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A B S T R A C T 

 

In this study, a novel numerical approach is proposed to characterize the dissolution of rock minerals and wormhole propagation in carbonate 
rocks using the Darcy scale model. Accordingly, only the spatial variables of the governing partial differential equations are discretized, while 
the time variable remains continuous. Consequently, the partial differential equations are turned into ordinary ones, which are then 
numerically solved by high-order Runge-Kutta methods. The proposed approach is verified against the analytical solution in a 1D core model. 
Afterwards, it will be utilized to investigate the effect of multiple transport and reaction phenomena on the matrix acidizing in 2D carbonate 
formations. Also, the staggered grid technique is employed to accurately predict the wormhole patterns during several injection regimes. 
Compared to the previous studies, the proposed numerical approach is less complicated and straightforward. Furthermore, the computational 
cost is more affordable. 
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1. Introduction 

During the production time of an oil or gas well, the migration of fine 
particle from the reservoir rock causes the permeability of the near 
wellbore area to decrease significantly [1]. Accordingly, a thin damaged 
region with low permeability is created around the wellbore, which 
poses additional pressure drop. This kind of formation damage is the 
called skin factor in petroleum literature [2]. Multiple well stimulation 
techniques, such as matrix acidizing, have been proposed to remove this 
damage and increase the productivity of well. 

According to the census statistics, most of the available petroleum 
reserves exist in the carbonate reservoirs [3]. In these reservoirs, acid is 
injected without fracturing the reservoir rock and dissolves the rock 
minerals, creating high conductive wormholes. These wormholes 
provide least resistant pathways through which oil and the gas reach the 
wellbore, thus the well productivity is improved [4]. Obviously, a 
successful well stimulation technique depends on the costs of the 
operations compared to the incremental productivity index. 

In carbonate reservoirs, formation is mainly composed of calcite and 
dolomite minerals; thus, hydrochloric acid is an appropriate choice. The 
evolution of wormholes and promotion of permeability depend on 
different factors, such as the rate of the acid injection, reaction kinetics, 
temperature, and structural properties of porous media [5, 6]. 

Substantial studies have been performed to investigate the inherent 
complexity of the dissolution process in matrix acidizing [7-10]. Also, 
theoretical studies for modeling the dissolution phenomena are 
classified into four categories [11]: dimensionless model [12], capillary 
tube approach [13], pore scale model [14, 15], and continuum-based 
model [11, 16, 17]. In the dimensionless model, the dissolution of 
carbonate rocks is assumed to be similar to the reaction of acid in a 
single capillary tube. Consequently, the controlling dimensionless  

 
 
 
groups are identified and the optimum rate of acid injection is 
determined [18]. However, the number of required parameters is large 
and this approach cannot estimate the appropriate pore volumes of acid 
for breakthrough. In the capillary tube approach, a pre-defined 
cylindrical shape of the wormhole is considered and the transport of 
reaction of the acid is studied therein. Accordingly, this approach is 
unable to predict different dissolution patterns which makes it 
impractical for the prediction of core scale experiments. In the pore scale 
model, a bundle of inter-connected capillary tubes is used to represent 
the reservoir rock. The acid reacts with the walls of the tubes; thus, 
increases their radii. Pore scale model provides a qualitative prediction 
of the dissolution patterns. Also, the predicted pore volumes highly 
overestimate the experimental results. Later Hoefner and Fogler [19] 
extended the pore scale model and proposed physically representative 
network model. Again, the predicted pore volumes were unreasonably 
high compared to the experimental investigations. In comparison, 
continuum-based models more precisely describe the propagation of 
wormholes throughout the carbonate rocks. 

In the continuum-based model, which is also the approach of the 
current study, the momentum equation (Darcy’s law), transport of 
diluted species, and rock/fluid reaction are coupled. Furthermore, acid 
dissolution changes the rock structure at different length scales. From 
Darcy’s scale point of view, porosity and permeability of the rock 
changes. However, pore radius, pore connectivity and interfacial area 
alter at the pore scale. Consequently, an appropriate correlation is 
required to relate these properties at different length scales. 

Because of the inherent coupling between the acid transport and its 
reaction, obtaining a precise solution of the Darcy-scale model is highly 
challenging and requires an extremely fine mesh structure [17, 20].  
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Accordingly, for a large rock sample or fast reactive fronts, a large 
number of gridblocks are required which poses a high computational 
burden. The basic idea here is to solve the system of coupled differential 
equations by the method of lines (MOL). In the MOL, only the spatial 
variables of the governing partial differential equations are discretized 
and the time variable remains continuous. Consequently, the partial 
differential equations turn into ordinary ones which are then 
numerically solved by high-order Runge-Kutta methods. Runge–Kutta 
methods are efficient, long-established and popular techniques for 
numerical analyzing initial-value problems in differential equations 
[21]. The Runge–Kutta technique establishes high-order precise 
solutions by the function itself, and requires none of the function 
derivatives. 

This study is organized as follows: Darcy scale continuum model 
together with the numerical simulation schemes are described in 
Section 2. The MOL formulation is also derived here. Section 3 
introduces 1D and 2D core models. 1D core model is used to verify the 
results of the proposed approach. Afterwards, results of the numerical 
simulation of matrix acidizing in carbonate formations are discussed in 
Section 4. Then, final conclusions are summarized in Section 5. 

2. Methodology 

2.1. Darcy scale model 

In this study, two-scale continuum model is utilized to illustrate the 
reactive flow of acid through the carbonate formation. Subsequently, 
Darcy-scale equations, which are well described by Panga et al. [16], 
were considered: 
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Here, 𝐔, 𝜇, 𝐊, 𝑃, and 𝜑 stand for vector of acid velocity, viscosity of 
acid, permeability tensor, pressure, and rock porosity, respectively. 

According to the experimental investigations, Fredd and Fogler [18] 
disclosed the fact that the reaction of hydrochloric acid with carbonate 
rocks follows a linear kinetics. The same assumption is considered by 
most of previous studies [11, 16, 20, 22]. Furthermore, the change in 
reaction order only changes the volume of required acid to 
breakthrough, consequently, the proposed model also remains valid in 
non-linear kinetics [11]. By assuming linear kinetics, the balance 
between diffusion, convection, and reaction of injected acid results in, 
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Here, Cf, Cs, 𝐃e, 𝑘𝑠 , 𝑎𝑣, and 𝑘𝑐 show the concentration of the injected 
acid in the liquid phase, the concentration of the acid at the solid face, 
the tensor of the effective dispersion-diffusion, acid reaction rate, 
interfacial area between the liquid and the solid, and the local mass 
transfer coefficient, respectively. The term 𝑘𝑐𝑎𝑣(Cf − Cs) stands for the 
acid transform from the liquid phase to the solid face. Apparently, fluid 
properties, such as viscosity and density of acid, are assumed to be 
unaffected by the dissolution process. 

Expectedly, matrix acidizing causes the dissolution of the carbonate 
minerals which is represented by: 
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Here, 𝛼 shows the dissolving power of the injected acid and 𝜌𝑠 is the 
rock density. Acid dissolution changes the rock structure at different 
length scales. From Darcy’s scale point of view, the porosity and 
permeability of the rock changes. However, pore radius, pore 
connectivity, and interfacial area alter at the pore scale. Consequently, 
an appropriate correlation is required to relate these properties at 
different length scales. In this study, the Carman−Kozeny correlation is 

utilized to relate the change in permeability as a result of change in 
porosity [23], 
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where 𝜑0 and 𝑘0 are the initial porosity and permeability of the rock 
sample, and 𝜑 as well as 𝑘 are the current porosity and permeability after 
the acidizing. Also, 𝛽 is a constant. Furthermore, the variation of pore 
radius and interfacial area due to the acid reaction is represented by: 
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where 𝑟0 and 𝑟𝑝 are the initial and current pore radii.  
Also, 𝑘𝑐 and 𝐷𝑒 are calculated from [24]: 
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Here,𝑆ℎ, 𝐷𝑚, 𝑆ℎ∞, 𝑏, 𝑅𝑒𝑝, 𝑆𝑐, and 𝜈 represent the Sherwood number, 
coefficient of molecular diffusion, asymptotic Sherwood number, 
equation constant, Reynolds number, Schmidt number, and acid 
kinematic viscosity, respectively. Also, 𝐷𝑒,𝑋 and 𝐷𝑒,𝑇 show longitudinal 
and transverse components of the effective dispersion-diffusion tensor, 
𝜆𝑥 and 𝜆𝑇 are constants, and 𝛼𝑜𝑠 is a constant for pore connectivity. 

Consequently, the boundary and initial conditions required to solve 
the governing set of differential equations become: 
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in which 𝑢0, 𝐶0, 𝑃𝑒 , 𝐿, and 𝑓 show acid velocity at the inlet face, acid 
concentration at the inlet face, outlet pressure, length of the rock 
sample, and random fluctuations in the initial porosity, respectively. 
This fluctuation causes the initiation of wormholes.  

Obviously, Danckwert’s condition is established at the inlet of the 
simulation domain, while the Dirichlet boundary condition is 
established at the outlet. This is due to the fact that at high Da numbers, 
the injected acid immediately reacts with the calcite minerals, leading to 
upstream gradients at the inlet face. Accordingly, acid dispersion 
becomes significant and the traditional Dirichlet boundary condition, 
proposed by Panga et al. [16], becomes invalid [20]. Also, no-flow 
condition is considered at the transverse boundaries. 

2.2. Dimensionless model equations 

The model equations are made dimensionless using dimensionless 
variables below [11]: 
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Here, 𝐷𝑎 is the Damköhler number, 𝜙2 is the Thiele modulus at pore 
scale, 𝛷2 is the Thiele modulus at macro scale, 𝑁𝑎𝑐 shows the acid 
capacity number, 𝜂 shows the scale length ratio, and 𝑃𝑒shows the Peclet 
number. 

Accordingly, the dimensionless form of the Darcy-scale mode 
equations becomes: 
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Moreover, the dimensionless boundary and initial conditions are: 
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2.3. Fully implicit scheme 

The fully implicit numerical scheme requires the system of nonlinear 
equations to be solved simultaneously. Accordingly, the 2D 
discretization of the Darcy-scale equations in the cartesian coordinates 
results in, 
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in which 𝑖 = 1,2. . . , 𝑁𝑥 and 𝑗 = 1,2. . . , 𝑁𝑦 ; Nx and Ny are the number 
of gridblocks in the x and y directions, respectively. All the variables are 
assumed to be at time step 𝑡𝐷 + Δ𝑡𝐷 . Also, a 2D staggered grid is 
considered (Fig. 1) wherein pressures are defined at the grid centers 
while the velocities are defined at the grid boundaries. 

In the staggered grid technique, the scalar variables (porosity, 
pressure, and concentration) are defined at the grid centers, while the 
velocities are stored at the grid faces. On the contrary, all variables are 
located at the same points in the collocated grid techniques. The 
staggered grid technique is mainly used to avoid odd-even decoupling 
between the scalar and the vector variables. Odd-even decoupling, also 
known as checkerboard pattern, odd–even grid oscillation, grid-scale 
oscillation, and zig-zag form, is a kind of discretization error that 
frequently happens in the collocated grid techniques [25]. Accordingly, 
the acquired solution alternatively fluctuates along the gridblocks. This 
fluctuation deteriorates the accuracy and instability of the numerical 
solution [26].  

In reactive flow through porous media, the acid reacts with the rock 
matrix and dissolves the rock minerals as it is transported through the 
domain. Accordingly, structural properties of the porous medium 
change continuously, and wormholes are propagated throughout the 
carbonate rock. Therefore, the acid transport and its reaction are 
inherently coupled here. Also, the fully implicit scheme requires the 
system of nonlinear equations to be solved simultaneously. Thus, a 
number of five coupled partial differential equations should be 
discretized and solved simultaneously to compute the evolution of 
porosity [17, 20]. Consequently, the fully implicit scheme is highly 
complicated and challenging. Moreover, an extremely fine mesh 
structure is required to well capture the acid front. For example, Sahu et 
al. [28] considered 42,000 mesh grids for a 2D rock sample of size 5 cm 
× 2 cm. Actually, an order of Φ´ number of grids is at least required in 
the direction of acid injection. Accordingly, for a large rock sample or 
fast reactive fronts, a large number of gridblocks are required which 
poses a high computational burden. 

2.4. Method of lines 

The basic idea in this study is to solve the system of coupled 
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Fig. 1. The schematic of 2D staggered grid. 

 

differential equations using the MOL. In the MOL, only the spatial 
variables of the governing partial differential equations are discretized 
and the time variable remains continuous. Consequently, the partial 
differential equations are transformed into ordinary ones which are then 
numerically solved by high-order Runge-Kutta methods. Compared to 
the fully implicit scheme, the MOL is less complicated and more 
straightforward. Also, the computational cost is more affordable. 

Accordingly, the 1D discretization of the Darcy-scale equations 
simplifies to (time index of the variables are removed for simplicity): 
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There are three variables (𝑢𝐷, 𝜑, 𝑐𝑓𝐷) with three equations. Therefore, 
pressure variable is removed and fluid velocity is directly computed 
from the continuity equation. Consequently, Eqs. 41 and 43 are 
simultaneously used to calculate both acid concentration and porosity 
evolution.  

Similarly, the 2D discretization of the Darcy-scale equations by the 
MOL approach becomes: 
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Here, there are five variables (𝑝𝐷 , 𝑢𝐷, 𝑣𝐷, 𝜑, 𝑐𝑓𝐷) with five equations. 
Initially, 𝑝𝐷, 𝑢𝐷  and 𝑣𝐷 are calculated from Eqs. Afterwards, Eqs. 46 
and 47 are simultaneously used to only calculate the acid concentration 
and porosity evolution. 

2.4.1. Runge-Kutta method 

Runge–Kutta (RK) methods are efficient, long-established, and 
popular techniques for numerical analyzing initial-value problems in 
differential equations [21]. The RK technique establishes high order 
precise solutions by the function itself, and requires none of the function 
derivatives. In this study, the sixth-order RK method is used to compute 
the acid concentration and porosity evolution in the 1D and 2D models 
[27], 

( )

( )1
1 3 4 5 6

if ,

then: 7 32 12 32 7
90

n n

t
t k k k k k+

 =  


 = + + + + +

                      (49) 

where, 
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2.5. Analytical solution 

An analytical solution of the dissolution front is also possible if, 1) the 
rock sample is 1D, 2) the dispersion coefficient (De) and mass transfer 
coefficient (kc) are assumed to be independent of the flow velocity, and 
3) initial porosity is assumed to be homogeneous throughout the 
domain. The derivation of the 1D analytical solution is thoroughly 
described by Maheshwari et al. [11]. Actually, analytical solution is 
considered to verify the proposed approach in this study. 

3. Model Description 

3.1. Case 1: 1D core model 

First, the MOL approach proposed in this study is compared against 
the analytical solution by Maheshwari et al. [11]. The associated 
parameters are listed in Table 1. Also, the initial porosity of the domain 
is homogeneous. 

3.2. Case 2: 2D core model 

After the verification of the MOL approach, it will be utilized to 
investigate the effect of multiple transport and reaction phenomena on 
the matrix acidizing in carbonate formations. The initial porosity field is 
uniformly distributed with an average value of 0.2. Again, the associated 
parameters are listed in Table 1. 

Table 1. 1D and 2D model parameters. 

Variable Unit 1D model 2D model 

a0 [1/cm] 50 50 

b [-] 0.7 0.7 

C0 [mol/L] 4.2 4.2 

Dm [cm2/s] 3.6×10-5 3.6×10-5 

H [in] - 1.5 

k0 [mD] 10 5 

ks [cm/s] 1.4×10-4 1.4×10-4 

L [in] 5 4 

ro [µm] 5 5 

Sh∞ [-] 3 3 

u0 [cm/s] 2×10-4 1×10-3 

αos [-] 0.5 0.5 

α [g/mol] 50 50 

ꞵ [-] 1 2 

γ [-] 1 1 

λx [-] 0.5 0.5 

λy [-] 0.1 0.1 

µ [cP] 1 1 

ρs [g/cm3] 2.71 2.71 

ν [cm2/s] 0.01 0.01 

ρ [g/cm3] 1 1 

φ0 [-] 0.2 0.2 

Δφ0 [-] 0 0.08 

4. Results and Discussions 

4.1. Case 1: 1D core model 

Fig. 2 compares between the MOL results and the analytical solution 
after 28 pore volumes of the acid injection. The injected pore volume is 
calculated from: 

 

PVINJ injQ t
PV


=                                                                                                 (51) 
 

where 𝑄𝑖𝑛𝑗 shows the injected acid flowrate and 𝑃𝑉 shows the pore 
volume of rock sample.  

The blue line illustrates the results from the analytical solution, while 
the red squares represent the dissolution front from the MOL. The plots 
on the left are porosity versus xD, and those on the right show cfD versus 
xD for different values of Da. A piston-like displacement is observed, and 
there is a close agreement between the MOL results and the analytical 
solution which verifies the successful implementation of the MOL 
method. Also, the dissolution front becomes sharper as the value of Da 
increases. 

4.2. Case 2: 2D core model 

A uniform porosity field with an average of 0.2 is distributed 
throughout the domain. A coarse grid cannot adequately capture the 
acid front and wormhole propagation. Grid size testing is then utilized 
to determine the minimum number of required gridblocks. Therefore, 
the accuracy of the numerical solution was examined at different grid 
sizes by comparing the pore volumes of the injected acid. Accordingly, 
a number of 250 × 85 grids is considered for the 2D core model. 

Fig. 3 represents the porosity maps at different times for hydrochloric 
acid 15%. Expectedly, the entrance face of rock first reacts with the 
injected acid, initiating tiny channels. Afterwards, the acid reacts with 
the calcite minerals and expands the channels. Specifically, one of the 
channels grows rapidly and becomes the dominant flow for the injected 
acid. Accordingly, the injected acid goes mainly through that principal 
channel due to its lower resistance to flow. The width and the size of the 
channels are increased as more acid is injected through the rock sample. 
The simulation process is terminated whenever the breakthrough of 
acid is observed at the right face of the rock. Similarly, acid 
concentration maps at different times are depicted in Fig. 4. 

The breakthrough time is considered the time at which overall 
permeability is increased by a factor of 100, or overall pressure drop is 
decreased by the same factor [11, 28]. Thereafter, the injected pore 
volume to breakthrough (PVTB) is computed from Eq.51. 

In carbonate matrix acidizing, the PVTB is an important indicator of 
assessing acidizing performance. Expectedly, an ideal acidizing scenario 
contains the minimum volume of injected acid with maximum 
wormholes lengths. Fig. 5 illustrates the overall permeability and 
pressure drop along the core versus time. First, the overall permeability 
of the core gradually increases, indicating the dissolution of rock 
minerals by the injected acid. Afterwards, the exponential promotion in 
rock permeability reveals the breakthrough of acid at the outlet face. 
Here, a conductive channel is created across the core, connecting the 
inlet face to the outlet one. At the same time, the pressure drop across 
the core significantly decreases, as further depicted in Fig. 6. 

The injection rate of acid affects the dissolution pattern and 
morphology of the wormholes, as illustrated in Fig. 7 and Fig. 8. Actually, 
the rate of acid injection affects the Damköhler and Peclet numbers. The 
Damköhler number shows the ratio of convective to reaction times. 
Accordingly, low values of Da indicates high rates of acid injection and 
low reactivity. Specifically, at Da = 1, the transport and reaction 
phenomena are balanced and the rock porosity increases but no channel 
is created. Actually, the residence time of acid is less than the required 
reaction time, resulting in incomplete dissolution of carbonate rock 
minerals. Therefore, the injected acid reaches almost all the points of the 
rock sample, resulting in a uniform increase in the rock porosity. This 
pattern is called a uniform dissolution pattern, meaning that acid 
convection dominates the dispersion. On the contrary, high values of Da 
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indicates low rates of acid injection and high reactivity. At Da = 500, 
complete dissolution of rock minerals is achieved due to the large 
soaking time of the acid. In other words, reactive solution is mostly used 
up in a thin region around the acid front. This is referred to as the face 
dissolution pattern, meaning that the dispersion of acid dominates its 
convection, and a single conical wormhole is observed. Accordingly, the 
amount of acid required to make a conductive path across the core 
approaches that of the completely dissolving the rock sample. However, 
at intermediate injection rates, there is a competition between 
dispersion, convection, and reaction. Accordingly, acid wormholes are  
 

created meaning that only some parts of the rock minerals are dissolved 
by the acid which results in fewer volumes of required acid to increase 
the rock permeability. 
Compared to the fully implicit scheme, such as the study of Sahu et al. 
[28], the MOL is less complicated and more straightforward. Also, the 
computational cost is more affordable. According to Sahu et al. [28], 
simulation times for a 2D rock sample of size 5 cm × 2 cm on a 
workstation ranged between 0.5 to 24 hours. In the current study, 
however, all the simulation times were below one hour on a desktop 
computer. 

 

Fig. 2. Comparison between the MOL and analytical solutions after 28 pore volumes of the acid injection. 
   

 
Fig. 3. The porosity maps at different times. 

 

5. Conclusions 

In this study, the MOL approach was utilized to characterize the 
dissolution of rock minerals and wormhole propagation in carbonate 
rocks using the Darcy scale model. Accordingly, only the spatial 
variables of the governing partial differential equations were discretized 
and the time variable remained continuous. Consequently, the partial 
differential equations become ordinary ones and were then numerically 
solved by the sixth-order RK method. 

The MOL approach was first verified against the analytical solution 

in a 1D core model. Thereafter, it was utilized to investigate the effect of 
multiple transport and reaction phenomena on the matrix acidizing in 
carbonate formations. Furthermore, the staggered grid technique was 
employed to accurately predict wormhole patterns during different 
injection regimes. Compared to the fully implicit scheme, the MOL is 
less complicated and more straightforward. Also, the computational 
burden is inexpensive. According to Sahu et al. [28], simulation times 
for a 2D rock sample of size 5 cm × 2 cm on a workstation ranged 
between 0.5 to 24 hours. In the current work, however, all the simulation 
times for a 2D rock sample of size 4 in × 1.5 in were below one hour on 
a desktop computer. 

 

 
Fig. 4. The acid concentration maps at different times. 
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Fig. 5. Overall permeability and pressure drop along the core versus time. 

Fig. 6. The pressure maps at two different times. 

Furthermore, upscaling of the MOL approach to the wellbore scale, 
and considering thermal effects and multi-layer reservoirs are regarded 
as the future directions for the current study. In addition, multiphase 
version of the Darcy’s law should be implemented to consider the 
impact of CO2 evolution. 

Fig. 7. The effect of Da on morphology of the wormholes and porosity maps. 

Fig. 8. The effect of Da on morphology of the wormholes and concentration maps. 
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