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A B S T R A C T 

 

As the depth of mineral exploration has increased in recent years, multiple exploration methods have become necessary to obtain more 
accurate depth and surface data. Each type of exploratory data has different uncertainty, resolution, and efficiency levels. Using these data 
individually or preparing traditional models based on a single data type often fails to meet the desired accuracy level. Therefore, mineral 
prospectivity mapping (MPM) has become more common in integrating these data. MPM methods require determining the importance of 
the data used. This importance is expressed as the weight of the layers (evidence). Typically, data-driven methods cannot be used to determine 
the weight of evidence layers in green areas due to the need for sufficient deposits. In these areas, knowledge-based methods, using the 
opinions of expert geologists, are often used to determine the weight of the layers. However, the weights determined by different experts may 
vary depending on their perspectives. Therefore, one of the challenges of using MPM methods in green areas is determining a reliable weight 
for the layers. This paper uses different exploration data, such as airborne geophysical data, geochemistry, geology, and remote sensing data, 
to prepare suitable reference layers. Due to the limited mineral prospects available in this area, we used the prediction-area (P-A) method to 
calculate the layers' weights without experts' opinions. We then used these weights to produce the gold prospectivity map in this area using 
the multi-index overlay (MIO) and the (Adjusted, Conventional, and Modified) TOPSIS methods. Finally, the obtained results were used to 
evaluate the efficiency of these methods and the calculated weights for this area.  

Keywords: Mineral Prospectivity Mapping (MPM), Prediction-Area (P-A), Continues weighting, Multi-Index Overlay, TOPSIS. 

1. Introduction 

Mineral resources are essential drivers of progress and development 
in contemporary human societies. The growing demand for these 
resources has intensified the need to explore new mineral deposits. [1]. 
Since most shallow deposits or those with surface outcrops have already 
been discovered, exploring hidden mineralization systems has become 
the primary exploration strategy [2], [3]. However, detecting hidden 
mineralization demands comprehensive subsurface data to understand 
geological processes and their mass distribution at depth [4]. The advent 
of advanced sensors has diversified the pool of exploratory data. Diverse 
sensor types have provided multifaceted information sources, enriching 
decision-making across various disciplines [5]. 

Exploring concealed mineral deposits in regions with surface cover 
poses challenges due to limited and indirect access to relevant geological 
data. Typically, this dataset is based on geological, remote sensing, 
geophysical, and geochemical investigations. Unfortunately, incomplete 
and scanty information coverage makes identifying intricate 
relationships resulting from numerous geological processes in these 
regions difficult, if not impossible [6], [7]. Mineral exploration methods 
are tailored according to the deposit type and its characteristics. 
Understanding mineralization processes and identifying factors that 
govern the formation and preservation of a mineral deposit are pivotal 
in mineral exploration [8]. However, the interpretation of mineral 
exploration data often yields inherently uncertain results influenced by 
individual subjectivity. Therefore, ensuring the mineral exploration 
process's objectivity, quantification, and refinement is of paramount  

 
 

 
importance in exploration science [1], [9]. 

Mineral exploration is a multifaceted decision-making task aimed to 
minimize the cost, time, and energy invested in exploration operations 
[10]. The quality of exploration data and the robustness of the 
conceptual model have significant influence over the effectiveness of 
these decisions [11]. Given the potential for enhanced accuracy and 
resolution through multi-sensor data utilization, coupled with the 
complexity of parameters influencing mineral deposit formation, the 
integration of information layers is highly crucial in generating 
prospective mineral maps [12], [13]. These MPMs typically result from 
a fusion of evidence (or predictor) maps [14] that comprise a set of 
exploratory criteria (mappable proxies) defined by measurable spatial 
associations related to the target deposit [8], [15]. Geoscientific datasets 
are formed and selected based on the conceptual mineralization model 
specific to the deposit type [16]. Subsequently, these chosen layers 
undergo weighting and combination processes [17], [18]. 

The method for assigning weights to index features depends on the 
presence or absence of known mineral occurrences in the study area. 
Data-driven approaches are appropriate for brownfields with an 
adequate number of known mineral occurrences used to determine the 
weight of reference layers [11], [18], [19]. In green areas, where mineral 
occurrences are scarce, criteria layers are weighed using a knowledge-
driven method, relying on the expert’s subjective judgment [20], [21]. 
Additionally, hybrid methods have emerged, combining data-driven and 
knowledge-driven methods to address these challenges [22]. Another 
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class of MPM methods utilizes logistic functions suited for the purpose 
[23]. These methods employ sigmoid logistic functions and continuous 
data to generate witness maps essential for assessing mineral deposit 
potential [11], [24]. 

In this paper, we applied the MPM methodology to assess the gold 
potential within the porphyry-hydrothermal system of the Mokhtaran-
Basiran area, situated in the Lut block and the Flysch zone of eastern 
Iran. Renowned for its complex geological setting and mineralization 
history, this area poses a formidable challenge for gold exploration. We 
aim to identify and map key factors influencing gold deposit formation 
in porphyry-hydrothermal systems, including magmatism, tectonics, 
alteration, and geochemistry. These factors serve as spatial proxies, 
generating input layers for MPM analysis. We employed two GIS-based 
models, multi-index overlay and TOPSIS, to integrate these input layers 
with assigned weights, ultimately producing MPM maps illustrating the 
spatial distribution of gold potential zones within the study area. 

2. 2. Geological Setting 

The study area is in eastern Iran, encompassing portions of the 
1:100,000 geologic maps of Mokhtaran, Basiran, and Koudkan. The 
location of the study area is depicted in Figure 1, which illustrates the 
geologic map of Iran (revised after Alavi and Aghanabati [25], [26]. The 
region is tectonically complex, owing to its position within two 
significant structural units of Iran: The Sistan suture zone and the Lut 
block. Eastern Iran occupies a complex and active geological domain 
where three tectonic plates converge: Arabian, Eurasian, and Indo-
Australian. Throughout history, this region has joined the Lut and 
Afghan blocks and experienced numerous geological events. The 
collision between these plates, influenced by the Alpine orogeny, has 
resulted in folds, faults, and significant thrusting [27]–[29]. 

 

 
Fig. 1. The location of the study area on the simplified structural 

geological map of Iran (modified after Alavi, 1991 and Aghanabati, 2005) 
[25], [26]. 

 
The Sistan rift zone is a strongly folded and faulted mélange flysch 

basin. The border of this zone is in the east of the Hariroud fault, which 
almost coincides with the border of Iran and Afghanistan, and in the 
west, it is separated from the Lut block by the Nahbandan fault [28], 
[30], [31]. The Sistan zone is highly tectonized, and it is believed to be 
the accretionary prism of the Neotethys Ocean, which was created and 
closed during the Late Cretaceous-Paleozoic. The ophiolitic-felsic 
mixture complex of eastern Iran formed as this oceanic crust subducted 
under the Lut block [31]–[33]. This zone includes two sets of ophiolitic 
mélange (the Retok set in the west and Neh in the east), which are 
separated by a sedimentary basin (the Sefidabe basin) [28], [34]. The 
overall lithology in this zone includes felsic rocks, volcanic rocks, 
sedimentary-volcanic rocks, ophiolites, and intrusive rocks. The Sistan 
zone includes thick deep-sea sediments such as argillic and siliceous 
shales, radiolarite and pelagic limestone, and volcanic rocks such as 
basalt, diabase, andesite, dacite, rhyolite, and ultramafic secondary rocks. 

The bedrock is probably composed of oceanic crust [26], [35]. 
The Lut block is a microcontinent separated from northern 

Gondwana during the Permian to Triassic periods due to tectonic 
movements and developed in an extensional environment [36], [37]. 
Geographical features, such as the Drouneh fault to the north and the 
Jazmorian depression to the south, bound this block. On its eastern side, 
the Nehbandan fault acts as a separator from the Flysch zone, while its 
western edge is marked by the Nayband fault and the Shotori 
mountains, which distinguish it from central Iran [26]. The Lut Block 
involves a pre-Jurassic metamorphic basement, Jurassic sedimentary 
rocks, and several generations of late Mesozoic and Cenozoic intrusive 
and volcanic rocks [27], [28]. Most of the Lut block comprises Tertiary 
alkaline and calc-alkaline volcanic-magmatic rocks of varying ages, 
spanning from the Eocene to the Oligocene [38]. The earliest magmatic 
activity within the Lut block traces back to the Jurassic period, reaching 
its peak during the Tertiary period [38]. This geological history is 
characterized by various granite formations, including notable ones like 
the Red Mountain, as well as Mount Shahkouh and Mount Bidmeshk. 
The Tertiary magmatic activity in this region encompasses volcanic and 
plutonic phases, with volcanic activity commencing during the Late 
Cretaceous and reaching its peak in the Eocene [39]. 

Eocene volcanic and pyroclastic lavas outcrop in the central part of 
the area include andesite-basalt volcanic flows as well as black tuff and 
dacitic tuffs with coarsely porphyritic trachytic andesite flows. The 
Eocene volcanic units are cut by  granitoids, dykes, and small dacitic 
bodies. Valuable minerals such as lead, copper, iron, and gold are formed 
at the contact surface of these bodies, especially dacitic units with 
pyroclastic and volcanic Eocene rocks [40], [41]. 

Due to the many magmatic activities and special geological 
conditions that have existed in the Lut block at different times, various 
mineralization systems such as porphyry, epithermal, and vein type 
deposits have occurred in this block [42]. The Maherabad and Khopik 
porphyry gold copper deposits, the Shorab and Khonik epithermal gold 
deposits, and the Qala Zari iron-oxide-copper-gold (IOCG) deposit are 
the important and prominent deposits in this area [42], [43]. These 
deposits and their tectonic history make this area significant for 
undiscovered deposits. 

Figure 2 shows a simplified geologic map of the study area. Most of 
the rocks in the northern part of the area, which is the junction of the 
Lut block and the Flysch zone, have experienced metamorphism of 
different intensities due to tectonic and thrust processes. Flysch rocks 
and colored mélange belts with the Upper Cretaceous age are the most 
abundant in this area. Ultrabasic rocks (peridotite and serpentinite), 
diabase, and diabasic tuffs are rich in these structures. Some red-brown 
listwanite outcrops are exposed with a distinct border from mélanges. 
The sedimentary layers within the mélanges have felsic sequences. In 
the northern part, the metamorphosed remnants of the pre-Cretaceous 
Shahkouh granite can be seen in the form of extensive lenses of granite, 
gneiss, and schist. By moving to the south, the mélanges of these hills 
gradually become older and closer to the Lut block [41]. 

A significant part of the area is also covered by Quaternary sediments, 
which are usually in the form of hills with low topography. These 
deposits are mostly composed of sandstone, gray, black, and green shale, 
which in some places are covered with silt, marble, marl, conglomerate, 
and coal shale layers. Gray quartzite sandstone is also found in these 
formations. Black andesitic lavas cover the shale and sandstone units, 
the thickness of which reaches 250 m in some places [40]. Alluviums are 
mainly composed of gravel cones, salt and mud domes, sand dunes, river 
terraces, clay deposits, salt beds, and channel bed deposits [41]. 

3. Materials and methods 

This study started by gathering the existing data related to the area, 
such as airborne geophysical, geochemical, geological, and remote 
sensing data. Then, the relevant layers were selected based on the 
conceptual model and the exploration information system, and these 
layers were extracted from the data as evidence layers. These layers were 
then collected in a GIS database using the WGS 84 datum UTM zone 
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40 coordinate system. Next, the fractal method was applied to identify 
the influences between these evidence layers (proxies) and the known 
mineralization events in the study area. A weight was assigned to each 
proxy using the prediction-area method. After that, the evidence layers 
were combined and integrated according to their weights using the 
TOPSIS and multi-index overlay methods. Finally, the gold prospects 
were identified and then the results were evaluated. Below, the main 
steps of our work are explained. 

 

 
Fig. 2. Simplified Geological map of the study area. 

 

3.1. Creating continuous layers 

Multi-criteria decision-making methods (MCDM) integrate various 
criteria for evaluation, necessitating the need to scale these criteria 
before integration. Consequently, normalizing the input data within a 
specific interval becomes necessary in the context of MCDM methods. 
In this research, to enhance accuracy and eliminate errors in classifying 
the values within each layer, we utilized continuous data within the 
interval [0,1] known as fuzzy evidence layers [44]–[46]. To achieve this, 
we employed the logistic function (Eq. 1) to standardize the evidence 
layers to the same interval [0,1]. 

 

𝑓𝑖𝑗 =
1

1+𝑒
−𝑠(𝑥𝑖𝑗−𝑏)

                                                                                        (1) 
 

In equation (1), xij is the value of each cell before, and fij is its value 
after transformation; b and s are the inflection point and the slope of the 
logistic function, respectively [45], [47], [48]. 

3.2. Weight determination method 

When conducting a mineral prospectivity modeling, the assigned 
weight for a spatial evidential layer should take into account its 
relationship with the type of mineralization being sought [48]. 
Assessing the effectiveness of prospecting methods often involves 
analyzing the location of mineral occurrences in the study area. 

Therefore, it is important to establish the number of known deposits 
in the selected evidential class. Fractal analysis has proven useful in 
studying the connection between specific mineralization and 
geological, structural, and geochemical factors related to different 
spatial reference layers [47], [49]. This study utilized the multi-fractal 
Concentration-Area (C-A) method (Eq. 2) to identify threshold limits 
for classifying the layers and assigning the weights to each layer. 
 

{
𝐴(𝜌 ≤ 𝜈) ∝ 𝜌−𝛼1

𝐴(𝜌 > 𝜈) ∝ 𝜌−𝛼2
                                                                                    (2) 

 

Where A(ρ) corresponds to the surface area of regions that are at or 
below the breaking point (threshold) υ, while α1 and α2 indicate the 
lowest and highest powers, respectively [47]. 

An effective MPM should possess the capability to anticipate the 
maximum number of mineral prospects within the smallest 
geographical extent.[18] This is the foundational principle for 
demonstrating the relative importance and predictability of evidential 
layers concerning a specific deposit. Consequently, the allocation of 
weights to various layers can be established using P-A diagrams, as 
indicated in previous research studies [24], [50]. 

In this study, the weight assigned to each layer was determined by 
identifying the intersection point on the P-A diagram. This diagram 
comprises two curves: one representing the percentage of predicted 
known deposits based on the categories derived from the C-A diagram 
and the other depicting the proportion of areas associated with each 
category. The weight attributed to a layer is established by pinpointing 
the intersection between these curves [24], [51]. 

To quantitatively determine the weight assigned to each evidential 
layer, we calculated the logarithm of the predicted rate divided by the 
corresponding area coverage at the intersection point on the P-A 
diagram, as specified in equation (3) [50], [52]. 

 

𝑊𝐸 = 𝑙𝑛(
𝑃𝑟

𝑂𝑎
)                                                                                               (3) 

 

Where WE is the weight assigned to each proxy, Pr is the prediction 
rate, and Oa is the engaged area of the P-A chart. This study removed 
the layers with negative weights from the integration process. 

3.3. Integration of evidential maps 

The evidence layers were first prepared and then transformed into 
continuous fuzzy evidence layers by applying the sigmoid logistic 
function to each layer's values. Once the weight of each layer was 
determined, they were merged to create a prospective map using either 
the MIO or the TOPSIS method, as described below. 

3.3.1. Multi-Index Overlay (MIO) method 

The MIO method is a commonly used knowledge-based method for 
integrating evidence layers and producing MPMs. This method was 
developed to integrate layers that have several separate classes. In this 
method, evidential layers with several discrete classes can be 
purposefully integrated by considering the weight of the layer. In this 
study, each cell in each layer was considered as a class, and the existing 
layers were merged using equation (4): 

 

𝑀𝐼𝑂 =
∑ 𝑇𝑣𝑖𝑤𝑖
𝑛
𝑖

∑ 𝑤𝑖
𝑛
𝑖

                                                                                           (4) 
 

Tvi, Wi, and MIO, respectively, represent the cell value, the weight of 
layer I, and the cell value of the final integrated layer [18], [45], [50], 
[53]. 

3.3.2. TOPSIS Method 

The TOPSIS (Technique for Order Preference by Similarity to Ideal 
Solution) method is one of the most effective, well-known, and popular 
MCDM methods that was first used by Hwang in 1981. It was further 
developed by Yoon in 1987 and Hwang in 1993. The TOPSIS method 
involves defining a Positive Ideal Solution (PIS) and a Negative Ideal 
Solution (NIS). The PIS is the maximum in positive features (benefits) 
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and the minimum in negative features (costs), while the NIS represents 
the opposite. The available alternatives are then ranked based on their 
proximity to the PIS and distance from the NIS. The TOPSIS method 
includes three different common approaches (conventional, adjusted, 
and modified TOPSIS) that differ slightly. The steps to implement this 
method are summarized below [54]–[57]. 

3.3.2.1. Common TOPSIS (C- TOPSIS) method 

To implement this method, the following steps are performed. 
1- Creating X=(xij)m×n as a decision matrix consisting of m alternatives 

and n criteria 
2- Calculating the normalized decision matrix R=(rij)m×n using Eq. (5) 
 

 𝑟𝑖𝑗 =
𝑥𝑖𝑗

√∑ 𝑥2𝑘𝑗
𝑚
𝑘=1

𝑓𝑜𝑟𝑖 = 1,2, . . . , 𝑚&𝑗 = 1,2, . . . , 𝑛                                     (5) 

 

Where wj is the weight of each evidence layer so that ∑ 𝑤𝑗
𝑛
𝑗=1 = 1. 

4- Determine the PIS and NIS as eq. (7 and 8) 
 

PIS= {tj+| j=1, 2, …, n }={[max(tij| i=1, 2,…,m)| jB],  
         [min (tij| i=1, 2, …, m)| jC]}                                                                     (7) 
 

NIS= {tj
- | j=1, 2,…, n }={[min(tij| i=1,2,…,m)| jB],  

          [max (tij| i=1,2,…,m)| jC]}                                                             (8) 
 

Where B and C represent the benefit and cost criteria, respectively. 
Calculating the Euclidean distance of any alternative with the PIS as 

Si
+ and the NIS as Si

- respectively using Eq. 9 and 10: 
 

𝑆𝑖
+ = √∑ (𝑡𝑖𝑗 − 𝑡𝑗

+)2𝑛
𝑗=1                                                                          (9) 

 

𝑆𝑖
− = √∑ (𝑡𝑖𝑗 − 𝑡𝑗

−)2𝑛
𝑗=1                                                                          (10) 

 

6- Calculating the relative proximity of alternatives to the ideal 
solution by Eq. (11) 

 

𝑇𝑖
𝑐 =

𝑆𝑖
−

𝑆𝑖
++𝑆𝑖

−                                                                                           (11) 
 

7- Computing the normalized score 
 

𝑀𝑐
𝑖 =

𝑇𝑖
𝑐−𝑚𝑖𝑛

𝑖
(𝑇𝑖

𝑐)

𝑚𝑎𝑥
𝑖

(𝑇𝑖
𝑐)−𝑚𝑖𝑛

𝑖
(𝑇𝑖

𝑐)
𝑖 = 1,2, . . . , 𝑚                                                     (12) 

 

3.3.2.2. Adjusted TOPSIS (A-TOPSIS) method 

The adjusted TOPSIS (A-TOPSIS) method was introduced in 2000 
by Deng et al. The procedure of implementing this method is similar to 
that of C-TOPSIS, only steps 4 and 5 have been changed as follows [55], 
[58]. 

4-  The determination of the PIS and NIS is undertaken as detailed 
in Eq. (13) and Eq. (14), respectively 

 

PIS= {rj+| j=1, 2, …, n }={[max(rij| i=1, 2,…, m)| jB],  
         [min (rij| i=1, 2, …, m)| jC]}                                                       (13) 
 

NIS= {rj
- | j=1, 2, …, n }={[min(rij| i=1,2,…,m)| jB], 

         [max (rij| i=1, 2,…, m)| jC]}                                                            (14) 
Where rij is the normalized decision matrix. 
5- To compute the weighted Euclidean similarity distance of any 

alternative, two distances are calculated: one with respect to the PIS 
(designated as Si

+) using Eq. (15), and the other for the NIS (denoted as 
Si

-) employing Eq. (16). 
 

𝑆𝑖
+ = √∑ 𝑤𝑗(𝑟𝑖𝑗 − 𝑟𝑗

+)2𝑛
𝑗=1                                                            (15) 

 

𝑆𝑖
− = √∑ 𝑤𝑗(𝑟𝑖𝑗 − 𝑟𝑗

−)2𝑛
𝑗=1                                                                   (16) 

 

It is essential to note that the remaining steps in this approach is 
closely similar to those of the C-TOPSIS method. 

3.3.2.3. Modified (M-TOPSIS) method 

The Modified version of the TOPSIS method (M-TOPSIS) was 
introduced by Wren in 2007, specifically designed to address ranking 
challenges when dealing with alternatives closely resembling either 
positive or negative alternatives. This approach closely mirrors the C-
TOPSIS method in most of its steps, with the exception of the 6th step, 
where a modification involves the use of the Euclidean distance as the 
key metric. The details of these modifications are delineated as follows 
[59]: 

Step 6: In this step, the initial Ideal Alternative (denoted as "S") is 
determined using Eq. (17), followed by the computation of a similarity 
distance metric using Eq. (18). 

 

𝑆 = (𝑆𝑙𝑝, 𝑆𝑔𝑛) = (𝑚𝑖𝑛( 𝑆+𝑖),𝑚𝑎𝑥( 𝑆
−
𝑖)); 𝑖 = 1,2, . . . , 𝑛                  (17) 

 

𝑇𝑖 = √(𝑆+𝑖 − 𝑆𝑙𝑝)2 + (𝑆−𝑖 − 𝑆𝑔𝑛)2; 𝑖 = 1,2, . . . , 𝑛                              (18) 
 

4. Used evidence layers 

To explore gold in the study area, we prepared the evidence layers by 
processing geological, geophysical, and geochemical data, and satellite 
images. These layers were then placed in a geographic database in the 
form of a grid of 100-meter square cells. The process for preparing these 
layers is detailed below. 

4.1. Known mineral deposits 

This study focuses on active mines, proven mineral deposits, and 
mineralized outcrops indicated on the 1:100K and 1:250K geologic maps 
listed in Table 1. To avoid any bias caused by having multiple mineral 
types in a particular region, the point data were selected with a 
minimum distance of 500 m between each point [60]. As a result, the 
number of prospects reduced from 21 to 19 points. 

 
Table 1. Known Gold Deposit in the Study Area. 

FID x y Name Index Type 

1 681785 3523046 Koudakan Mine 

2 690588 3520649 Qaleh Zari Anomaly Mine 

3 707724 3537157 Hurideh Anomaly Index 

4 692074 3525606 Chahvak Au 

5 703778 3512213 Bisheh Anomaly Index 

6 703785 3537950 Hired Index 

7 705518 3537111 Hired3 Au Epithermal 

8 708106 3541570 Hired1 Au Epithermal 

9 708224 3535841 Hired Deposit 

10 709828 3537045 Hired Cu, Au 

11 708388 3553501 Hangaran Anomaly Index 

12 709532 3551460 Listvenite Mokhtaran Listvenite 

13 712364 3551518 Listvenite Mokhtaran Listvenite 

14 690547 3556632 Listvenite Mokhtaran Listvenite 

15 716597 3543688 Chah Zaghu Deposit 

16 689538 3519021 Qaleh Zari Index 

17 710783 3551825 Mokhtaran Deposit 

18 687664 3520263 Qaleh Zari Index 

19 686690 3513043 Chah Shalghmi Deposit 
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4.2. Geological layer 

More than 50% of the geologic map of the area is covered by the 
Quaternary alluvial sediments, with Andesitic units covering 23% of the 
map. This poses a challenge for mineral prospecting in the area, 
underscoring the importance of subsurface data. Researchers correlate 
known gold deposits with lithology to determine the significance of 
geological units in a region. The results showed that six gold indications 
were found on Cretaceous units, seven on Eocene-Oligocene units, and 
five on Quaternary sediments. In terms of lithology, there are five 
deposits in alluvial units, six deposits in andesitic units, and six deposits 
in intrusive rocks. Intrusive rocks play a crucial role in gold 
mineralization in the study area, with six deposits found on these rocks 
despite their minimal surface areas. As a result, the inverse distance from 
intrusive rocks is used in the prospectivity mapping process as one of 
the standard layers. A score was assigned to the geological layer based 
on the intersection point of two graphs in the P-A chart; it was found 
that 58% of known Au prospects are located on only 42% of the area, 
giving this layer a weight of 0.32. Figure (3) shows the results of our 
analysis for the intrusive score evidence layer. The figure is divided into 
four parts: (a) a map of the intrusive score evidence layer in continuous 

form, (b) the C-A chart for this map, (c) a discretization map based on 
C-A of map (a), and (d) the P-A chart for map (c). 

4.3. The geochemical layer 

Geochemical anomaly mapping involves identifying anomalous 
concentrations of pathfinder and indicator elements in different 
sampling media to locate undiscovered mineralized zones. Stream 
sediment geochemical studies have been the most cost-effective way to 
sample large terrain areas for geochemical surveys. This helps to identify 
areas for further investigations [61], [62]. 

In this study, our analysis focused on data from stream sediment 
geochemical studies carried out by the Geological Survey of Iran (GSI) 
over three 1:100K geologic maps:  Basiran, Koudkan, and Mokhtaran. 
The GSI collected 2468 stream sediment samples, with 645 of these 
located in our study area. The Inductively Coupled Plasma-Optical 
Emission Spectrometry (ICP-EOS) method was utilized to analyze Cu, 
Ag, Sn, Pb, Zn, Sr, Sb, and Hg, and the Fire assay method to analyze Au. 
After pre-processing the data, we created element distribution maps, 
which helped us identify anomalous areas and precisely interpret each 
target. 

 

 
Fig. 3. Maps and charts for Intrusive score proxy layer -A) Continuous map. -B) C-A chart of map (A). 

 -C) Discrete map of intrusive score used for weight calculation. -D) P-A chart of intrusive score. 
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The data of each sheet is processed separately. First, the catchment 
correction was used to attribute anomalies to their corresponding 
upstream lithological unit. The Concentration-Area diagram was then 
utilized to separate anomalies from background values and categorize 
them. Correlation testing revealed a high correlation among Ag, Cu, and 
Au. These processes, along with univariate and multivariate statistical 
methods, effectively determined the geochemical anomalies. Factors 
such as silver, gold, bismuth, copper, lead, and zinc were selected 
through factor analysis and Pearson's correlation test to prepare the 
geochemical layers. The weight of these layers was determined using the 
C-A and P-A charts, and the desired geochemical evidential layer was 
obtained by combining them through the MIO method [63]. 

To determine the weight of the geochemical evidential layer, we first 
used the C-A diagram (Fig. 4B) to establish the threshold values. Using 
the P-A diagram (Fig. 4D), we found the intersection point (71, 29), 
which gave the geochemical evidential layer a weight of 0.89, indicating 
its importance. Figures 4 (a)-(d) display the steps to prepare the 
evidential map of the geochemistry layer. 

4.4. Remote sensing layer 

The exploration of mineral deposits, including massive sulfide, 
epithermal, porphyry, and IOCG deposits in green areas, has been 
greatly aided by using satellite imagery. The mineralization system is 

typically associated with altered zones within and around the deposits. 
One significant difference between fresh and altered zones is the 
presence of alteration minerals, like allunite, montmorillonite, kaolinite, 
etc., inside the altered rocks. These minerals can result in slight 
variations in the value of received waves to the sensing device, 
depending on their spectral characteristics [64]–[66]. 

We analyzed satellite images from Landsat and ASTER to investigate 
changes in the study area. We selected ASTER images from two L1T 
scenes, 00305052003065556_20150429133528_37334 and 0030505 
2003065605_20150429133531_109762, which can be found at 
https://earthdata.nasa.gov. These scenes provided minimal cloud cover 
in the study area. For Landsat, we used images from the Landsat 8 scene, 
LC08_L1TP_159038_20190101_20190101_01_RT, collected by 
Operational Land Imager (OLI) sensors. Although some clouds were 
present in the northern part of the area, the overall cloud cover was less 
than 5% for the entire study area. 

The Landsat 8 and ASTER data were processed and preprocessed 
using the ENVI software. We used the FLAASH module to correct 
atmospheric errors in the Landsat 8 OLI and ASTER images. We used 
the PCA approach and the band ratio method for the iron oxide 
alteration in Landsat ETM 8 scenes. To detect Phyllic, Argillic, Potassic, 
Silicic, and Propylitic alterations from ASTER images, we used the PCA, 
band ratio, and Spectral Angle Mapper (SAM). 

 

 
Fig. 4. Maps and charts for geochemistry proxy layer -A) Continuous map. -B) C-A vhart of map (A). -C) Discrete map Used for weight calculation. -D) P-A chart of 
geochemistry score. 
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The logistic function transforms every alteration layer into a range of 
[0, 1]. The weight of each layer is calculated using the P-A method for 
known gold indications in the area. The Phyllic, Silicic, Iron oxide, and 
Propylitic layers have weights of 0.24, 0.58, 0.28, and 0.6, respectively. 
The Potassic alteration has a negative weight, and the Argillic layer has 
a very low weight of 0.08, indicating a weak relationship with gold 
mineralization in this area. The above-mentioned alteration layers are 
combined using the MIO method (eq. 11) to produce the integrated RS 
map. The weight of the RS map for gold potential mapping in the study 
area is calculated to be 0.62 (Figure 5). This means the remote sensing 
map accurately predicted 65% of the gold occurrences in 35% of the 
study area. 

4.5. Airborne geophysics data 

Airborne geophysical data has proven invaluable for extracting 
geological information from areas that would otherwise be difficult to 
access due to extreme topography or sediment coverage. This data has 
provided researchers with crucial insights into the distribution of 
subsurface masses, leading to significant breakthroughs in mineral 
exploration. Mineral deposits form when fluids interact with the rocks 
that serve as their host. During this process, the environment's physical 
properties change, and the rocks' primary minerals are altered. [67]–
[70]. 

The airborne dataset used in this study was collected by the GSI in 
2013. The flights were carried out on a flight line spacing of 250 meters 

at azimuths 105 and 285 degrees. The ties were spaced 3 km apart at 
azimuths 15 and 195 degrees. The helicopter’s flight and radiometric 
altitude was 60 m above the ground level, the magnetic sensor altitude 
was about 45 m, and the electromagnetic data height was about 30 m. 

4.5.1. Airborne magnetic data 

A magnetic Cesium Vapor sensor with a 10 Hz sampling rate was 
installed on the bird and was located 15 meters below the helicopter for 
optimal sampling. The data was meticulously prepared, undergoing 
various corrections such as Diurnal, Lag, and Heading, and was further 
processed through IGRF, leveling, and micro-leveling techniques. Then, 
the Reduction to the magnetic Pole grid allowed for precisely 
identifying magnetic lineaments and shallow bodies. Additional 
information on these processes will be provided below. 

4.5.1.1. Magnetic Lineament Layer 

Faults and fractures can act as a pathway for mineral-rich fluids below 
the earth's surface. These pathways play an important role in forming 
mineral deposits by transporting valuable minerals from the mantle 
and/or crust to areas where they can be deposited [52]. Faults and 
fractures can bring rocks with different magnetic properties into linear 
contact, showing an abrupt change in magnetic properties. This makes 
it possible to detect hidden faults by detecting magnetic lines [67], [71]–
[74]. 

 

 
Fig. 5. Maps and charts for Remote Sensing Proxy Layer -A) Continuous map. -B) C-A Chart of Map (A). -C) Discrete Map Used for Weight Calculation. -D) P-A Chart 
of Remote Sensing layer. 
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A combination of filters, including the first-order vertical derivative, 
total horizontal derivative, analytical signal, and tilt angle, were utilized 
to identify magnetic lineaments. The automatic separation method was 
applied to highlight these lineaments. The faults provided in geologic 
maps were combined with these lineaments using an OR fuzzy operator. 
A density map of lineaments was then generated based on the size and 
number of lineaments within each cell. Normalizing the map using a 
sigmoid function (Eq. 1) created a density layer of lineaments. Figure 6 
(a-d) depicts a lineament evidential map generated from airborne 
magnetic data. The intersection point of the two curves predicted a 65% 
gold prospect rate with an equivalent area of 35% and a weight of 0.62. 

4.5.1.2. Magnetic shallow bodies 

Intrusive sources can produce fluids and dissolved constituents like 
salts, gases, and metals. These sources are often highly fractured near the 
contact, which allows hydrothermal fluids to pass through and exchange 
heat and mass with the intrusive rocks [75]–[78]. Identifying the 
structures such as contacts, lineaments, and shallow bodies is essential 
for locating a mineralization system. The aeromagnetic approach is  
 

useful for this purpose, and various filters have been used to investigate 
buried source boundaries. Techniques like First Vertical Derivative, 
Total Horizontal Derivative, Analytic Signal, and Tilt Angle can be 
employed to achieve the goals of these studies [79], [80]. 

We drew the magnetic shallow bodies with the use of the filters 
mentioned above. Then, we calculated the inverse distance from the 
intrusive contacts. Fig. (7) shows the shallow body layer score and C-A 
and P-A charts as the base for the calculation of the weight of this layer. 
According to these charts, a weight of 0.12 was obtained for the distance 
layer of shallow magnetic masses. 

4.5.2. Spectrometry Data 

Airborne gamma-ray data analysis is a quick and affordable way to 
map out the distribution of potassium, uranium, and thorium 
radioactive elements. This technique is often used as a supplementary 
lithological map, and there is often a strong correlation between 
radiometric data patterns and fresh rocks. We can gain insight into 
mineralization by studying these data in conjunction with host rocks 
[81].  

 
 

 
Fig. 6. Maps and charts for Lineament Density Layer -A) Continuous map. -B) C-A Chart of Map (A). -C) Discrete Map Used for Weight Calculation. -D) P-A Chart of 
Lineament Density map. 
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Fig. 7. Maps and charts for Shallow Body Layer. -A) Continuous map. -B) C-A Chart of Map (A).  

-C) Discrete Map Used for Weight Calculation. -D) P-A Chart of Shallow Body Layer. 
 

 
Potassium is beneficial as a trace element because its concentration 

can increase due to potassium metasomatism in K-rich rocks [66], [82]. 
The K/Th ratio is especially efficient in identifying potassic alteration 
since potassium (K) is more mobile than thorium (Th) during 
hydrothermal processes. However, it is essential to note that high K and 
K/Th values may depend on specific geological contexts [83]. Uranium 
is often enriched in gold deposits [84], [85]. 

The weight of radiometric layers was determined by P-A diagrams. 
Uranium and thorium layers got a negative weight and were not used in 
the MPM process. The negative weight of these layers can be related to 
the vast extent of alluvial-covered areas in this area. K and K/Th layers 
were chosen as proxies due to their relationship with potassic alteration. 
These layers got weights of 0.12 and 0.16, respectively. The U/Th ratio 
layer was also selected due to uranium enrichment in gold deposits. This 
layer has a weight of 0.532. Fig. 8 to 10 shows the selected radiometry 
proxies map and their related P-A charts. 

4.5.3. Electromagnetic data 

In this area, airborne frequency domain electromagnetic (AFDEM) 
maps are available. This technique is commonly utilized for detecting 
sulfide deposits, which have high to moderate conductivity and 

moderate conductivity shear zones for gold. During the operation, a bird 
flew 30 meters below the Helicopter, and the data was collected at a 
height 30 m above the ground, using five frequencies of low (875 Hz) to 
high (33500 Hz). Low-frequency resistivity maps can detect electrical 
signals from greater depths, while a high-frequency resistance map is 
sensitive to surface-level signals [68]. 

Here, we chose a coplanar map with a frequency of 4920 Hz as a 
proxy for MPM because of the better quality of the map, little surface 
noise, and better resolution than low-frequency maps. The areas with 
high resistance in this map have the most convergence with known gold 
indices in this area, which can be due to the connection of these 
mineralizations with intrusive masses and siliceous veins. Fig. 11 shows 
this map and the related C-A and P-A charts. The calculated weight of 
this resistivity map using the P-A chart was 0.575. 

5. Integration of layers 

In this study, a logistic function was used to transfer the values of each 
evidential layer into the range of [0,1], resulting in continuous fuzzy 
evidential layers without classification. To minimize any bias, the weight 
of each layer was determined by analyzing the intersection of the P-A  
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Fig. 8. Maps and charts for K Proxy Layer -A) Continuous map. -B) C-A Chart of Map (A).  

-C) Discrete Map Used for Weight Calculation. -D) P-A Chart of K layer. 

 

curves without input from experts. The resulting weights were then 
integrated to generate a potential map using either the TOPSIS or MIO 
methods, which will be explored in greater detail below. 

5.1. Integration using the TOPSIS method 

In 2012, Pazand et al. suggested using the TOPSIS technique for 
MPM, which was later refined by Abedi et al. in 2015. This method 
involves preparing various layers and calculating their weights before 
combining them. TOPSIS has three different approaches, A-TOPSIS, C-
TOPSIS, and M-TOPSIS [55], [86]. In this study, we execute TOPSIS 
calculations using the MATLAB software, in accordance with the 
formulas expounded in Section 3.3.2 of this paper. The computation of 
similarity values was carried out for each alternative ("cells" in this 
context). Subsequently, the MPM scores were generated and the 
classification of the MPM score map was accomplished using the C-A 
fractal method. The calculated charts and maps for C-, A-, and M-
TOPSIS are visualized in Figures 12 to 14 respectively. Furthermore, the 
performance of the TOPSIS techniques was assessed through the 

generation of P-A charts. According to the results derived from these 
charts, the C-TOPSIS method demonstrated an ability to identify 75% 
of gold prospects within 25% of the initial exploration area. Likewise, 
the A-TOPSIS method exhibited a capability to detect 71% of gold 
prospects within 29% of the initial exploration area, while the M-
TOPSIS method displayed proficiency in identifying 76% of gold 
prospects within 24% of the initial exploration area. 

5.2. Data integration using multi-index overlay (MIO) method 

The MIO technique is widely recognized for its capacity to merge 
data predicated on multiple criteria. It is important to note that this 
method is essentially synonymous with the weighted average method, 
which makes it both strong and dependable. Consequently, it can be 
effectively used for the integration of criteria in order to ascertain 
optimal alternatives. In order to create the MPM using the MIO method, 
the evidence layers were integrated in accordance with their respective 
weights, as determined by equation (11). Figure 15 provides a visual 
representation of the integrated results emanating from the application  
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Fig. 9. Maps and charts for K/Th Proxy Layer -A) Continuous map. -B) C-A Chart of Map (A).  

-C) Discrete Map Used for Weight Calculation. -D) P-A Chart of K/Th layer. 

 

 
of this method. The P-A chart for this map was also calculated for 
evaluation of its efficiency. This map can predict 75% of gold deposits 
within 25% of the study area. 

6. Evaluation 

In this study, we utilized the MIO and TOPSIS methods to combine 
various layers. To assess the final models, we employed the P-A and 
Receiver Operating Characteristic (ROC) charts. The P-A curve's 
intersection point serves as a benchmark for evaluating the mineral 
potential model. A more effective model is indicated by a higher 
intersection point of the two curves, as it identifies known prospects in 
a smaller portion of the study area [24], [87], [88]. 

By utilizing the intersection points of the P-A charts as outlined in Fig 
16, both integrated models were able to showcase superior quality and 
efficiency for the layers utilized. In order to obtain a more 
comprehensive understanding of the efficiency of the TOPSIS and MIO 
integration methods, a comparative analysis was conducted between 

these two and the primary evidential layers. The results of this detailed 
comparison are visually presented in Figure 16, providing a clear and 
concise representation of the findings. 

In this study, the MIO was able to detect 75% of gold indications over 
25% of the area. The TOPSIS model, specifically versions A, C, and M, 
successfully identified 71%, 75%, and 76% of indications, respectively, 
but only within 29%, 25%, and 24% of the area. This suggests that the 
M-TOPSIS method is performing slightly better than the others. The 
MIO and C-TOPSIS methods were comparable in identifying mineral 
prospects, while the A-TOPSIS method had the worst results. 

The ROC curve is a graph that displays how well a classification 
model performs at all classification thresholds. It shows two parameters: 
the True Positive Rate (TPR) and False Positive Rate (FPR) [89], [90]. 
The ROC curve facilitates a comparative assessment of the model's 
capacity to accurately discriminate between positive (mineral deposits) 
and negative (non-mineral deposits) cases [88], [91]. The Area Under 
the Curve (AUC) is calculated to assess the performance of diverse 
MPMs, referring to the area beneath the ROC curve. A higher AUC  
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Fig. 10. Maps and charts for U/Th Proxy Layer -A) Continuous Map. -B) C-A Chart of Map (A).  

-C) Discrete Map Used for Weight Calculation. -D) P-A Chart of U/Th Layer. 

 

value signifies the model's heightened predictive capability, whereas a 
lower AUC value implies suboptimal performance [87], [92].  

However, it is imperative to acknowledge that the choice of negative 
target locations can influence the outcomes of the ROC analysis. For this 
study, 19 negative points were selected randomly, and strategically 
positioned at a considerable distance from gold indexes and intrusive 
bodies (Fig. 15 A). This selection strategy is employed to ensure the 
robustness and validity of the ROC analysis results. 

Fig. 17 displays the ROC curves and AUC values for integrated results, 
it shows that the ROC chart of M- and C-TOPSIS are matched. The 
AUC of the MIO and A-TOPSIS are 0.939 and 0.942 respectively, and 
that of both M- and C-TOPSIS is 0.967. 

7. Discussion 

In this study, we adopted a strategy to mitigate the impact of multiple 
mineral deposits clustered within a confined geographical area. From 
the total of 21 mineral prospects within the study area, we deliberately 
selected 19 prospects, each situated at least 500 meters apart from the  

 

others. This selection aimed to enhance the spatial diversity of our 
sampling points and reduce the potential bias introduced by the 
proximity of multiple deposits. 

To investigate the gold potential within this area, we utilized nine 
distinct evidence layers encompassing geological data, remote sensing 
images, geochemical data, and airborne geophysical (Magnetic, 
radiometric, and electromagnetic) data. In order to facilitate consistent 
data processing and to avoid classification errors, we applied a sigmoid 
logistic function to transform the data into a standardized range of [0, 
1], and convert them to continuous layers. 

For the assignment of weights to these evidence layers, we employed 
the P-A method, relying on known gold prospects. Importantly, this 
weighting process was conducted independently of the specific 
coordinates of the deposit points. Instead, we assessed the efficiency of 
each layer in identifying gold indications relative to the predefined 
target area, employing it as the criterion for weighting. For this purpose, 
it became necessary to utilize different classes of the prospectivity map 
or target layers, leading us to utilize the C-A fractal model for 
discretization. 
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Fig. 11. Maps and charts for Resistivity Layer -A) Continuous Map. -B) C-A Chart of Map (A).  

-C) Discrete Map Used for Weight Calculation. -D) P-A Chart of Resistivity Layer. 

 

 
Fig. 12. Maps and charts for MPM using C-TOPSIS method. -A) Continuous map. -B) C-A chart of map (A). 

 -C) Discrete map used for weight calculation. -D) P-A chart of the C-TOPSIS method. 
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Fig. 13. Maps and charts for MPM Using A-TOPSIS Method. -A) Continuous Map. -B) C-A Chart of Map (A).  

-C) Discrete Map Used for Weight Calculation. -D) P-A Chart of the A-TOPSIS Method. 
 

 
Fig. 14. Maps and charts for MPM Using M-TOPSIS Method. -A) Continuous Map. -B) C-A Chart of Map (A).  

-C) Discrete Map Used for Weight Calculation. -D) P-A Chart of the M-TOPSIS Method. 
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The efficacy of decision-making models that rely on data integration 
is heavily dependent on the quality of the initial models. This study tried 
to enhance the primary layers used in creating such models. We 
discovered that some primary layers could be improved with relative 
ease, while others were more complex and time-consuming. We focused 
on enhancing the quality of primary layers by reprocessing remote 
sensing, aerial geophysics, and geochemistry datasets. However, we did 
not address issues such as errors in geologic maps and inaccurate 
geochemical results, which necessitated significant time and expenses to 
rectify. 

In this area, the geochemical layer derived from stream sediment data 
outperforms other primary layers in identifying known gold deposits. It 
identified 71% of the deposits within 29% of the area, although its 
performance was better in central and southern parts of the study area. 
The RS and lineaments layers were ranked second and identified 65% of 
gold targets within 35% of the area, performing well across the entire 
area. The resistivity layer obtained from airborne electromagnetic 
measurements and the ratio U/Th layer were also successful, identifying 
64% and 63% of the deposits over 36% and 37% of the study area, 
respectively. Meanwhile, other layers had a prediction rate between 50% 
and 60%. 

We effectively merged primary layers using the MIO approach and 
various TOPSIS methods, including C-, M-, and A-TOPSIS. After 
analyzing the results using P-A charts, we found that all the integrated 
models except A-TOPSIS showed improved quality and efficacy in 
utilizing the selected layers. This led to the discovery of more deposits 
in smaller areas. Based on the intersection points of the P-A chart, both 
the MIO and C-TOPSIS methods produced comparable results, 
successfully identifying 75% of the gold deposits within 25% of the study 
area. It should be noted that the M-TOPSIS method demonstrated a 
slight superiority over the other methods in identifying mineral 
 

 prospects. It detected 76% of gold prospects within 24% of the study  
area. 

In our study, we found that the A-TOPSIS method was not very 
effective as it only identified 71% of the deposits within only 29% of the 
study area. This result was similar to the findings of the Geochemistry 
layer. Upon further investigation, we discovered that A-TOPSIS uses the 
root of layers weights for similarity distance calculation instead of their 
actual weights (Eq. 15 and 16). This deviation from the main idea of 
using the weights of layers has weakened the accuracy of this method. 

To facilitate the calculation of ROC and AUC, we introduced negative 
points into the analysis. Despite their influence on the validation results, 
these negative points were selected at random and located far from gold 
deposits and intrusive bodies. The computed AUC values for the MIO, 
A-TOPSIS, C-TOPSIS, and M-TOPSIS methods were found to be 0.939, 
0.942, 0.967, and 0.967, respectively. These AUC values significantly 
diverge from the random guessing value of 0.5, indicating the reliability 
of the MPM results across all models. Based on these AUC results, the 
TOPSIS methods outperformed the MIO method, with both C-TOPSIS 
and M-TOPSIS delivering the most robust results. 

Through the analysis of composite maps, it has been determined that 
there are several points of interest regarding gold prospectivity. Most of 
these targets are associated with areas that have known mineral deposits. 
However, these areas are wider and remind the need for further 
exploration in these areas. Notably, a big anomaly has been detected in 
the western portion of the area. These findings suggest that these 
locations may be prime candidates for future exploration programs, for 
potentials having significant yields. Further geological surveys and 
assessments will be necessary to fully understand the extent and 
feasibility of these prospects, paving the way for more in-depth 
exploration and potentially profitable developments of these prospects 
in the future. 

 
Fig. 15. Maps and charts for MPM Using MIO Method. -A) Continuous Map. -B) C-A Chart of Map (A).  

-C) Discrete Map Used for Weight Calculation. -D) P-A Chart of MIO MPM Layer. 
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Fig. 16. Prediction, Area, and Calculated Weight for Proxy Layers and the MPMs created using Various TOPSIS (A, C, M) and multi-index overlay integration methods. 

 

 
Fig. 17. ROC curve and AUC values for the gold prospectivity map created using Various TOPSIS (A, C, M) and multi-index overlay integration methods. 

 

8. Summary and concluding remarks 

In conclusion, this paper aimed to map the gold prospectivity of the 
Basiran-Mokhtaran region in Iran using four different methods: Multi-
Index Overlay (MIO), A-TOPSIS, C-TOPSIS, and M-TOPSIS. These 
methods are based on the integration of multiple proxies using weights 
assigned to each criterion. The criteria included geological, geochemical, 
remote sensing, and geophysical data, which were transformed into 
continuous values using the sigmoid function. The alternatives were the 
potential gold zones in the study area. The weights were assigned using 
the P-A intersection point, which is an efficient technique for 
determining the optimal weights of layers in prospectivity mapping. The  

 
 
 
results of the four methods were compared and validated using known 
gold occurrences and the ROC charts, which are the commonly used 
tools for evaluating the performance and accuracy of prediction models. 

The main findings of this study were that the four methods produced 
similar and acceptable results, with high correlation coefficients and 
accuracy rates. The most prospective areas were located in the north, 
center, and southwest of the study area, where several gold-bearing 
structures and mineralization systems were identified. The results also 
revealed the importance of structural and lithological factors in 
controlling the gold distribution and potential. Among the four 
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methods, the M-TOPSIS method performed slightly better than the 
others, according to both the P-A method and the AUC analysis. 
However, the differences between the maps generated by the four 
methods were not significant. On the other hand, the A-TOPSIS method 
had the lowest prediction rate, and thus was not very successful in this 
area. This failure was due to the use of the root of the layers’ weight in 
calculating the Similarity distance in this method. 

The limitation of this study was the insufficient number of known 
gold deposits in the study area. Another challenge of this study is the 
inconsistency of geochemical data in adjacent sheets. Also, the lack of 
accuracy of geological maps due to the existence of a wide sedimentary 
coverage was another issue. Future research studies can address these 
limitations by using more objective and robust methods, collecting more 
comprehensive and reliable data, and using them in the decision-making 
process. 

This paper contributed to the field of mineral exploration by 
demonstrating the applicability and effectiveness of the MIO and 
TOPSIS methods for gold prospectivity mapping. The paper also 
introduced the P-A method as a promising technique for assigning 
weights to different criteria in prospectivity mapping. It also provided 
valuable information and insights for the exploration and development 
of gold resources in the Basiran-Mokhtaran region and other similar 
areas. 
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