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1. Introduction 

Global warming has emerged as one of the primary 

challenges of the twenty-first century. With the goal 

of achieving sustainable development, the 

incorporation of renewable energy (RE) has 

emerged as a promising solution, particularly in the 

context of SDG 7: affordable and clean energy. By 

 

A B S T R A C T 

Most low-voltage (LV) feeders have large distribution losses, poor voltage profiles, 

and inadequate voltage stability margins owing to their radial construction and high 

R/X ratio branches, and they may not be able to handle substantial solar photovoltaics 

(SPVs) and EV penetration. Thus, optimal integration of SPVs and rapid charging 

stations (RCSs) can solve this problem. This paper offers an extended pathfinder 

algorithm (EPFA) with guiding elements and three followers' life lifestyle procedures 

based on animal foraging, exploitation, and killing. First, the EV load penetration was 

used to evaluate the LV feeder performance. Subsequently, the required RCSs and 

SPVs were appropriately integrated to match the EV load penetration and optimise 

feeder performance. An Indian 85-bus real-time system was used for simulations. The 

losses and GHG emissions increased by 150% and 80%, respectively, without the 

SPVs and RCS for zero-to-full EV load penetration. RCSs allocation alone reduced 

the losses by 40.1%, whereas simultaneous SPVs and RCSs allocation reduced the 

losses by 66%. However, the GHG emissions decreased by 13.7% and 54.33%, 

respectively. This study shows that SPVs and RCS can enhance the LV feeder 

performance both technically and environmentally. In contrast, EPFA outperformed 

the other algorithms in terms of the global solution and convergence time. 
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analysing Ember’s Yearly Electricity Data  [1] for 

2021 and 2022, notable trends in global power 

generation became apparent. Hydroelectric power 

generation has witnessed a moderate increase of 

1.94% in 2022, reaching a total of 4326.76 TWh. 

Wind power generation experienced a significant 

surge of 15.67%, surpassing the 2000 TWh mark 

and reaching 2139.23 TWh in 2022. Similarly, solar 

power generation exhibited a substantial growth of 

23.96%, amounting to 1289.27 TWh in 2022. Solar 

energy, in particular, has gained significant 

momentum across various countries owing to its 

ease of installation, low maintenance requirements, 

and clean and noiseless operation. Furthermore, 

other renewable energy sources also witnessed a 

modest increase of 2.44%, reaching a total 

generation of 777.31 TWh in 2022. These findings 

underscore the escalating prominence of RE as a 

viable and sustainable energy option, heralding a 

promising future for the global energy landscape. 

Electric vehicles (EVs) are crucial for 

decarbonizing road transport, accounting for almost 

15% of global energy-related emissions, and EV 

adoption has increased dramatically in recent years, 

along with improvements in range, model diversity, 

and performance, according to the International 

Energy Agency (IEA) [2]. In particular, passenger 

electric automobiles have grown in popularity, with 

forecasts predicting 18% of new car sales by 2023. 

This amazing rise signals a transition toward a more 

sustainable and environmentally conscious car 

sector.  

However, despite the numerous environmental 

and flexibility benefits associated with RE and EVs, 

it is crucial to address various technical challenges, 

such as stability (including transient, dynamic, and 

small-signal stability), energy balance, security, 

reliability, and power quality. These concerns arise 

because of the intermittent nature of RE sources and 

stochastic  behaviour of EVs. In the literature, 

considerable attention has been paid to the optimal 

integration of RE-based distribution generation 

(OADG), particularly solar photovoltics (SPV) and 

wind turbines (WT) in electrical distribution 

networks (EDNs), specifically those with radial 

structures characterised by high R/X ratios and low 

voltage. This integration aims to minimise the 

distribution losses, improve the voltage profiles, and 

enhance the voltage stability margins as highlighted 

by H. A. et al. [3].  

While the OADG problem has been successfully 

addressed using various analytical techniques 

discussed by Ehsan et al. [4], meta-heuristic 

approaches (MHA) have gained popularity among 

researchers owing to their simplicity, derivative-free 

nature, and applicability to diverse optimisation 

problems, as comprehensively reviewed by Tolba et 

al. [5]. Several MHAs have been employed to 

address the OADG problem and optimise the 

placement and sizing of DG units. One approach by 

Reddy et al. [6] involves the use of a whale 

optimisation algorithm (WOA) inspired by 

humpback whale hunting behaviour to identify the 

optimal size of different types of DG units (i.e. SPV, 

WT, wind, and capacitors). Similarly, Reddy et al. 

[7] also proposed the ant lion optimisation (ALO) 

algorithm, which mimics the hunting behaviour of 

ant lions, to optimise the sizing of DG units along 

with the index vector (IV) approach to determine the 

most suitable locations for SPV, WT, and capacitors. 

Suresh et al [8] are introduced the dragonfly 

algorithm (DA) was utilised in another study to 

calculate the appropriate sizes of PV and WT units, 

considering various factors, such as voltage profile, 

regulation, stability, power losses, and economic 

benefits. Reddy et al. [9] employed the index vector 

(IV) approach has also been used to optimise the 

placement of SPV and WT units. Furthermore, the 

flower pollination algorithm (FPA) determines the 

ideal size of DG units to reduce power losses and 

improve the voltage profiles. ChithraDevi et al. [10] 

was employed the stud krill herd algorithm (SKHA) 

to solve the optimal placement and sizing of single 

and multiple SPV based DGs in radial distribution 

networks (RDNs) with the primary objective of 

reducing line losses for different loading conditions. 

The location and size of SPV and WT-based DGs 

were determined using loss sensitivity factors 

(LSFs) and ALO to reduce real power losses and 

improve the voltage profile by Ali et al.[11]. 

Hemeida et al. [12] utilized the Manta Ray Foraging 

Optimization (MRFO) algorithm to minimize power 

losses by optimizing the sizing and allocation of 

SPV systems in radial EDNs. Prabha et al. [13] 

employed loss sensitivity factors (LSFs) to 

determine the optimal placement of SPV-based DGs. 

Subsequently, the invasive weed optimization 

(IWO) algorithm was used to determine the 

appropriate DG sizes. The objective was to reduce 

the real power loss, operating costs, and improve the 

voltage stability under various load conditions. 

Hemeida et al. [14] applied several optimization 

algorithms, including grey wolf optimization 

(GWO), MRFO, satin bower bird optimization 

(SBO), and water optimization algorithm (WOA) for 

solving the SPV allocation problem. They 

considered the load uncertainty and used Monte 

Carlo simulation to optimize the allocation strategy. 
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Ali et al. [15] focused on enhancing the reliability 

and efficiency of uncertain EDNs by solving the 

SPV and WT-based optimal allocation of distributed 

generators (OADG) problem. They utilized an 

improved wild-horse optimization (IWHO) 

algorithm for this purpose. Janamala et al. [16] 

focused on Archimedes optimization algorithm 

(AOA) to optimize the allocation of SPV-based DGs 

in Indian agricultural feeders. The objective was to 

achieve a balance between the technical and 

environmental factors. Selim et al. [17] developed an 

improved harris hawks optimization (IHHO) 

algorithm to address the allocation problem of SPV 

and WT-based DGs. This study considered multiple 

objectives, including loss reduction, voltage 

deviation minimization, and voltage stability 

enhancement. Janamala et al. [18] were applied the 

future search algorithm (FSA) to optimize SPV and 

WT-based DGs allocation, with a focus on loss 

reduction, voltage profile improvement, and voltage 

stability enhancement. Bhadoriya et al. [19] was 

used transient search optimization (TSO) to address 

similar objectives of SPV and WT-based DGs 

allocation for loss reduction and voltage profile 

improvement. Shahzad et al. [20]  was applied the 

strawberry plant propagation algorithm (SPPA) to 

optimize the allocation of SPV and WT-based DGs, 

aiming to improve loss reduction, voltage profiles, 

and voltage stability. Akbar et al. [21]  was 

employed an algorithm known as improved grey 

wolf optimization with particle swarm optimization 

(I-GWOPSO) to optimize the allocation of SPV and 

WT-based DGs, targeting loss reduction, voltage 

profile improvement, and voltage stability 

enhancement. 

Researchers have also focused on the optimal 

allocation of charging stations (OACS) for EVs and 

their impact on electrical distribution feeders, as 

reviewed by Das et al. [22]. Zeb et al. [23] is 

employed particle swarm optimization (PSO) to 

optimally integrate three types of EV charging 

stations (i.e. levels 1, 2, and 3) in EDNs considering 

techno-economic benefits and PV uncertainties. 

Khan et al. [24] optimized grid-to-vehicle (G2V) 

and vehicle-to-grid (V2G) power flows at fast EV 

charging stations integrated with PVs by aiming 

power quality (PQ) improvement. Dai et al. [25] was 

proposed a multi-agent PSO (MAPSO) for optimally 

sizing the SPV /BESS/ EV-CSs components, 

considering overall cost optimisation as the major 

objective. Injeti et al. [26] were adapted the PSO and 

butterfly optimisation algorithm (BOA) to solve the 

optimal integration of SPV and WT based DGs in 

EDNs by considering different charging scenarios 

for plug-in EVs. The optimisation methodology 

focuses on loss reduction and voltage profile 

improvements. 

In light of the above reviewed works, this paper 

makes the following major contributions for 

handling the adverse effects of EV load penetration 

on LV feeders by optimal integration of RE-based 

DGs. Recently, the pathfinder algorithm (PFA) 

introduced by Yapici et al. [27] has received 

considerable attention for solving various complex 

optimization problems. However, its local optima 

trap and premature convergence were overcome in 

the enhanced pathfinder algorithm (EPFA) by 

incorporating guided and social influencing 

mechanisms in Tang et al. [28]. As per author’s 

knowledge, integration of RCSs in RDNs along with 

SPVs and WTs is not much focused in literature. In 

additon, the EPFA was adapted for the first time to 

solve this problem.      

Initially, the optimal integration of SPVs and 

WTs is addressed and the effectiveness of the EPFA 

is compared to that in the literature. Subsequently, 

the impact of EV load penetration on LV feeders 

was analysed using a voltage-dependent battery load 

model. The normalised voltage stability index 

(NVSI) was utilised to determine optimal locations 

for renewable charging stations (RCSs) integration. 

The real power loss, voltage stability and 

greenhouse gas (GHG) emissions provide a multi-

objective function. Simulations were performed on 

an 85-bus urban Indian low-voltage feeder for the 

different scenarios. 

The rest of the paper is organised as follows: 

Section 2 discusses the PV, WT, and EV load 

models mathematically. Section 3 presents the multi-

objective function and limitations. Section 4 

introduces the concept of PFA and its mathematical 

improvements. Section 5 discusses the simulation 

results of the EPFA and Section 6 emphasises the 

conclusion and future scope. 

2. Modeling of Theoretical Concepts 

In this section, mathematical modelling of DGs, 

BESS, and different types of loads is discussed for 

incorporating backward/forward sweep (BFS) load 

flow method by Eminoglu et al. [29]. 

2.1. Renewable Distribution Generation 

According to power compensation, the DGs are 

categorised as Type-1 (real power generators such as 

SPV, fuel cells, and batteries), Type-2 (reactive 

power generators such as capacitors and 
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synchronous condensers), Type-3 (both real and 

reactive power generators such as WT), and Type-4 

(real power generation and reactive power 

absorption such as micro turbines and synchronous 

generators) [3, 4]. By having a DG at a load point, 

its impact can be realised using Eqs. (1) and (2) as 

explained by Reddy et al. [6, 7].  

  

, ( ) , ( ) ( )d new k d base k rdg kP P P   (1) 

 

, ( ) , ( ) ( ) ( )tan( )d new k d base k rdg k rdg kQ Q P     (2) 

For an SPV-type DG, the power factor is 

considered to be 1, thus, the reactive power 

contribution becomes zero. WT-type DGs can be 

optimized between 0.3 and 1. 

2.2. Network Load Profile 

Specifically, EDNs associated with multiple 

types of consumers and their associated loads are 

highly dependent on voltage variations in the 

network. To accommodate changes in the voltage 

profile, this study was considered voltage-dependent 

load modelling. The following Eq. (3) and Eq. (4) 

were proposed for net real and reactive power loads 

considering different types of loads (i.e., residential, 

industrial, commercial and electric vehicles) using 

the voltage-dependent load modelling of Eminoglu 

et al. [29]. 
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3. Problem Formulation 

This section provides details of the proposed 

multi-objective function and with its design and 

operational constraints. 

3.1. Multi-Objective Function 

The objective function is aimed at reducing the 

total real power distribution loss, enhancing voltage 

stability and reducing GHG emissions from the main 

grid. Mathematically, 

( ) ( )loss h hMOF P NVSI GHG    (5) 

  
2

( ) ( ) ( )1

nbr

loss h k h kk
P I r


  (6) 

  

2max( ,...., ) 1nbusNVSP NVSI NVSI   (7) 

Abdel-Akher et al. [30] developed a novel 

normalised voltage stability index (NVSI) defined in 

Eq. (8) to assess the stability of EDNs. Furthermore, 

the GHG emissions from the main grid owing 

conventional power plants can be assessed using Eq. 

(9) as described by Janamala et al. [31].  
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3.2. Planning and Operational Constraints 

The following bus voltage magnitudes, DG real 

and reactive power capacities, are the major 

constraints considered by Rani et al. [32].  

min ( ) max| | | | | |kV V V   (10) 
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Q Q
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4. Solution Methodology 

    The concept of the pathfinder algorithm (PFA) 

and its hybrid approach for solving the optimal DG 

allocation along with the real power loss sensitivity 

index are explained in this section. 

4.1. Basic Pathfinder Algorithm 

Following social hierarchy, some animals 

migrate seasonally. In 2019, Yapici et al. [27] 

introduced the pathfinder algorithm (PFA), 

motivated by animal foraging, exploitation, and 

hunting. PFA's computational approach includes 



Pandraju and Janamala/ Journal of Solar Energy Research Volume 8 Number 4 Autumn (2023) 1680-1690 

1684 

 

leading a swarm for successful hunting and 

encouraging others to follow it. The planned PFA 

maintains best pathfinder position. Pathfinders know 

how to hunt and eat. The pathfinder and neighbours 

work together to investigate and exploit the 

objective in the search space. Controlling parameters 

prevent PFA local optima. PFA solves the 

optimization problems well. This section describes 

PFA's initialization, iteration, and halting of the 

mathematical model. 

In an n-dimensional search space, a leader and 

pathfinder are an animal from a swarm equal to the 

number of search variables that determine the 

optimum hunting region for a prey. At the 

initialization stage of any heuristic search algorithm, 

the best fitness value is found among all the 

solutions from the original population. The initial 

population was generated using Eq. (13) Yapici et 

al. [27].  

 

(0) ( ) ( )* (1, )i b b ba k l u l rand d    (13) 

where ai(0)(k) is the position vector of animal-i at the 

start, d is the search space dimension, and lb and ub 

are the lower and upper variables in the optimization 

problem. 

All other followers' actions with regard to 

changes in their position and time were modelled 

according to Eq. (14) Yapici et al. [27]. 

 

( 1) ( ) 'i k i k ij a va a x I G V       (14) 

where k denotes the passage of iteration, ai(0) and ai(k)  

denote the position vectors of individual animals I at 

their initial stages and iteration-k, respectively; x’ 

denotes a unit vector with zero angle; Iij denotes the 

interaction between two neighbours, i and j; Ga 

denotes the fitness that has been determined to be 

the best overall so far, or pathfinder fitness; and Vv 

denotes a vibration vector. 

When this occurs, the position of the pathfinder 

is updated with the help of Eq. (15) Yapici et al. 

[27]. 

 

( 1) ( )p k p k p va a a f     (15) 

where pathfinder / animal a’s initial and iteration-k 

positions are represented by the vectors; ap(0) and 

ap(k), respectively; Δap represents the pathfinder's 

position change, while fv represents the fluctuation 

rate. 

The following modifications are suggested for 

the collective movement of swimmers by altering 

Eq. (14) and (15) into Eq. (16) and (17) to resolve 

the optimization problem Yapici et al. [27]. 
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where γ is the interaction coefficient for defining the 

strength of interaction with a neighbour, δ is the 

attraction coefficient for setting the random distance 

for an individual with a group, preferably with a 

pathfinder, and kmax is the maximum number of 

iterations. r1, r2 and r3 are uniformly distributed 

random numbers in the range [0, 1], and u1 and u2 

are random vectors in the range [-1, 1] and have a 

range of [1, 2].  

For example, Vv and Vf are generated at each 

iteration of the random walk in multiple dimensions 

for each animal in the group. However, to avoid the 

possibility of a local optima trap and premature 

convergence, improvements were proposed in both 

the pathfinder and follower stages in EPFA by Tang 

et al. [28]. 

In EPFA, the pathfinder is used as a guide to 

guide the agent that follows it to strengthen the link 

between them and increase algorithm mining. The 

modifications in the follower stage in the EPFA are 

the mutation mechanism, communication operator, 

and acceptance operator. Life systems allow three 

search space options for followers. (i) It can update 

its position across the search space and follow the 

direction of the leader. (ii) When searching, the 

algorithm follows the leader's general direction. (iii) 

As the leader's recommended action does not meet 

its requirements, he seeks a new approach. This 

stage enhances basic PFA algorithmic exploration. 

Furthermore, Tang et al. [28] illustrated the 

increased knowledge of swimming movements in 

relation to variations in γ, δ, u1 and u2.   

4.2. Enhanced Pathfinder Algorithm  

The pathfinder with the best target value is 

treated as a guide in each iteration and tries to share 
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information and experience with the followers. This 

can accelerate convergence. These modifications 

were mathematically described by Tang et al. [28]. 

 

 
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where ai(g)(k) is the guide at iteration k, 

wp=round[1+rs(2-1)], r4 and r5 are the random 

numbers, mean[ai(0)(k)] is the mean of all followers 

in the same iteration.  

In the follower phase, two operators were 

proposed to control the search direction. For a 

random number r6> P = 0.8, accept operator is used 

to update the position using Eq. (21). Otherwise, an 

exchange operator is added to update the followers 

using Eq. (22) and Eq. (23), where r7, r8, r9 and r10 

are random numbers between 0 and 1. The value of 

ρ determines the level of engagement with the leader 

or nearby individuals as developed by Tang et al. 

[28].  
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 (23) 

By gaining knowledge from and conversing with 

the leader and nearby folks, the person chooses their 

own search direction. The exploitation capability of 

the algorithm is enhanced by this procedure. 

5. Simulation Results 

The proposed EPFA methodology for the optimal 

allocation of RCSs and RESs was implemented on a 

real-time 85-bus LV urban feeder in Mysore city, 

Karnataka, India Janamala et al. [16]. The feeder has 

84-branches, 85 buses, and a total composite load 

(i.e., 50% residential, 30% commercial and 20% 

industrial) of (2395.62 kW + j 1926.84 kVAr) at 11 

kV. In the base case (i.e. without EV load 

penetration, λev= 0), the feeder performance was 

determined using the load flow method proposed by 

Eminoglu et al. [29]. The composition of the 

residential, commercial and industrial loads at each 

bus and in this work, are considered to be 0.5, 0.3 

and 0.2, respectively. The load compositions were 

obtained from Abdel-Akher et al. [30]. The network 

real and reactive power losses were determined to be 

199.691 kW, and 125.859 kVAr, respectively. The 

minimum voltage magnitude in the network 

increases to 0.896 p.u. at bus-54 and correspondingly 

the overall NVSI becomes 0.3556. In addition, the 

GHG emissions were determined as 5314.32 lb/h.  

5.1. Assessment of EV Load Penetration Impact 

on Network Performance (Case 1) 

In this scenario, the feeder performance was 

determined for different EV load penetrations and 

the results are listed in Table 1. It is observed that 

the performance of feeder is degraded as EV load 

penetration increases (Pd and Qd), the real (Ploss) and 

reactive (Qloss) power losses are increased, voltage 

profile (Vmin) is decreased, NVSI is increased/ or 

stability margin is decreased. In addition, the GHG 

emissions increased significantly. The last column 

indicates the number of 100 kW rated RCSs required 

to meet EV load. This situation clearly indicates the 

need for allocation of RCSs and SPVs at optimal 

locations.   

5.2. Optimal Allocation of RCSs for Different EV 

Load Penetration (Case 2) 

In this scenario, the level of the negative effects 

of EV load penetration on the feeder performance is 

planned to be reduced by optimally integrating RCSs 

in the feeder. The predefined search space is defined 

by knowing the highly stable locations as per the 

NVSI values with λev= 1. To determine the best 

locations for the RCSs, the search space is divided 

into three zones: bus-2 to bus-23, bus-24 to bus-56, 

and bus-57 to bus-85, respectively. For example, 

when λev = 0.1, the required RCSs were 2. Now the 

search algorithm needs to find the locations of these 

in the above divided zones.  

The best locations were bus-2, bus-24 and bus-

57, respectively. The network performance for 

different numbers of charging ports (NCPs), is 

presented in Table 2. Compared to Table 1, the 

network performance is significantly improved with 

the optimal location of the RCSs. The losses 

decreased, the voltage profile improved, the VSI 

increased and the GHG emissions decreased.  

5.3. Optimal Allocation of RCSs and SPVs for 

Different EV Load Penetration (Case 3) 
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In this case, the performance was optimised by 

integrating SPVs with RCSs. The algorithm 

identifies the best locations for RCSs, and the best 

locations and sizes of the SPVs are given in Table 3. 

The reduced losses, improved voltage profile, 

increased VSI, and reduced GHG emissions are 

better than only the optimisation of RCSs in, as 

shown in Table 2. The convergence characteristics 

of the EPFA while solving the simultaneous optimal 

allocation of RCPs and SPVs are shown in Fig. 1.  

 
Figure 1. Convergence of EPFA for different 

scenarios 

 

 
Figure 2. Comparison of Ploss 

 

 
Figure 3. Comparison of NVSI 

 

 
Figure 4. Comparison of GHG emissions 

 

The three objective functions were compared 

individually for the three case studies. The actual 

power loss, NVSI, and GHG emissions are shown in 

Fig. 2, 3, and 4, respectively.  

Fig. 2 illustrates that the losses increase notably 

as the EV load penetration increases in Case 1. 

However, in Case 2, the losses are reduced 

significantly by optimally placing the RCSs to 

accommodate the EV load. Case 3 demonstrates a 

further decrease in losses via simultaneous optimal 

allocation of reactive compensators and small-scale 

PV systems. This indicates an enhanced efficiency 

within the distribution system. 

As shown in Fig. 3, the voltage stability index 

increased markedly with higher EV load penetration 

in Case 1. Case 2 results in a considerable decline by 

optimising the RCPs locations for a given EV load. 

This was further decreased in Case 3 through the 

joint optimal placement of reactive compensators 

and PV systems, demonstrating greater security. 

Fig. 4 shows how GHG emissions rise 

prominently with the EV load rise in Case 1. 

However, emissions also fall in Case 3 owing to 

coordinated optimisation, reflecting the contribution 

of distributed generation to environmental benefits. 

5.4. Comparative Analysis with Literature 

In this case study, the proposed EPFA was used 

to solve the optimal allocation of SPVs on an IEEE 

69-bus test system without considering EV 

penetration. The computational efficiency of the 

EPFA was compared with that of the basic PFA and 

AOA. In addition, the results of the EPFA were 

compared with those of FSA [18], TSO [19], SPPA 

[20], and I-GWOPSO [21].  

The network initially had real and reactive power 

loads of 3802.10 kW and 2694.7 kVAr, respectively. 

With an operating voltage of 11 kV, the network 

initially had real and reactive power losses of 

approximately 225 kW and 102.17 kVAr, 
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respectively. The NVSI and GHG emissions were 

determined to be 0.4428 and 8246.13 lb/h.  

The best results obtained by EPFA are as 

follows: locations are buses 17, 61, and 11, and the 

sizes in kW are 381.45, 1718.84, and 525.56, 

respectively. By integrating these SPVs, the network 

losses decreased to 69.4285 and 34.9618 kVAr, 

respectively. The NVSI and GHG emissions were 

evaluated to be 0.8759 and 2550.419 lb/h, 

respectively.  

 

Table 1. Network performance with EV load penetration 

λev Pd (kW) Qd (kVAr) Ploss (kW) Qloss (kVAr) Vmin (p.u.) NVSI GHG (lb/h) NRCS 

0.0 2395.62 1926.84 199.691 125.859 0.8960 0.3556 5314.32 - 

0.1 2594.35 1951.44 224.410 141.450 0.8894 0.3743 5771.85 2 

0.2 2787.91 1974.39 250.437 157.870 0.8829 0.3923 6221.51 4 

0.3 2976.99 1997.00 277.787 175.127 0.8766 0.4095 6664.68 6 

0.4 3161.57 2018.78 306.342 193.147 0.8704 0.4261 7101.10 8 

0.5 3341.82 2039.74 336.028 211.886 0.8643 0.4419 7530.98 9 

0.6 3518.37 2060.68 366.867 231.355 0.8583 0.4573 7955.65 11 

0.7 3690.67 2080.43 398.661 251.431 0.8524 0.4720 8373.56 13 

0.8 3859.18 2099.55 431.409 272.113 0.8467 0.4861 8785.67 15 

0.9 4024.05 2118.09 465.058 293.369 0.8410 0.4997 9192.16 16 

1.0 4184.76 2135.29 499.429 315.085 0.8355 0.5127 9591.64 18 

 

Table 2. Optimal locations of RCSs and correspondingly number of charging ports (NCPs) at each station 

NRCS Bus # (NCPs) Ploss (kW) Qloss (kVAr) Vmin (p.u.) NVSI GHG (lb/h) 

3 2 (1), 24 (1), 57 (1) 214.291 135.830 0.8930 0.3642 5824.797 

6 2 (2), 24 (2), 57 (2) 229.693 146.314 0.8900 0.3726 6327.947 

9 2 (3), 24 (3), 57 (3) 245.944 157.339 0.8871 0.3808 6824.911 

12 2 (4), 24 (4), 57 (4) 262.980 168.865 0.8842 0.3889 7315.416 

15 2 (5), 24 (5), 57 (5) 280.771 180.873 0.8813 0.3968 7799.596 

18 2 (6), 24 (6), 57 (6) 299.291 193.345 0.8785 0.4045 8277.580 

 

Table 3. Optimal locations of RCSs and SPVs and correspondingly network performance

NRCS Bus # (NCPs) Bus # (Ppv) Ploss (kW) Qloss (kVAr) NVSI GHG (lb/h) 

3 2 (1), 24 (1), 57 (1) 681/26, 424/31, 252/69 126.112 78.717 0.2403 3039.629 

6 2 (2), 24 (2), 57 (2) 15/78, 923/28, 547/72 137.916 85.922 0.2539 3324.331 

9 2 (3), 24 (3), 57 (3) 363/55, 975/57, 272/72 141.066 88.185 0.2429 3595.688 

12 2 (4), 24 (4), 57 (4) 209/57, 71/24, 1334/28 158.219 96.953 0.2667 4112.489 

15 2 (5), 24 (5), 57 (5) 511/51, 650/8, 699/57 165.282 103.263 0.2617 4149.618 

18 2 (6), 24 (6), 57 (6) 526/7, 1292/57, 151/24 169.793 104.790 0.3183 4380.001 

 

Table 4. Results of SPVs allocation 

Ref. Sizes in kW/ bus #  F1 (kW) 

Base  - 225 

FSA [18] 473.1/19, 591.3/11, 1859.3/61 71.02 

TSO [19] 825.09/9, 405.14/22, 1650.1/61 70.25 

SPPA [20] 42.8/ 57, 995/7, 102.1/6, 1768/58 98.87* 

I-GWOPSO [21] 301/21, 1738/61, 508/11 68.59 

AOA 379.16/18, 528.44/11. 1719.03/61 69.43 

PFA 396.77/18, 1726.9/61, 463.3/66 69.69 

EPFA 381.45/17, 1718.84/61, 525.56/11 69.43 

* Not satisfied the constraint defined in Eq. (11). 
 

Compared to the base case, the network 

performance is improved significantly in terms of 

reduced losses, increased stability margin, and 

reduced GHG emissions. A comparison of the 

results with the literature and the results of other 

algorithms is given in Table 4. Although the results 
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of [20] are claimed to be better, they fail to maintain 

the DG limit, as given in Eq. (11), and the results are 

quoted here with corrections. As shown, the PFA 

results are better than those of the FSA [18], TSO 

[19], SPPA [20], and I-GWOPSO [21]. In addition, 

the EPFA results were better than those of PFA, and 

AOA was also performed competitively with EPFA. 

6. Conclusion 

This paper proposes concurrently optimizing the 

placement of rapid charging stations (RCSs) and 

renewable energy-based distributed generation (RE-

based DG) to reduce active power losses, enhance 

voltage stability margins, and lower main grid 

greenhouse gas (GHG) emissions. An enhanced 

pathfinder algorithm (EPFA) inspired by the 

foraging, exploitation, and hunting behaviours of 

social animals is presented. The EPFA determines 

the optimal locations and sizes of RE sources and 

outperforms comparative global optimisation 

techniques owing to its superior explorative abilities. 

The losses and GHG emissions decreased by 

69.14% and 69.07%, respectively, whereas the 

voltage stability margins showed a substantial 

increase from 0.4428 to 0.8759. Thereafter, the 

performance of the low-voltage feeders was assessed 

under increasing electric vehicle (EV) load 

penetration. RCSs and controllable energy storage 

systems are then optimised for equivalent EV loads, 

considerably improving the associated performance 

metrics. Case studies utilising IEEE 69-bus and 

Indian 85-bus test systems simulated diverse 

scenarios, demonstrating the applicability of the 

proposed methodology for real-time adaptation and 

its ability to notably enhance the low-voltage feeder 

function. 

Although significant improvements were 

achieved through steady-state examination, future 

work could focus on considering uncertainties 

stemming from photovoltaic output, wind speeds, 

EV usage patterns, and network loading conditions. 

Accounting for such variability represents a key 

avenue for potentially strengthening results.  

 

Nomenclature 

Pd,new Net real power load with PV and 

EVs 

Qd,new Net reactive power load with SPV 

and EVs 

Pd,base Base case net real and reactive 

power load 

Qd,base) Base case net reactive power load 

Prdg(k) Real power injection by SPV at 

bus-k, respectively 

ϕrdg(k) Operating power factor of SPV at 

bus-k 

|V(k)| Voltage magnitudes of bus-k  

|V(r)| Voltage magnitudes of reference 

bus 

α and β Exponents for real and reactive 

power loads as per the type of 

load 

λr, λi and λc Composition factors of residential, 

commercial and industrial type of 

loads at each bus 

λev EV load penetration in p.u. 

EV load EV load in kW 

r(k) and x(k) Resistance and reactance’s of 

branch-k 

Pd(s/s) Total real power demand of the 

substation includes feeder load 

and losses 

CO2, NO2, 

and SO2 

GHG emissions in lb/kWh from 

main grid sources 

nb Number of buses in the network 
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