تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,524,678 |
تعداد دریافت فایل اصل مقاله | 98,785,402 |
Prediction of Type - I and Type –II Diabetes: A Hybrid Approach using Fuzzy Logic and Machine Learning Algorithms | ||
Journal of Information Technology Management | ||
دوره 15، Special Issue: EIntelligent and Security for Communication, Computing Application (ISCCA-2022)، 2023، صفحه 35-56 اصل مقاله (2.21 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jitm.2023.95244 | ||
نویسندگان | ||
Geeta Pattun* ؛ Khaleda Afroaz؛ Ahmad Talha Siddiqui؛ Shaheena Ghazala | ||
Department of Computer Science and Information Technology, School of Technology, Maulana Azad National Urdu University, Hyderabad, Telangana, India-500032. | ||
چکیده | ||
Diseases like diabetes are chronic and require long-term management. Inadequate production of insulin results in high blood sugar levels. Such diseases lead to serious health issues such as heart ailments, blood vessel complaints, eye ailments, kidney function disorders, and nerve ailments. Hence, accurate assessment and management of risk factors are crucial for the onset of diabetes. Our proposed approach combines fuzzy logic & machine learning algorithms for diabetes risk prediction. Three machine learning models were trained to classify patients into two categories of diabetes (Type-I and Type-II) based on their clinical dataset collected from Katihar Medical College & Hospital and Suvadhan Lab. The polynomial regression algorithm achieved a score of 0.947, while the support vector regression algorithm with the rbf kernel achieved a score of 0.954, with a linear kernel achieved a score of 0.73. Our proposed approach performed well with respect to the conventional approaches with improved accuracy by identifying the patients at diabetes risk. In future work, we further analyze the relationship between other ignored factors which contribute to diabetes risk. | ||
کلیدواژهها | ||
Diabetes؛ Blood Sugar؛ Machine Learning Algorithm؛ Fuzzy Logic؛ Disease Management؛ Risk Factors؛ Insulin Resistance؛ Polynomial Regression؛ Support Vector Regression | ||
مراجع | ||
Bressan, G. M., de Azevedo, B. C. F., & de Souza, R. M. (2020). A fuzzy approach for diabetes mellitus type 2 classification. Brazilian Archives of Biology and Technology, 63. https://doi.org/10.1590/1678-4324-2020180742
Devi, U. R., & Uma, K. (2019). A Study on Fuzzy Expert System for Diagnosis of Diabetes Mellitus. International Journal of Applied Engineering Research (IJAER), 14(4), 129–139. https://www.ripublication.com/ijaerspl2019/ijaerv14n4spl_16.pdf
Geman, O., Chiuchisan, I., & Toderean, R. (2017). Application of Adaptive Neuro-Fuzzy Inference System for diabetes classification and prediction. 2017 E-Health and Bioengineering Conference, EHB 2017, Dm, 639–642. https://doi.org/10.1109/EHB.2017.7995505
Howsalya Devi, R. D., Bai, A., & Nagarajan, N. (2020). A novel hybrid approach for diagnosing diabetes mellitus using farthest first and support vector machine algorithms. Obesity Medicine, 17, 100152. https://doi.org/10.1016/j.obmed.2019.100152
Khalil, R. M., & Al-Jumaily, A. (2017). Machine learning based prediction of depression among type 2 diabetic patients. Proceedings of the 2017 12th International Conference on Intelligent Systems and Knowledge Engineering, ISKE 2017, 2018-Janua, 1–5. https://doi.org/10.1109/ISKE.2017.8258766
Khan, T., Singh, K., Manjul, M., Ahmad, M. N., Zain, A. M., & Ahmadian, A. (2022). A Temperature-Aware Trusted Routing Scheme for Sensor Networks: Security Approach. Computers & Electrical Engineering, 98, 107735.
Kumar, A., Singh, K., & Khan, T. (2021). L-RTAM: Logarithm based reliable trust assessment model for WBSNs. Journal of Discrete Mathematical Sciences and Cryptography, 24(6), 1701-1716.
Kumar, A., Singh, K., Khan, T., Ahmadian, A., Saad, M. H. M., & Manjul, M. (2021). ETAS: an efficient trust assessment scheme for BANs. IEEE Access, 9, 83214-83233.
Lukmanto, R. B., Suharjito, Nugroho, A., & Akbar, H. (2019). Early detection of diabetes mellitus using feature selection and fuzzy support vector machine. Procedia Computer Science, 157, 46–54. https://doi.org/10.1016/j.procs.2019.08.140
Niswati, Z., Mustika, F. A., & Paramita, A. (2018). Fuzzy logic implementation for diagnosis of Diabetes Mellitus disease at Puskesmas in East Jakarta. Journal of Physics: Conference Series, 1114(1). https://doi.org/10.1088/1742-6596/1114/1/012107
Raj, R. S., Sanjay, D. S., Kusuma, M., & Sampath, S. (2019). Comparison of Support Vector Machine and Naïve Bayes Classifiers for Predicting Diabetes. 1st International Conference on Advanced Technologies in Intelligent Control, Environment, Computing and Communication Engineering, ICATIECE 2019, 41–45. https://doi.org/10.1109/ICATIECE45860.2019.9063792
Rajeswari, A. M., Sidhika, M. S., Kalaivani, M., & Deisy, C. (2018). Prediction of Prediabetes using Fuzzy Logic based Association Classification. Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT 2018, Icicct, 782–787. https://doi.org/10.1109/ICICCT.2018.8473159
Sarwar, M. A., Kamal, N., Hamid, W., & Shah, M. A. (2018). Prediction of diabetes using machine learning algorithms in healthcare. ICAC 2018 - 2018 24th IEEE International Conference on Automation and Computing: Improving Productivity through Automation and Computing, September, 1–6. https://doi.org/10.23919/IConAC.2018.8748992
Swain, A., Mohanty, S., & Das, A. (2013). COMPARATIVE RISK ANALYSIS ON PREDICTION OF DIABETES MELLITUS USING MACHINE LEARNING APPROACH. 1, 3312–3317. International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) - 2016
Thakkar, H., Shah, V., Yagnik, H., & Shah, M. (2021). Comparative anatomization of data mining and fuzzy logic techniques used in diabetes prognosis. Clinical EHealth, 4, 12–23. https://doi.org/10.1016/j.ceh.2020.11.001
Undre, P., Kaur, H., & Patil, P. (2015). Improvement in prediction rate and accuracy of diabetic diagnosis system using fuzzy logic hybrid combination. 2015 International Conference on Pervasive Computing: Advance Communication Technology and Application for Society, ICPC 2015, 00(c). https://doi.org/10.1109/PERVASIVE.2015.7087029
Verma, D, M. N. (2017). using Data mining classification Techniques. 2017 International Conference on Intelligent Sustainable Systems (ICISS), Iciss, 533–538.
Vijiyakumar, K., Lavanya, B., Nirmala, I., & Sofia Caroline, S. (2019). Random forest algorithm for the prediction of diabetes. 2019 IEEE International Conference on System, Computation, Automation and Networking, ICSCAN 2019, 1–5. https://doi.org/10.1109/ICSCAN.2019.8878802 | ||
آمار تعداد مشاهده مقاله: 244 تعداد دریافت فایل اصل مقاله: 401 |