlement 

analysis of shallow foundation resting on a spatially random anisotropic soil layer. Chawla (2019) studied the worst 

case correlation length for mean bearing capacity values using RFEM. Selmi et al., (2019) performed capacity 

assessment of offshore skirted foundations subject to vertical horizontal moment loads using RFEM. Kawa and Pula 

(2020) carried out probabilistic bearing capacity analysis of footing on spatially variable soils in 3D using RFEM. Shu 

et al., (2020) studied the effect of autocorrelation distance on mean bearing capacity of Spudcan foundations. Ning 

and Zhe (2021) explored the effect of rotated anisotropy of soil property on the bearing capacity of embedded strip 

footings using  RFEM. Arel and Mert (2021) dealt with settlement analysis of a vertically loaded strip footing using 

2D RFEM. Kozlowska and Vessia (2022) calculated bearing capacity of shallow foundations considering drained and 

undrained condition using RFEM. He et al., (2023) compared the load and resistance factor design (LRFD) approach 

with the RFEM in case of shallow foundation in order to calibrate the LRFD based approach. D.K. et al., (2023) 

examined settlement of a strip footing placed on a two layered soil profile using random finite element model in 

conjunction with a hardening soil model. Hoek-Brown failure criterian was used to form stability charts (V. Kumar et 

al., 2023) Bendriss and Harichane (2023) performed seismic bearing capacity analysis of strip footing resting on soils 

having random soil properties and pseudo static seismic coefficient. 

This study investigates influence of variation of soil properties in bearing capacity and settlement analysis of 

a strip footing in Bihta site where the construction of new campus of NIT Patna is proposed. The results of this study 

are obtained by using RFEM program (MRBEAR2D and MRSETL2D developed by Fenton and Griffith) (2008). To 

get the response of the system to applied loads, the program makes use of the finite element code. Also, the program 
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makes use of Monte Carlo simulation to estimate the probabilistic response a strip footing against bearing capacity 

failure of soil as well as the probability of failure against the settlement criteria. The paper describes the behavior of 

a strip footing for NIT Patna, Bihta campus for the first time, and this aspect can be regarded as a major contribution 

in the form of a case study of a real-life project. 

2. METHODOLOGY 

In this section, the concepts, terms, and the formulations that are used in this study will be introduced. As, in this study 

of bearing capacity and settlement analysis, soil of spatially varying properties is considered, the first step was to take 

observations from the site of our interest. After obtaining the raw data, a suitable distribution was decided upon for 

our variable. Then, a random field was defined and a realization was generated using random field generator. 

Evaluation of the response to this generated input should be done next. Generation of the realization and evaluation 

of the response was repeated for as many times as feasible. This whole process is called Monte Carlo simulation, i.e., 

producing possible replications of actual site conditions so that we can study the probabilistic nature of response. 

2.1 Selection of a Distribution 

In this study, the random process being considered is a continuous state and continuous space/time random process. 

Continuous state means that a variable can take any real value while continuous space/time means that the points, at 

which trials are done, are continuous in space or time. To represent continuous state processes, continuous probability 

distributions are used.  

2.1.1 Normal Distribution 

As per central limit theorem, when random variables are added together, they follow a normal distribution. Many 

natural phenomena in our surrounding are generally a sum of many random variables or involve many accumulating 

factors, and hence they tend to a normal distribution. A random variable P follows a normal distribution for the 

following form of pdf. 

𝑓(𝑝) =
1

𝜎√2𝜋
𝑒[−(

1

2
)(

𝑝−𝜇

𝜎
)

2
]
    for  −∞ < 𝑝 < ∞ 

(1) 

 

       

A normal distribution can be completely represented by its mean (µ) and variance (σ2). When multiple 

variables are involved, then also the mean and variance of each random variables can be used to show their behavior 

through normal distribution. The multivariate normal pdf has the following form: 

𝑓(𝑝1, 𝑝2, … … , 𝑝𝑘) =
1

2𝜋
𝑘
2

∗
1

|𝐶|
1
2

∗ 𝑒{−
1
2

(𝑝−𝜇)𝑇𝐶−1(𝑝−𝜇)}
 

(2) 

 

Where 𝑝𝑖 ′𝑠 are the random variables, µ is the vector of mean values, one for each 𝑝𝑖 , C is the covariance matrix 

between the 𝑝𝑖 ′𝑠 and |C| is its determinant. C is a 𝑘 × 𝑘 symmetric, positive definite matrix. 

2.1.2 Lognormal Distribution 

It is a non-negative distribution that can be obtained from normal distributions through simple transformation, If H is 

a normally distributed random variable, having range -∞ < h < ∞, then P = exp[H] will have a range 0 ≤ p ≤ ∞. This 

random variable P will be lognormally distributed. Conversely, it can also be said that if ln (P) is normally distributed, 

then P will be lognormally distributed. So, if P is lognormally distributed random variable, it will have the probability 

density function 
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𝑓(𝑝) =
1

𝑝𝜎𝑙𝑛𝑃√2𝜋
𝑒

{−
1
2

(
𝑙𝑛 𝑝−µ𝑙𝑛𝑃

𝜎𝑙𝑛𝑃
)

2

}
  , 0 ≤ 𝑝 < ∞ 

(3) 

 

 

where µ𝑙𝑛𝑃 = 𝐸[𝑙𝑛 𝑃], (𝐸[𝑙𝑛 𝑃] represents expectation of P) 

and  𝜎𝑙𝑛𝑃
2 = 𝑉𝑎𝑟 [𝑙𝑛 𝑃] 

The mean and variance of 𝑙𝑛 𝑃 can be found from mean and variance of P with the help of following relations 

𝜎𝑙𝑛𝑃
2 =𝑙𝑛  (1 +

𝜎𝑃
2

µ𝑃
2 ) 

(4) 

 

    

µ𝑙𝑛𝑃 =𝑙𝑛  (µ𝑃)  −
1

2
𝜎𝑙𝑛𝑃

2  
(5) 

 

2.1.3 Bounded Tanh Distribution 

This distribution can also be derived from normal distribution using the following transformation 

𝑃 = 𝑎 +
1

2
(𝑏 − 𝑎) [1 +𝑡𝑎𝑛ℎ (

𝑚 + 𝑠𝐺

2𝜋
) ] 

(6) 

 

 

where, G is a normally distributed variable and X is bounded on the interval (a, b). The parameter ‘m’ is called location 

parameter. If m=0, then the distribution will be symmetric about midpoint. The parameter ‘s’ is called scale parameter 

and it shows variability of the distribution. The pdf of P is 

𝑓𝑃(𝑝) =
√𝜋(𝑏 − 𝑎)

√2𝑠(𝑝 − 𝑎)(𝑏 − 𝑝)
× 𝑒𝑥𝑝

{−
1

2𝑠2[𝜋𝑙𝑛 (
𝑝−𝑎
𝑝−𝑏

) −𝑚]
2

}
 

(7) 

 

       

In this study, cohesion and friction angles are treated as random variables with in bearing capacity analysis 

while elastic modulus will be our random variable in settlement analysis. But normal distribution has a shortcoming 

that it has non-zero probability of getting negative values. So, to overcome this problem, making use of lognormal 

distribution will be very helpful as it only yields positive values (Das et al., 2022) . Similarly, for elastic modulus, 

lognormal distribution will be an appropriate one. As friction angle is going to have both an upper bound and a lower 

bound, a bounded tanh distribution will be appropriate for it (Puła & Griffiths, 2021). Also, it resembles a beta 

distribution but obtained from transformation of a random field following normal distribution. 

2.2 Defining a Random Field 

In the present analysis, the random fields of the parameters involved in the determinations of bearing capacity and 

settlement of a shallow footing are created to conduct the necessary probabilistic analyses. The random fields used 

are continuous state-space in nature. Using the assumptions of random field being Gaussian and stationary, our 

requirements to characterize the field reduces to- 

● Mean of the field, µ 

● Variance of the field, σ 

● Variation of the field in space 

The last point can be captured by the covariance function (second moment of field’s joint distribution). 
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2.3 Covariance Function and Correlation Function 

It is already known that covariance measures how two variables change together. It is similar to variance for a joint 

probability distribution function. When more than one random variable is involved, it measures how two random 

variables changes with respect to each other. If P and Q random variables having joint probability distribution fPQ (p, 

q), then the correlation for random variable P at positions x and x* can be expressed in terms of variances (i.e., σP and 

σQ ) as well as the covariance matrix 𝐶(𝑥, 𝑥∗) in the following way: 

𝜌(𝑥, 𝑥∗) =
𝐶(𝑥, 𝑥∗)

𝜎𝑃(𝑥)𝜎𝑃(𝑥∗)
 

(8) 

 

 This helps in simplifying the probability models. Markov correlation function can be conveniently used in 

such cases with the following form: 

𝜌(𝜏) = 𝑒𝑥𝑝{−
2|𝜏|

𝜃
}
 

(9) 

 

where θ is the correlation length the length in the space domain up to which soil properties are significantly correlated. 

In this study, following correlation function is used for cohesion field 

𝜌𝑙𝑛𝑐(𝜏) = 𝑒
{−

2|𝜏|
𝜃𝑙𝑛𝑐

}
 

(10) 

 

 The correlation length, θlnc is defined as the separation between two values of ln c that are significantly 

correlated and τ is the separation between two points for which correlation is being computed. A similar correlation 

function has been used for friction angle (ϕ) field. For elastic modulus field, following correlation function is used 

𝜌𝑙𝑛𝐸(𝜏) = 𝑒
{−

2|𝜏|
𝜃𝑙𝑛𝐸

}
 

(11) 

 

where θlnE is defined as the separation between two values of ln E that are significantly correlated. The cross correlation 

between c and ϕ are investigated at the correlation extremes (-1 and +1) as their correlation has no clear evidence in 

literature. 

2.4 Variance Function 

Most of the engineering properties are generally the local averages of some kind. Variance reduction function can be 

used to represent local averaging nature of any variable as 

𝛾(𝑋1, 𝑋2) =
𝜃1

2𝜃2
2

4𝑋1
2𝑋2

2 [
2|𝑋1|

𝜃1

+ 𝑒
{−

2|𝑋1|
𝜃1

}
− 1] [

2|𝑋2|

𝜃2

+ 𝑒
{−

2|𝑋2|
𝜃2

}
− 1] 

(12) 

 

   

where X1 × X2 is the area of the plane for which local averaging is done. The Gaussian quadrature (numerical method) 

can also be used to compute the variance function instead of using Eq. (23), for more accurate results. 

2.6 Generating a Realization of Random Field Using Local Average Subdivision (LAS) Method 

This method of generating realization is fast and accurate, and therefore, has been adopted by many researchers in the 

past (Fenton & Griffiths, 2008). The majority of the measurements taken in the engineering field are actually the local 

averages of the property. That is why, using this method of generating realization can yield accurate results even for 

coarser meshes. 
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Fig. 1 Local average subdivision in 2 dimensions (Source: (Fenton & Griffiths, 2008)) 

As shown in Fig. 1, a normally distributed global average (
0
1Z ) is generated with variance being same as 

derived in local averaging theory with zero mean. Next, the field is split up into four equal parts, and then four normally 

distributed values, Z1
1, Z2

1, Z3
1 and Z4

1 are generated in such a way that their mean and variances follows the below 

mentioned criteria: 

(a) As per local averaging theory, the correct variance must be shown by them 

(b) Proper correlation among them must be maintained 

(c) Their average must be equal to the parent value, i.e.  ¼ (Z1
1 + Z2

1 + Z3
1 + Z4

1) = Z1
0 

Then, each locally averaged cell thus obtained is again split up into four parts that must be equal, and the 

process is repeated. A 2D LAS algorithm for a sample function is shown in Fig. 2 

 

Fig. 2 2D sample function generated from LAS 

2.6.2 Covariance Matrix Decomposition 

It produces homogeneous random field through a simple direct method. However, it is only useful for small fields. A 

discrete process of zero mean Zi = Z (xi), can be produced as per following formulation 

Z = LU (13) 
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where, L is a lower triangular matrix and satisfies the relationship LLT = C and U is a vector of n random variables of 

Gaussian nature. Each of them has zero mean and unit variance. C, in this case, represents a covariance matrix having 

elements Cij = C (τij). 

2.7 Methods Used in This Study 

In this study, in bearing capacity analysis, cross correlation between the field of cohesion and the field of friction angle 

is implemented using covariance matrix decomposition. The random fields for cohesion, friction angle and elastic 

modulus are generated using LAS method. This process involves two steps. In the first step, the underlying Gaussian 

random field Glnc (x), Gϕ (x) and GlnE (x), having zero mean, unit variance and Markov correlation function, are 

generated. Then using the following transformations, values of cohesion, ci (i denotes the ith element), friction angle, 

ϕi and elastic modulus Ei are obtained. 

𝑐𝑖 = 𝑒𝑥𝑝{µ𝑙𝑛𝑐+𝜎𝑙𝑛𝑐×𝐺𝑙𝑛𝑐(𝑥𝑖)} (14) 

      

𝜙𝑖 = 𝜙𝑚𝑖𝑛 +
1

2
(𝜙𝑚𝑎𝑥 − 𝜙𝑚𝑖𝑛) {1 + 𝑡𝑎𝑛ℎ (

𝑠𝐺𝜙(𝑥𝑖)

2𝜋
) } 

(15) 

       

𝐸𝑖 = 𝑒𝑥𝑝{µ𝑙𝑛𝐸+𝜎𝑙𝑛𝐸×𝐺𝑙𝑛𝐸(𝑥𝑖)} (16) 

where xi is the centroid of ith element and H (xi) is the local average value generated by the LAS algorithm. 

2.7.1 Finite Element Discretization of the Random Field Domain 

In this study, the program by Fenton and Griffiths (2008) makes use of finite element method, which is a numerical 

method, is used for both bearing capacity and settlement problems, to obtain response of the system. In bearing 

capacity problem, footing is displaced until the failure happens while in settlement problem, a certain amount of load 

is placed on the footing and the settlement is recorded. 

Governing Equations 

Both the bearing capacity problem and settlement problem are represented using a 2D plane strain model. The 

governing equations for such a model are 

{
𝜕𝜎𝑥

𝜕𝑥
+

𝜕𝜎𝑥𝑦

𝜕𝑦
+ 𝑏𝑥 =

𝜌𝜕2𝑢

𝜕𝑡2
 
𝜕𝜎𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦

𝜕𝑦
+ 𝑏𝑦 = 𝜌

𝜕2𝑣

𝜕𝑡2
 

(17) 

 

where normal stresses are represented by σx and σy, shear stress on planes xz and yz is represented by σxy, body forces 

per unit volume in x and y directions are represented by bx and by respectively and displacements in x and y directions 

are represented by u and v respectively. 

Boundary Conditions 

In bearing capacity problem, eight-noded elements are used while in settlement problem, four-noded elements are 

used for discretizing the domain. The elements used are isoparametric elements i.e. they use same shape functions to 

define the element’s geometric shape and the displacement within the element. 

Boundary conditions have to be satisfied at a part of the boundary or the whole boundary, where a set of 

differential equations are to be solved. In bearing capacity problem, the left and right faces of the mesh can have 

translation in vertical direction but restricted against horizontal rotation. The bottom nodes are restricted against 

rotations as well as translation. Same boundary conditions apply in case of settlement problem. 
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In this study, for bearing capacity problem, the finite element mesh has 1000 elements. They are laid in such 

a way that width of the mesh occupies 50 elements while depth of the mesh occupies 20 elements. Each element has 

a dimension of 0.1m×0.1m. In settlement problem, the finite element mesh consists of 1200 elements. They are laid 

in such a way that width of the mesh occupies 60 elements and depth of the mesh occupies 20 elements. Each element 

has a dimension of 0.05m×0.05m. That makes the mesh 3 m wide and 1m deep. 

2.7.2 Modelling of Soil as a Material  

The stress-strain behaviour of soil under any general loading is essentially nonlinear. Therefore, it is necessary to 

consider a proper modelling technique to represent the nonlinear stress-strain behaviour of soil. In the present work, 

Mohr-Coulomb failure criterion is used to represent its constitutive behaviour of soil material. One of the popular 

methods for modelling material nonlinearity is to use ‘constant stiffness’ approach coupled with altering ‘loads’ vector 

as described by Smith et al., (2013). In such analysis, global stiffness matrix is only formed once and kept unchanged 

for rest of load application iterations. It is required to satisfy a properly defined yield criterion (in this case, Mohr-

Coulomb failure criteria) to model the nonlinear stress-strain characteristic of the soil material. The ‘loads’ vector 

consists of externally applied loads as well as the self-equilibrating ‘body loads’. The self-equilibrating ‘body loads’ 

vector is managed in such way so that the net loading on the system remains unchanged. The viscoplastic algorithm 

along with initial stress method is used by RBEAR2D and RSETL2D programs developed by Fenton and Griffiths 

(2008) to model the nonlinear stress-strain response of soil. These two programs have been used in the present study. 

Interested readers can find more information about the application of viscoplastic material nonlinearity for soil 

modelling in existing literatures (Zienkiewicz et al., 1969, 1977; Zienkiewicz & Cormeau, 1974). 

2.7.3 Monte Carlo Simulations 

Our objective to perform this simulation is to estimate the variance, mean and probabilities associated with response 

of system. To analyze the probability of the response of the system through Monte Carlo Simulation, it is required to 

carry out a significant number of simulations. For every simulation, a new realization of the random field is generated 

and response of the system is recorded. 

In the bearing capacity analysis, 1000 simulations have been performed for probabilistic analysis. On the 

other hand, in case of settlement analysis, 5000 simulations have been performed for probabilistic analysis. 

2.7.4 Formulations Used for Analysis of Results 

Bearing Capacity 

In literature, following relationship has been used frequently to determine bearing capacity 

𝑞𝑢 = 𝑐𝑁𝑐 + 𝑞𝑁𝑞 +
1

2
𝐵𝛾𝑁𝛾 

(18) 

where qu represents ultimate bearing stress, q̅ represents overburden stress, c represents cohesion, γ represents unit 

weight of soil, Nc, Nq and Nγ represents bearing capacity factors and are the function of ϕ and B represents footing 

width. If we assume neglect the weight of the soil and that no surcharge is applied on the soil, then the above equation 

simplifies to 

𝑞𝑢 = 𝑐𝑁𝑐 (19) 

This equation will be employed to get the statistics of bearing capacity. Up on dividing the equation by the 

cohesion mean, µc, it can be expressed in non-dimensionalized form as follows: 
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𝑀𝑐 =
𝑞𝑢

µ𝑐

=
𝑐𝑁𝑐

µ𝑐

 
(20) 

where Mc is the bearing capacity factor and a stochastic equivalent of Nc. Now, it would become necessary to  find 

the distribution of Mc. For that purpose, the distribution assumed for cohesion and friction angle, is lognormal 

distribution and bounded distribution respectively and their expressions are same as given in Eq. (14) and Eq. (15). In 

Eq. (21), geometric averages are employed for cohesion and friction angle, in order to present an approximate model. 

𝑀𝑐 =
𝑐̅𝑁𝑐

̅̅ ̅

µ𝑐

 
(21) 

 

         

where  𝑁𝑐
̅̅ ̅ =

𝑒𝜋𝑡𝑎𝑛𝜑̅𝑡𝑎𝑛2(
𝜋

4
+

𝜑̅

2
)−1

𝑡𝑎𝑛𝜑̅
  

And c̅ and ϕ̅ represents geometric averages of cohesion and friction angle. Using probability theory, following 

relations showing mean and variance of ln Mc can be found. 

µ𝑙𝑛𝑀𝑐
≃ 𝑙𝑛𝑁𝑐(µ𝜙) −

1

2
𝑙𝑛 (1 +

𝜎𝑐
2

µ𝑐
2

) 
(22) 

 

   

𝜎𝑙𝑛𝑀𝑐

2 ≃ 𝛾(𝐷){𝑙𝑛 (1 +
𝜎𝑐

2

µ𝑐
2

)  + [(
𝑠

4𝜋
) (𝜙𝑚𝑎𝑥 − 𝜙𝑚𝑖𝑛)𝛽(µ𝜙)]

2

} 
(23) 

 

  

Where γ(D) represents variance reduction function and ϕ is measured in radians. µc and µϕ are the arithmetic mean of 

cohesion and friction angle fields 

and 𝛽(𝜙) =
𝑏𝑑

𝑏𝑑2−1
[𝜋(1 + 𝑎2)𝑑 + 1 + 𝑑2] −

1+𝑎2

𝑎
 

here, 𝑎 = 𝑡𝑎𝑛 (𝜙) , 𝑏 = 𝑒𝜋𝑎  𝑎𝑛𝑑 𝑑 = 𝑡𝑎𝑛 (
𝜋

4
+

𝜙

2
)  

All the other symbols have their usual meaning. 

As the simulation results are in terms of bearing capacity, qu, following results needs to be used to transform them in 

terms of bearing capacity factor, Mc. For number of realizations equal to 1000- 

𝑀𝑐𝑖
=

𝑞𝑢𝑖

µ𝑐

,   𝑖 = 1,2, … . . ,1000 
(24) 

     

⟹ µ𝑙𝑛𝑀𝑐
=

1

1000
∑ 𝑙𝑛𝑀𝑐𝑖

1000
𝑖=1  

⟹ µ𝑙𝑛𝑀𝑐
=

1

1000
∑ 𝑙𝑛 (

𝑞𝑢𝑖

µ𝑐
)1000

𝑖=1  

⟹ µ𝑙𝑛𝑀𝑐
= µ𝑙𝑛𝑞𝑢

− 𝑙𝑛µ𝑐  (25) 

and   

𝜎𝑙𝑛𝑀𝑐

2 =
1

1000
∑ (𝑙𝑛𝑀𝑐𝑖

− µ𝑙𝑛𝑀𝑐
)

1000

𝑖=1

 
(26) 

        

⟹ 𝜎𝑙𝑛𝑀𝑐

2 =
1

1000
∑ (𝑙𝑛 (

𝑞𝑢𝑖

µ𝑐
)  − (µ𝑙𝑛𝑞𝑢

− 𝑙𝑛µ𝑐))

2

1000
𝑖=1  
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⟹ 𝜎𝑙𝑛𝑀𝑐

2 =
1

1000
∑ (𝑙𝑛𝑞𝑢𝑖

− µ𝑙𝑛𝑞𝑢
)21000

𝑖=1  

⟹ 𝜎𝑙𝑛𝑀𝑐

2 = 𝜎𝑙𝑛𝑞𝑢
 (27) 

           

Settlement 

Settlement problem is linear in many of its parameters. Elastic modulus is one of those parameters. So, a footing 

founded on a soil layer of uniform (but random) elastic modulus, E, can have the settlement, δ, of following form 

𝛿 =
𝛿𝑑𝑒𝑡µ𝐸

𝐸
 

(28) 

where δdet is the deterministic value of settlement when E = µE. Hence 

µ𝑙𝑛𝛿 = 𝑙𝑛 (𝛿𝑑𝑒𝑡)  + 𝑙𝑛 (µ𝐸)  − µ𝑙𝑛𝐸  

⟹ µ𝑙𝑛𝛿 = 𝑙𝑛 (𝛿𝑑𝑒𝑡)  +
1

2
𝜎𝑙𝑛𝐸

2  (29) 

and, as the local averaging is done, the standard deviation of log settlement is given by 

𝜎𝑙𝑛𝛿 = √𝛾(𝐵, 𝐻)𝜎𝑙𝑛𝐸  (30) 

where B×H is the averaging region on which variance reduction function, γ (B, H) depends. 

2.7.5 Chi-Square Test 

It is a goodness of fit test used for checking how much a hypothesized distribution fits the actual distribution. To do 

so, it performs a numerical comparison between predicted histogram and the observed one. Firstly, a histogram having 

k interval is constructed. Calculating the following value is the next step. 

𝜒2 = ∑
(𝑁𝑗−𝑛𝑝𝑗)2

𝑛𝑝𝑗

𝑘

𝑗=1

 

(31) 

Where Nj is the number of observations in the jth interval, n is the total number of observations and pj is the probability 

that an observation lies in jth interval in fitted distribution. The fitted distribution is rejected if 

𝜒2 > 𝜒𝛼,𝑘−1
2  (32) 

where α is the level of significance. The smallest value of α at which the fitted distribution is rejected is called p-value. 

3. RESULTS AND DISCUSSIONS 

3.1 General 

In this section, the results of the study are presented and the efforts are made to explain a certain trend. These results 

of bearing capacity analysis and settlement analysis are for a strip footing founded on the Bihta site and are carried 

out by using MRBEAR2D and MRSETL2D part of RFEM software respectively, originally developed by Griffiths 

and Fenton (2008). The results are presented in two separate sections, one of which is dedicated to bearing capacity 

analysis while the other has the results of settlement analysis. In bearing capacity analysis, mean and standard 

deviation of log bearing capacity factor is plotted for various values of coefficient of variation, correlation length and 

cross correlation coefficient, and also a comparison has been made with the predicted values. In settlement analysis, 

mean and standard deviation of log settlement is plotted for various values of coefficient of variation, correlation 

length and cross correlation coefficient, and also a comparison has been made with the predicted values. 

From the data obtained by exploration of Bihta site, on which new NIT Patna building is proposed, the 

averages for cohesion, friction angle and elastic modulus are calculated and are given below. In this study, the 
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probabilistic bearing capacity analysis and settlement analysis for a shallow footing is carried out, hence, while 

calculating averages, values of soil properties are considered for only up to 2.5 m depth. 

𝜇𝑐 ≃ 50 𝑘𝑁/𝑚2  

𝜇𝜙 = 5°  

𝜇𝑁 = 15  

Som and Das (2003) recommended the use of the following empirical relationship to calculate elastic 

modulus E of soil based on SPT (N) value which was originally proposed by Schultz and Menzenbach (1961). 

Following relation between elastic modulus E and N value is used to calculate elastic modulus: 

𝐸 = 24 + 5.3𝑁  

where E is in kg/cm2. For the present analysis, following average value of elastic modulus (𝜇𝐸) is considered.  

𝜇𝐸 ≃ 10000 𝑘𝑁/𝑚2  

3.2 Bearing Capacity Analysis 

3.2.1 Input Data 

In the bearing capacity analysis, a smooth rigid strip footing is considered which is assumed to be founded on 

weightless soil. Hence a plane stress condition prevailed. In this analysis a Mohr-Coulomb failure criterion is 

considered along with an elastic-perfectly plastic stress-strain law. A viscoplastic algorithm has been used to 

accomplish plastic stress redistribution. The finite element mesh consists of 50 elements wide by 20 elements deep 

i.e. 1000 elements. Eight noded quadrilateral elements are considered and each element has a size of 0.1m×0.1m. The 

strip footing is assumed to occupy 10 elements which makes its width equals to 1m.  

Boundary Conditions 

In bearing capacity problem, eight-noded elements are used while in settlement problem, four-noded elements are 

used for discretizing the domain. The elements used are isoparametric elements i.e. they use same shape functions to 

define the element’s geometric shape and the displacement within the element. 

Boundary conditions have to be satisfied at a part of the boundary or the whole boundary, where a set of 

differential equations are to be solved. In bearing capacity problem, the left and right faces of the mesh can have 

translation in vertical direction but restricted against horizontal rotation. The bottom nodes are restricted against 

rotations as well as translation. Same boundary conditions apply in case of settlement problem. 

In this study, for bearing capacity problem, the finite element mesh has 1000 elements. They are laid in such 

a way that width of the mesh occupies 50 elements while depth of the mesh occupies 20 elements. Each element has 

a dimension of 0.1m×0.1m. Fig. 3 shows the geometry of the domain along with dimensions, and the support 

conditions. 
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Fig. 3 Geometry of the domain and boundary conditions 

Elastic modulus of soil, Poisson’s ratio and dilation angle are assumed to be deterministic. Value of elastic 

modulus is set at 10000 kN/m2 as obtained by averaging the field data. Poisson’s ratio is set to 0.3 while dilation angle 

is assumed to be zero. The cohesion and friction angle are set as random parameters. A lognormal distribution is 

assumed to characterize cohesion while a bounded tanh distribution is assumed to characterize friction angle. Local 

average subdivision method is used to generate random fields of cohesion and friction angle. Covariance matrix 

decomposition method is used to establish cross correlation between cohesion and friction angle. The scale factor of 

friction angle is set equal to coefficient of variation of cohesion. The mean of cohesion is set to 50 kN/m2 as obtained 

by averaging. The mean of friction angle is set at 5° as obtained by averaging. The upper bound for friction angle is 

set at 9° and lower bound is set at 1°. Fig. 4 and 5 show the cohesion and friction angle random fields for the ‘i th’ 

simulation. 

Varying values of correlation length, coefficient of variation and cross correlation coefficient are used in this 

study. Monte Carlo simulations involving 1000 realizations are performed. Each realization has a different soil 

property random field and hence a different bearing capacity value.  

 

Fig. 4 Cohesion random field 
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Fig. 5 Friction angle random field  

 

Fig. 6 Load-deformation curves corresponding to different realizations of soil 

In Fig. 6, qu is the bearing capacity, µc is the mean value of cohesion and δv represents the deformation in the 

soil. The stress-strain and load-displacement response of soil is nonlinear. Calculation of bearing capacity and 

settlement. Fig. 7 shows a deformed finite element mesh at failure for a soil having spatially random properties. 
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Fig. 7 Deformed finite element mesh at failure of soil having random properties, lighter regions indicate weaker soil 

It can be seen that the failure surface is not strictly logarithmic spiral. The reason for the deviation could be 

that the path followed by the failure surface is through the weakest soil regions which might not be strictly logarithmic 

spiral in case of spatially variable soil. This deviation indicates that considering the randomness of soil while 

calculating bearing capacity is important to avoid overestimation or underestimation of N factors (which are calculated 

by assuming the failure surface to be log-spiral in most cases). 

3.2.2 Mean of Log Bearing Capacity Factor vs. Cohesion  

In our study, efforts are made to find out the variation of mean of log bearing capacity factor (µ lnMc) with coefficient 

of variation, correlation length and cross correlation coefficient. A comparison has also been made with the predicted 

mean as per Eq. (22). Also, as the results of simulation were obtained in terms of bearing capacity, to convert them in 

terms of log bearing capacity factor, Eq. (25) is used. Results are presented below in graphical form. ρ represents the 

cross-correlation coefficient while θ represents correlation length. 

As predicted by Eq. (22), the value of µlnMc tends towards deterministic value ln Nc(µϕ) i.e. 1.87008 when 

variability of soil is small and mean properties are taken everywhere. Several researchers (Haldar & Mahadevan, 

2000); (Der Kiureghian & Ke, 1988)(Johari et al., 2015) have suggested different choices of the correlation length for 

use in a RFEM simulation. A ratio varying between 4 and 8 for the correlation length to the length of finite element 

was suggested by Der Kiureghian and Ke (1988). However, Fenton and Griffiths (2008) considered correlation 

length as high as 8 for a similar sized footing considered in the present study, while investigating bearing 

capacity problem using RFEM. In this analysis, the correlation length has been varied from 0.1 m to 1.0 m. The 

minimum correlation length is considered equal to the size of the element used, whereas the maximum 

correlation length is considered as equal to the size of the footing i.e., 1.0 m. However, following the works of 

Fenton and Griffith (2008), the influence of correlation length C.L = 8 is also studied. The variation of µlnMc vs. 

dimensionless parameter σc/µc is shown in Fig. 8. As the variability increases, a significant reduction from the Prandtl’s 

solution can be observed. Soils having perfect correlation between cohesion and friction angle appear to be most 

affected while the least reduction has been observed in negatively correlated soils. The independent case lies between 

the two. By some authors in the literature, it has been cited that cohesion and friction angle are negatively correlated. 

So, if the soil parameters are assumed to be uncorrelated while designing, then that will yield results on the 

conservative side. 
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Fig. 8 Sample mean of lnMc along with the predicted one 

The effect of θ does not appear too much, but still the values are lower than the predicted ones. Also, Eq. 

(22) does not incorporate the effect of correlation length. Hence a separate plot is presented in section 3.2.4 to analyze 

the effect of correlation length. 

3.2.3 Standard Deviation of Log Bearing Capacity Factor vs. Coefficient of Variation of Soil  

Results for standard deviation of log bearing capacity factor are presented below as a graphical plot in Fig. 9. From 

the above results it is evident that cross-correlation coefficient does not have significant effect on standard deviation 

of log bearing capacity factor. However, the correlation length does affect it quite significantly. The variation reduction 

function decreases with decrease in correlation length. Also, from Eq. (23), it is clear that standard deviation of log 

bearing capacity factor depends upon variance reduction function. Hence, with decrease in correlation length, the 

standard deviation of log bearing capacity factor decreases. 

 

0.001

0.01

0.1

1

10

0 1 2 3 4

σ
ln

M
c

σc/µc

C.C=0, C.L=0.1

C.C=0, C.L=1

C.C=0, C.L=8

C.C=1, C.L=0.1

C.C=1, C.L=1

C.C=1, C.L=8

C.C=-1, C.L=0.1

C.C=-1, C.L=1

C.C=-1, C.L=8



 

17 | Page 

 

Fig. 9 Sample standard deviation of ln Mc 

3.2.4 Sample Mean of Log Bearing Capacity Factor vs. Correlation Length  

The results presented in this section show how the sample mean of log bearing capacity factor varies with correlation 

length. The results of the simulation are presented below as a graphical plot (Fig. 10). When correlation length tends 

towards infinity, the mean value of log bearing capacity factor tends towards the value as predicted by Eq. (22). An 

effort can be made to explain the reasoning behind this. When correlation length tends towards infinity, the soil 

properties becomes spatially constant for a particular realization. Hence the failure surface returns to log spiral and 

mean values tends towards the predicted ones. Also, it is evident from the graph that when correlation length tends 

towards zero (i.e. infinitely rough field), the mean values approaches the predicted ones. In this case, the weakest path 

becomes very long and failure surface has to return to log spiral. 

 

Fig. 10 A plot of sample µlnMc versus normalized correlation length (θ/B) 

From Fig. 10, it is clear that for different values of coefficient of variation, the mean of log bearing capacity 

factor is minimum when correlation length and width of footing are of same order. As the correlation lengths 0.1 and 

8 are approximately equally spaced from θ = 1, hence their plots lie so close. 

3.2.5 Sample Mean of Log Bearing Capacity Factor vs. Coefficient of Variation  

As observed in the previous plot, when correlation length and width of footing are of same order, the sample mean of 

log bearing capacity factor deviates most from the value predicted in Eq. (22). Hence the Eq. (22) needs to be modified 

to give conservative results. Also, the equation is modified in a way to give conservative results for worst correlation 

length for a zero value of cross correlation coefficient. Weakest path issue and a slight finite element model error are 

the reasons that such a correction is needed. The modified equation with empirical correction is 

µ𝑙𝑛𝑀𝑐
≃ 0.92𝑙𝑛𝑁𝑐(µ𝜙) − 0.7𝑙𝑛 (1 +

𝜎𝑐
2

µ𝑐
2

) 
(33) 

Fig. 11 shows the plot for µlnMc for different values of coefficient of variation and θ, is for ρ=0. 
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Fig. 11 Plot of Sample and estimated mean of ln Mc versus ν, for different θ 

3.2.6 Sample Standard Deviation of Log Bearing Capacity Factor vs. Coefficient of Variation  

In this section, a comparison is done between the sample standard deviation and the ones predicted from Eq. (23). The 

domain size required to calculate the variance reduction function is taken as a region having mean wedge zone depth, 

w and width of 5w, where w is 

𝑤 ≃
1

2
𝐵𝑡𝑎𝑛(

1

4
𝜋 +

1

2
µ𝜙) 

(34) 

 Hence γ(D) becomes equal to γ (5w, w). This domain D approximately gives the area involved in failure 

region. It represents the area between mean log spiral curves on both sides of footing. The results of the simulation 

along with the predicted ones are given as a graphical plot in Fig. 12. They are for a cross-correlation coefficient 

equals to zero. A close agreement between simulated values and predicted values can easily be seen. The variability 

involved in the weakest path and the variability involved in any nearby path in a statistically homogeneous medium 

will be similar and hence, this close agreement. 

 

Fig. 12 Plot of sample and estimated standard deviation of ln Mc versus ν, for different θ 

3.2.7 Estimation of Probability Density Function of Bearing Capacity 

An estimation of probability density function of bearing capacity is done through Monte Carlo simulations 

and goodness of fit analysis is performed through chi square test. This test yields a value called p-value. If p-value is 
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high, then goodness of fit is high and vice versa. This test was performed for all the results and an average p value of 

30 percent was obtained, which is high enough for good agreement with hypothesized distribution. Few percentage of 

simulations have p-value less than 5 percent. Around 10 percent of simulations has p-value less than 0.01 percent. Fig. 

13 (a) Fig. 13 (b) show two fits with different values of coefficient of variation and correlation length. Even with the 

smaller p-values, a reasonable fit can be seen. Hence it can be said that bearing capacity approximately follows 

lognormal distribution. 

 

  

(a) (b) 

 

Fig. 13 (a) Fitted lognormal distribution for s=σc/µc=0.1, θ=4 and ρ=0 having large p-value and (b) fitted lognormal 

distribution for s=σc/µc=5, θ=1 and ρ=0 having small p-value 

3.3 Settlement Analysis 

3.3.1 Input Data 

Two dimensional settlement analysis is done for single footing. Elastic theory is used to calculate both the immediate 

settlement and consolidation settlement (Terzaghi Karl, 1943). The soil on which footing is founded, is assumed to be 

underlain by bedrock. A 2D plane strain model is used to represent the physical problem. 

The finite element mesh consists of four noded quadrilateral elements. Each element is a square of side 

0.05m. The mesh has 100 elements in the horizontal direction and 40 elements in the vertical direction. This makes 

the width of the mesh equals to 5m and depth of the mesh equals to 2m. A fixed load of 1000 kN is applied to the 

footing. Value of Poisson’s ratio was fixed at 0.25. Mean value of elastic modulus is fixed at 10000kN/m2. Elastic 

modulus was assumed to follow lognormal distribution and its random field was generated using local average 

subdivision method. Standard deviation of elastic modulus, width of footing and correlation length are varied. Monte 

Carlo simulations were used and for each input parameter, 5000 realizations were performed. An RFEM representation 

of single footing is given below in Fig. 14. 
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Fig. 14 RFEM representation of single footing 

3.3.2 Mean of Log Settlement vs. Variance of Log Elastic Modulus  

The results for variation of mean of log settlement (mlnδ) with respect to variance of log elastic modulus (σ2
lnE) for 

different values of correlation length are presented below as a graphical plot in Fig. 15 to show the variation. These 

results are for a footing of width 0.1m. 

All the correlation length is plotted in the figure but they are not identifiable because they lie very close to 

each other. This shows that mean of log settlement does not depends very much on the correlation length. As mean of 

the local averaging process is not affected by correlation length, hence this shouldn’t be a surprise. Also, the simulation 

results show good agreement with the results predicted by Eq. (29). 

 

Fig. 15 Estimated mean of log settlement along with the predicted ones 

3.3.3 Standard Deviation of Log Settlement vs. Correlation Length for Different Footing Width  

The results for simulated standard deviation of log settlement (slnδ) for different values of correlation length, footing 

width and coefficient of variation of elastic modulus are shown below as a graphical plot in Fig. 16 for comparison 

between simulated results and results predicted from Eq. (30). 
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Fig. 16 Comparison of simulated and theoretical standard deviation of log settlement 

As correlation length tends to zero, the values of elastic modulus at any two distinct points becomes 

independent. Therefore, with decrease in correlation length, the value of variance function decreases. In other words, 

due to local averaging process, the values of elastic modulus tend towards mean value. Hence, from Eq. (30) we can 

say that the standard deviation of log settlement tends towards zero with the mean value approaching deterministic 

value. While for another limiting case, when correlation length approaches infinity, the elastic modulus field becomes 

uniform but still random from realization to realization. Variance reduction function for such a field will approach to 

unity. So basically, the plot is actually showing the variation of variance reduction function with respect to the 

correlation length. The agreement between simulated results and predicted results is quite remarkable at small and 

large correlations lengths and for intermediate correlation lengths also, the agreement is good. 

3.3.4 Probability Density Function of Settlement 

A histogram of the settlement is shown in following Fig. 17. This is a normalized histogram as the frequency density 

plot was desired. Parameters used to produce this histogram are- B=0.1m, ν=1 and θ=0.1. A lognormal distribution is 

superimposed on it. 

In appearance, the lognormal distribution seems quite fit. But this simulation had one of the least p-value of 

chi square test. For other simulations p-value was not this low. Hence it would be safe to say that settlement follows 

the lognormal distribution. 
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Fig. 17 Frequency density plot of settlement and fitted lognormal distribution 

4. CONCLUSIONS 

 This study of the effect of variation of soil properties on baring capacity analysis of a strip footing founded in NIT 

Patna Bihta campus concludes that on average, the bearing capacity of a soil having spatially varying properties will 

be less than the bearing capacity calculated from Prandtl’s formula using only mean values. When the soil properties 

become random in nature, the failure surface shifts from logarithmic spiral to a surface which is weaker and exists in 

the vicinity of the spiral one. To predict the statistics of bearing capacity, it is possible to use Prandtl’s formula if the 

geometric averages are the basis for the properties used in the formula. Although an empirical adjustment is needed 

for mean. The stochastic behavior of bearing capacity does not seem to be much affected by cross correlation between 

cohesion and friction angle. Anyway, the independent case was found to be conservative. Generally, the information 

about correlation length at a site is not available. For such instances a worst case correlation length (θ≃B) was found. 

So if the design is based on this correlation length, it would be conservative. 

The settlement study concludes that lognormal distribution appropriately represents the settlement of the 

footing placed on the soil having spatially random elastic modulus represented by lognormal distribution itself. Mean 

along with the variance of the log elastic modulus field are the parameters that are required to represent mean of log 

settlement. Using the limiting values of correlation length, it is possible to approximate the mean of log settlement. 

When log elastic modulus field is locally averaged directly under the footing and its variance is taken, it will produce 

the quantity that very accurately approximates the standard deviation of log settlement. 
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