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ABSTRACT 

In the realm of urban transportation management, identifying critical locations within transportation 

networks is paramount for efficient urban planning, crisis management, and infrastructure development. 

This study investigates the effectiveness of the Network Kernel Density Estimation (Net-KDE) method in 

identifying these critical locations. The Net-KDE method is chosen for its inherent capacity to consider 

spatial patterns and path length between sample and estimation points, making it well-suited for capturing 

the complexities of urban transportation networks. The approach is experimented with a series of control 

maps applied to Tehran city. Overall, Net-KDE provides valuable and agreeable outputs that show its 

potential. The findings underscore the crucial role of scenario customization in enhancing the method's 

accuracy. Remarkably, featuring adaptive bandwidth and strategic sampling emerges as the most effective 

in identifying critical locations. This research has a broader impact on crisis responders, urban developers, 

and city planners in addition to improving our knowledge of urban network dynamics. 
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1. Introduction 

The foundation of everyday life in our globalized society 

is provided by vital infrastructure systems for energy, 

telecommunication, and transportation. Transportation 

networks in urban areas need to be resilient because any 

disruption in one of these systems could have far-reaching 

effects (Hosseini & Pishvaee, 2022). Disruptions, whether 

intentional or caused by natural disasters, can have a big 

effect on everyday life, especially in our fast-paced urban 

settings (Hosseini & Pishvaee, 2021). Thus, it is crucial to 

pinpoint the exact locations of the transport network's hubs 

during disruptive events (Martinez-Pastor, 2018; Martinez-

Pastor et al., 2022). 

The structural aspects of transport networks have been the 

primary focus of previous research on the identification of 

critical points (Bertolini & Dijst, 2003; Camagni & Salone, 

1993). Various indicators that specifically address the 

physical layout of road networks from a structural 

perspective have been proposed and examined in some 

studies (Duan & Lu, 2013; Freeman, 2002; Porta et al., 

2006). On the other hand, researchers have emphasized the 

crucial connection between the design of the transport 

network and urban functionality, emphasizing how 

important these connections are in identifying critical 

locations. Interestingly, in this context, the travel 

distribution pattern has become a useful indicator (Zhou et 

al., 2015). Numerous approaches currently in use in the 

literature require gathering a great deal of data and 

measuring several indicators in order to identify and assess 

the results (Martinez-Pastor et al., 2022). These techniques 

are frequently used for entire urban transport systems, 
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which places a significant computational and time burden, 

especially when working with dynamic networks. In an 

attempt to identify functionally critical locations, Zhou et 

al. (2015) employed the kernel density estimation method 

for spatial point pattern analysis. Taking into consideration 

both structural characteristics and the amount of traffic 

flowing through these intersections during the sampling 

process, they employed a restricted set of sample points 

collected from intersections. Their approach was based on 

the Ordinary KDE method, which is intended for two-

dimensional spaces, even though their study yielded 

insightful information. Recognizing limitations in the 

ordinary KDE algorithm within a one-dimensional road 

network, two key issues materialize: 1) Estimation points in 

a two-dimensional space may lack specific road network 

alignment, affecting the accordance of identified critical 

locations, a concern addressed in this study. 2) The use of 

Euclidean distance in point-to-point calculations, as in the 

ordinary KDE algorithm, is questioned, advocating for the 

adoption of network distance (path length) for more 

practical results. 

To overcome these limitations, we implement a modified 

substitute identified as Network Kernel Density Estimation 

(Net-KDE) (Xie & Yan, 2008). Net-KDE places estimation 

points precisely on the road network, often as lixel center 

points. It utilizes network distance calculations instead of 

Euclidean distance, following Xie and Yan (2008), ensuring 

accurate alignment with the road network. This approach, 

unlike typical studies, extends beyond proximity-based 

density calculations, enhancing spatial accuracy in critical 

location identification. 

Net-KDE stands out in its ability to provide accurate 

spatial results by uniquely considering the specific 

characteristics of transportation networks. This accuracy is 

underpinned by the algorithm's incorporation of the 

network's structural features, such as road structures, in the 

density estimation process. Unlike traditional methods, Net-

KDE ensures a more meticulous representation of the 

transport system, resulting in spatial outcomes that closely 

align with the actual one-dimensional network (McSwiggan 

et al., 2017). 

For emergency response and the planning of urban 

transport networks, this precision is especially useful. One 

major advantage of Net-KDE is its efficiency, which lowers 

the computational burden when compared to conventional 

techniques. Because it doesn't require a lot of data or 

various indicators, it's vital to managing dynamic, 

constantly shifting transportation networks. We streamline 

the analysis procedure by utilizing Net-KDE for the 

analysis of spatial point patterns. By removing the need for 

complicated additional factors and simplifying the process 

of identifying critical locations, this method enhances 

accessibility and user-friendliness. In the end, Net-KDE is 

an acceptable alternative that can be used in actual urban 

transportation environments.  

Within the urban context of Tehran, the Net-KDE 

methodology was used in a real-world case study. In 

Tehran's transport network, the critical locations were 

identified and then compared to reference thematic city 

maps. The term 'reference city maps' signifies thematic 

maps of Tehran, including master plans and grade 

separation data from transportation studies. These maps act 

as controls for comparing critical locations identified by 

Net-KDE. To validate the accuracy of Net-KDE in this 

complex urban setting, spatial point pattern similarity and 

proximity were evaluated. The knowledge obtained from 

this empirical approach prepares the way for improving 

urban management, especially with regard to the 

dependability and safety of the transportation network. 

The remainder of the paper is structured as follows. The 

next section briefly reviews related work while section 3 

develops the principles behind the NET- KDE 

methodology. The study area is presented in section 4 while 

the experimental results are reported in sections 5 and 6. 

Finally, section 7 discusses the findings and section 8 draws 

conclusions and outlines further work. 

2. The Related Work 

Critical location identification in transportation networks 

has traditionally been based on graph theory, which 

frequently extends structural metrics such as node degree, 

clustering coefficient, cut vertex, and centrality measures to 

each network element (Demšar et al., 2008; Freeman, 2002; 

Fulkerson & Harding, 1977; Psaltoglou & Calle, 2018). 

Alternatively, studies have examined the consequences 

when certain network links are eliminated (Jenelius, 2009; 

Rodríguez-Núñez & García-Palomares, 2014). In the 

context of large and dynamic urban transportation 

networks, these methods are particularly laborious to 

calculate, even though they produce insightful results. To 

predict congestion and its effect on traffic performance, 

data-driven methods have been used, such as traffic flow 

prediction (Corley & David, 1982; Nguyen et al., 2016). 

However, in order to create accurate models, these methods 

require large databases that are updated often. 

Zhou et al. (2015) presented a spatial point pattern 

analysis as an alternative method for locating critical 

locations throughout the road network. They restricted the 

subject matter of the analysis to a restricted amount of 

sample points by selecting components of the urban 

transport network according to functional and structural 

metrics. Then, using the Kernel Density Estimation (KDE) 

technique, critical locations were determined. This strategy 

benefited from the advantages of previous methods while 

addressing their shortcomings. The application of the KDE 

method as a spatial point pattern analysis produced an 

important shift. For point events in geographic space, KDE 

computes a continuous probability density surface 
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(Baddeley et al., 2015; Bernardo et al., 2015; Gatrell et al., 

1996; Zhang, 2022). Its uses extend to a wide range of 

fields, including disaster preparedness (Krisp et al., 2005), 

crime analysis (Kalinic & Krisp, 2018; Levine, 2017), road 

accident assessment (Anderson, 2009), and wildlife-vehicle 

collision analysis (Borrajo et al., 2021). The problem, 

though, is that critical locations in urban transport networks 

are inevitably associated with road networks, indicating the 

necessity for a spatial analysis that considers the road 

network layout. A variety of events, organized as points 

along a network of lines to create distinct spatial patterns, 

are utilized in many applications. These events include 

traffic accidents, bicycle incidents, vehicle thefts, street 

crimes, roadside trees, and invasive species (Baddeley et 

al., 2021). These locations in such networks are inherently 

tied to road networks, necessitating a spatial analysis that 

fully considers the road network layout. The inherent 

limitation of KDE in capturing the intricacies of road 

networks prompts the need for more tailored approaches, to 

enhance the accuracy in location identification. 

Spatial statistics and Geospatial Information Systems 

(GIS) communities have been concentrating more and 

further on studying point patterns throughout linear 

networks over the years (Baddeley et al., 2000; Briz-Redón 

et al., 2019; McSwiggan et al., 2020; Okabe & Yamada, 

2001). The Net-KDE approach (McSwiggan et al., 2017; 

Okabe et al., 2009; Xie & Yan, 2008) has been proposed as 

a solution to these limitations, enabling effective kernel 

estimation on one-dimensional networks. The 

aforementioned method has been implemented in diverse 

settings, such as identifying areas of high risk in 

transportation networks (Briz-Redón et al., 2019) and 

calculating the relative risk in spatial point patterns 

(McSwiggan et al., 2020). In the area of critical location 

identification within transportation road networks, the 

adoption of the Net-KDE approach represents a noteworthy 

advancement.  

This particular challenge can be effectively addressed by 

it because of its effectiveness, accuracy, and flexibility in 

one-dimensional networks. 

With Net-KDE's benefits, we can more effectively 

manage urban areas and ensure the reliability and safety of 

these vital transport networks by utilizing Net-KDE's 

potential for accurate network-based identification of 

critical locations. 

3. The Proposed Method 

This study's methodology consists of multiple discrete 

steps. First, a graph representing the urban transportation 

network is constructed, with road segments acting as edges 

and intersections serving as nodes. These graph nodes serve 

as the basis for the strategic placement of sample points. 

The network is then divided into a continuous grid, and 

estimation points are chosen from the centers of these cell 

types. The path length between the sample points and the 

estimation points needs to be determined, in addition to the 

spatial bandwidth. After implementing these fundamental 

procedures in place, estimation points based on the network 

kernel function are used to perform spatial density 

estimation, subsequently, the methodology's last component 

is to identify critical locations of the urban transport 

network based on the estimated densities. The workflow of 

the study is depicted in Figure 1. 

 
Figure 1. Research Workflow 

3.1 Construction of the Transportation Network Graph 

Graph theory principles serve as the foundation for the 

creation of the transportation network graph (Gould, 2012).  

A road network is represented in this paper representation 

as  , where the set of nodes, or intersections 

within the network, is represented by 

and the set of edges, or road 

segments connecting these nodes, is represented by

. 

It is important to emphasize that sample points are 

obtained by choosing samples from the graph's nodes. In 

the selection of sample points, a systematic approach was 

employed by filtering distinct intersections in Tehran, with 

priority given to those with high public transportation 

volume. In order to estimate the probability density function 

of a random variable, these sample points function as 

observed data points. 
 

3.2 Definition of Lixels1 and Network Construction 

Every segment in the urban transport network serves as a 

link between two nearby road intersections in the reference 

network to form a segment-based graph. Each linear lixel 

unit, which has a specified network length, is created by 

further dividing these segments. The creation of evenly 

distributed points throughout the network, which are 

                                                           
1 A fundamental linear unit corresponds to a cell in a 2D raster grid. 
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necessary for density estimation, is made considerably by 

this division (Xie & Yan, 2008).  

The central points of each lixel, denoted by numbered 

grey circles in Figure 2, are regarded as estimation points. 

An estimation point is a spot where the probability density 

function is calculated by combining the contributions of 

kernel functions placed at each sample point. 

 
Figure 2. Determining estimation points based on lixels 

network construction 

The adoption of lixels in the analysis of urban transport 

networks offers specific advantages over traditional 

network vertices. Unlike traditional vertices, lixels break 

down the network into smaller, interconnected cellular 

units, providing a more refined representation. This 

approach enables granular and detailed analysis of critical 

locations, capturing slight spatial patterns within the 

transport network. Lixels enhance spatial resolution by 

acting as cellular units, leading to increased precision in 

identifying critical locations. Additionally, they enhance the 

representation of the network structure by considering 

edges and adopting a cellular and point-based network 

structure, especially in areas with diverse road layouts. 

Overall, lixel-based analysis allows for a more 

comprehensive capture of both the density and spatial 

distribution of critical locations, providing a subtle insight 

of the transportation network (McSwiggan et al., 2017; Xie 

& Yan, 2008). 
 

3.3 Network Kernel Density Estimation 

In the Network Kernel Density Estimation process, 

estimation points undergo systematic processing based on a 

predefined spatial bandwidth. Utilizing a network kernel 

function, the spatial density assigned to each estimation 

point in relation to the sample points is measured. The 

proximity of data points within the network's spatial 

configuration determines how sample points affect the 

density estimation of estimation points. 

The core equations (1-2) express this connection 

(McSwiggan et al., 2017): 

 

                 (1) 

    (2) 

 

Where, K represents the kernel function, 𝑥𝑖  is the 

estimation point, 𝑥𝑗  is a sample point, ℎ𝑆𝑖
 is the adaptive 

bandwidth (Abramson, 1982), and n is the number of 

sample points. The kernel function calculation is based on 

Equation 3-5: 

 

                 (3) 

 

                             (4) 

 

                                      (5) 

 

In Equation 3.  𝜋 = (𝑣1. 𝑣2. … . 𝑣𝑝), where 𝑣1. 𝑣2 … . 𝑣𝑝 are 

vertices, and 𝜑ℎ𝑆𝑖
(𝑙(𝜋))  is the probability density for a 

total displacement 𝑙(𝜋), the summation accounts for 

different possible paths in the network, and 𝑎(𝜋) is a 

combinatorial weight for the path and is calculated based on 

Equation 4, in which 𝑣𝑖 refers to a node in the path 𝜋, and 

𝛿𝑖 is defined for 1<i<𝑃 − 1, by 𝛿𝑖 = 1, if the path goes 

backward at the node 𝑣𝑖, while 𝛿1 = 𝛿𝑝−1 = 0. Equation 5 

incorporates key variables: 𝜎0 representing the global 

bandwidth; pre estimated value 𝑓�̃�(𝑥𝑖)
, calculated using a 

rule-of-thumb bandwidth  based on 

(Scott, 2015), where s̅ signifies the root sum of squares of 

the sample standard deviation. Additionally, 𝑎𝑖 is 

introduced, representing the initial bandwidth computed as

, with n denoting the sample size.  

By capturing local density variations, the spatial density 

makes sure that the estimation points are influenced by 

nearby sample points on the network. See (McSwiggan et 

al., 2017) for a more thorough explanation and derivations 

of these equations. 
 

4. Study Area and Data 

The study area incorporates Tehran, the capital city of 

Iran, which has a population of about 10 million people 

(Figure 3). Natural disasters like earthquakes and floods are 

prevalent in Tehran, and dealing with the city's 

overcrowded transit system can make crisis management 

more difficult. Consequently, locating critical locations on 

the road network is the main goal of this investigation.  
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Figure 3. The study area, Tehran 

The data utilized in this study, including Tehran 

Municipality's public bus transport data for the year 2020–

2021 and road network datasets, were acquired in GIS 

format. The scale of the data is at the city level, with a 

specific emphasis on the urban transport network of Tehran. 

In this study, Tehran's bus transport data was employed 

due to its significance in representing urban traffic patterns, 

a crucial factor in the sampling process, density estimation 

using Net-KDE, and identifying critical locations within the 

urban transport network. While the data may not cover the 

entire road network, it serves as a resource to gain an 

understanding of urban traffic dynamics and contribute to 

the comprehensive analysis of critical locations. The use of 

bus transit data aligns with the available resources for 

studying urban movement in Tehran and helps in 

understanding the complexities of the transportation 

network. 
 

5. Implementation and Results 

This section investigates the data's quantitative analysis 

and provides significant insights from this research, 

emphasizing the significance of the Net-KDE 

methodology's identification of critical locations in the 

urban transport network. 
 

5.1 Sampling Process and Selection of Estimation Points 

Strategically chosen samples and estimation points play a 

crucial role in representing Tehran's urban transport system 

within the comprehensive network. The selection criteria 

for intersections were based on distinct characteristics, with 

priority given to those with more than four-way connections 

and high-traffic-volume public transport intersections. This 

ensured a focused and organized sampling process. 

In order to ensure a focused representation, high-traffic 

intersections are prioritized in sampling to capture 

important nodes in Tehran's urban transport system. 

Insights into the dynamics and performance, particularly 

with regarding public transportation operations and urban 

mobility, can be obtained from this strategic selection of 

significant locations for thorough network analysis. 

Figure 4 (a, b) displays heat maps illustrating the 

distribution of sample points in both random and strategic 

sampling manners. The heat maps were created in ArcMap, 

using GIS software. The strategic sampling map illustrates 

clustered patterns by emphasizing prioritized locations with 

high public transportation traffic, while the random 

sampling map shows the distribution of sample points. The 

present analysis contributes to the comprehension of spatial 

distribution across different sampling scenarios by 

providing insights into the potential of strategic sampling to 

capture concentrated areas. 
 

5.2. Critical Locations  

To evaluate and contrast the effectiveness of the 

approaches employed in this study, three distinct situations 

have been developed. These scenarios' primary objective is 

to evaluate the Net-KDE method's effectiveness with regard 

to various sampling strategies and selecting between fixed 

and adaptive spatial bandwidth.This study critically 

evaluates the Net-KDE method's efficacy in addressing 

urban challenges. The impact of bandwidth on smoothness 

and sensitivity to variations in the data is examined, 

resulting in a crucial parameter in kernel density estimation. 

The scenarios provide insights into how Net-KDE adapts 

depending on the bandwidth settings, ensuring a detailed 

assessment of its efficacy in capturing local variations 

despite overfitting. 

The Net-KDE method is used in the first scenario, but its 

bandwidth is fixed. The Net-KDE method is used in the 

next two scenarios with both fixed and adaptive spatial 

bandwidth selection, along with strategic sampling. This 

investigation makes it possible to evaluate this approach's 

effectiveness in solving the given urban issue. A 

comprehensive overview of the procedure by which each 

scenario was implemented is provided in the subsequent 

section. 
 
5.2.1 The First Scenario 

In the first scenario, the Net-KDE method (Equation 2) 

was utilized for the identification of critical locations. The 

sampling approach included the random selection of 5000 

sample points, to ensure a comprehensive coverage of the 

urban transport network. The nearly uniform distribution of 

these sample points across the study area is illustrated in 

Figure 4a. 

To conduct density estimation effectively, a fixed 

bandwidth was opted for in this scenario. The selection of a 

fixed bandwidth was motivated by the relatively uniform 

distribution of sample points, as depicted in Figure 4a. 

Utilizing a fixed bandwidth (h) aimed to streamline 

computational processes and eliminate the potential 

computational overhead associated with an adaptive 

bandwidth. 
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(a) 

 
(b) 

Figure 4. Heat map of Samples Spatial Distribution (a) 

Random Sampling, (b) Strategic Sampling 

The calculation of the suitable fixed bandwidth (h) 

involved employing Equation 6 (Scott, 2015). 

                        (6) 

Here, �̅� represents the root sum of squares of the sample 

standard deviations.  The resulting fixed bandwidth was 

determined to be 1.3 km. This choice aimed to strike a 

balance between capturing local variations in density and 

avoiding overfitting, thereby contributing to the 

effectiveness of the Net-KDE method in identifying critical 

locations within the urban transport network. 

5.2.2 The Second Scenario 

In the second scenario, a strategic sampling approach was 

implemented, leading to a reduced sample size of 1,411 

points. This deliberate sampling strategy aims to focus on 

specific areas of interest within the urban transport network. 

As depicted in Figure 4b, the sample points display varied 

densities, deviating from the uniform distribution observed 

in the first scenario. To facilitate density estimation 

effectively, a fixed bandwidth is determined using Equation 

6, resulting in a calculated bandwidth of 2.9 km. This fixed 

bandwidth is applied to streamline computational processes 

and eliminate potential computational overhead associated 

with an adaptive bandwidth, similar to the rationale 

employed in the first scenario. 
 

5.2.3 The Third Scenario 

In the third scenario, due to the non-uniform distribution 

resulting from strategic sampling, a fixed bandwidth is 

deemed suboptimal. Unlike the first two scenarios, the third 

scenario adopts an adaptive bandwidth approach. The 

adaptive bandwidth is determined using Equation 5, 

yielding values ranging from 0.81 km to 3.6 km. This 

variation in bandwidth aims to dynamically adjust to the 

spatial characteristics of the sample points, providing a 

more nuanced density estimation. The third scenario, akin 

to the second, seeks to capture the complexity of the urban 

transport network. The outcomes of these three scenarios 

are presented in Figure 5. 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Primary Critical locations; (a) the first scenario, 

(b) the second scenario, (c) the third scenario 

6. Evaluation 

Performance evaluation is crucial to ensuring the 

method's reliability. In order to provide comparable ground 

truth data, our assessment includes the utilization of 

additional data from transportation and traffic research in 

addition to multiple thematic maps of Tehran, including 

three master plan reference maps. Several aspects of the 

urban environment are depicted on these reference maps: 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Control Maps (a) Urban center, (b) Dense 

population, (c) Mixed zones, (d) Grade separations 

The first reference map (Figure 6(a)) focuses on urban 

centers, including places of commerce, recreation, culture, 

and landmarks. 

Blocks with over 3,000 inhabitants are depicted in the 

second reference map (Figure 6(b)). 

Mixed-use areas are marked on the third map (Figure 

6(c)). 

The fourth map shows grade separation locations with 

significant movement flows and a variety of land uses based 

on transportation reference data (Figure 6(d)). 

These reference maps operate as controls for determining 

the critical locations determined by the various scenarios. 

In order to establish a correspondence between the 

scenarios and the mixed zones and grade separation control 

maps, we have employed the K-Means clustering approach.  

The optimal number of clusters is determined using the 

Calinski-Harabasz (CH) index (Caliński & Harabasz, 

1974), which measures an object's similarity to its cluster 

compared to others, based on distance. A higher CH index 

indicates denser and more independent clusters. As shown 

in Figure 7, we determine the number of clusters for these 

two control maps as 21 and 28, respectively. Ultimately, 

these cluster centers are considered control locations.  

 
Figure 7. The Calinski-Harabasz score for K-Means 

clustering of Mixed Zones map and Grade separation map 

The scenarios produce different results, as shown in 

Figure 5, which makes cross-comparison a challenging task. 

In order to overcome this difficulty, we utilize the K-Means 

clustering technique, which divides the average number of 

all control map points into 32 clusters, thereby grouping 

critical points from various scenarios. These cluster centers 

are identified as critical locations since they indicate the 

average position of the cluster members. Figure 8 depicts 

the critical locations that each scenario's post-K-Means 

clustering revealed. 

6.1. Spatial Similarity Evaluation 

Spatial point pattern analysis is employed to assess the 

similarity between the scenarios and control maps by 

examining the spatial distribution of points 

(Vidanapathirana et al., 2022). The observed data in this 

study, represented by the critical locations identified in each 

scenario, are compared to the spatial patterns of control 

points on each control map. This comparison utilizes 

Ripley's K-Function (Equation7) and the Average Nearest 

Neighbor (ANN) Ratio (Equation8) (Clark & Evans, 1954). 
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(a) 

 
(b) 

 
(c) 

Figure 8. Final Critical Locations (a) first scenario, (b) 

second scenario, (c) third scenario  

                     (7) 

Where 𝐾(𝑟) is the K-Function at distance r, n is the 

number of sample points, 𝑥𝑖 . 𝑥𝑗   are the coordinates of 

points i, j, and 𝐼(‖𝑥𝑖 −  𝑥𝑗‖ ≤ 𝑟) is an indicator function 

that equals 1 if the distance between points i, j is less than 

or equal to  𝑟 , and 0 otherwise. 

 

                     (8) 

 

The observed mean distance is calculated based on the 

actual distances between points in the sample data, while 

the expected mean distance is determined based on 

hypothetical random distributions. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. Average distance (Kilometers) of the control 

points (a) Urban Centers, (b) Mixed zones, (c) Grade 

separations, (d) Dens population blocks from the K nearest 

critical locations 

Ripley K-Function's significantly higher values indicate 

spatial clustering, whereas its lower values represent spatial 

dispersion. 
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By taking into account the average distance between all 

nearest neighbors, the ANN Ratio determines the distance 

between each point and its nearest neighbor. When features 

are dispersed, their average distance is greater than what 

would be expected in a hypothetical random distribution, 

but when features are clustered, their average distance is 

less than that of the distribution. 

These indicators are instrumental in our spatial point 

pattern analysis, allowing us to quantitatively assess the 

spatial distribution of critical locations in scenarios 

compared to control maps. They play a crucial role in 

discerning patterns of clustering or dispersion, providing a 

robust foundation for our evaluation of urban transport 

system dynamics. 

Enhanced authenticity in a scenario, concerning the 

spatial structure of the city, is achieved when spatial 

patterns of critical locations become more readily 

comparable with a broader set of control maps. To 

accomplish this, the differences between the two indicators 

for each control map and scenario are estimated by 

calculating the respective indicators. According to Table 1, 

the spatial pattern similarity is indicated by the smallest 

differences, expressed in kilometers, between the indicators 

for two comparable maps. 

The K-nearest neighbor method is applied in terms of 

spatial proximity. The total average distance for each 

control map and scenario is illustrated in Figure 9. In the 

scenario where the critical locations reach the minimum 

average distance to the control map, the control locations 

are spatially adjacent to each other. Using the rule of thumb 

method, K = √ (N/2) is the value of K, where N is the total 

number of critical locations in each case. K is therefore 

selected as 5. 

Table 1 shows the variations for each control map and 

scenario map between the ANN and Ripley's K-Function 

indicators. Across all control maps, the Third Scenario has 

the highest spatial pattern similarity as measured by the K-

Function indicator. 

In this context, it's crucial to understand that lower values 

of the K-Function indicate higher spatial similarity. 

Therefore, when reviewing the K-Function values in Table 

1, lower values represent a stronger resemblance in spatial 

patterns between control maps and scenario maps. 

There are also notable similarities in the spatial patterns 

shown by the First Scenario, especially for densely 

populated blocks. As a result of the decreased similarity in 

spatial patterns, the Second Scenario ranks lowest among 

all the control maps. 

The total average distance in kilometers between the 

control points and the K closest critical locations is shown 

in Figure 8. Particularly when it comes to urban centers, 

mixed zones, and densely populated blocks, the Third 

Scenario performs better in terms of spatial proximity than 

the other scenarios. While the First Scenario performs well 

across a variety of control maps, the Second Scenario falls 

short in capturing the spatial patterns and proximity of the 

control maps. 

In conclusion, the findings highlight how differently the 

three scenarios perform. While the First Scenario achieves 

a good degree of similarity, especially for dense population 

blocks, the Third Scenario exhibits the highest level of 

spatial pattern similarity to control maps. On the other hand, 

the Second Scenario performs poorly in these domains. 
 

7. Discussion 

The results obtained from the three different scenarios in 

our research highlight how crucial it is to use the 

appropriate strategy when applying the Net-KDE method to 

identify critical locations in urban transport networks. 

The majority of sample points in the First Scenario, 

which contains random sampling, are intersections in the 

urban network that have no particular significance. 

Decreased spatial similarity to the control map is the 

outcome of this random sampling strategy along with the 

Net-KDE method's dependence on the path length between 

sample points and estimation points as the main factor for 

density estimation. As random sampling tends to reduce the 

impact of actual critical network locations, it presents 

challenges. The scenario's inability to capture the true 

spatial patterns of critical locations is one instance of these 

challenges. 

In order to improve the accuracy of the results, the 

Second Scenario introduces strategic sampling into the 

Table 1. The difference between the Ripley's K-Function and ANN indicators for each control map and scenario map 

 

Urban Centers Mixed Zones 
Grade Separations 

Dens Population 

Blocks 

 

K-Function ANN K-Function ANN K-Function ANN K-Function ANN 

Scenario1 2.018 1.7699 3.327 2.9061 2.1505 3.2302 0.2373 1.5298 

Scenario2 5.1366 1.9749 6.445 3.111 5.2685 3.4352 2.881 1.2653 

Scenario3 1.7466 1.6969 3.055 2.833 1.8785 3.1572 0.5093 0.9874 
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density estimation procedure. However, using a fixed 

bandwidth in this scenario has drawbacks that restrict its 

ability to adapt flexibly to various urban conditions. When 

compared to the control map, the Second Scenario 

struggles to achieve a sufficient level of spatial pattern 

similarity because of this constraint. Although fixed 

bandwidth makes things more straightforward, it might not 

be the best option when the underlying network is complex. 

The Third Scenario, on the other hand, employs adaptive 

bandwidth and strategic sampling in a different manner. 

This approach outperforms other scenarios in terms of both 

closeness to control locations and similarity in spatial 

patterns, underscoring its advantages. Adaptive bandwidth 

provides density estimation more dynamic and responsive, 

enabling it to capture the spatial variations of critical 

locations. The strategic sampling approach additionally 

ensures that the sample points are selected strategically, 

emphasizing locations of significant importance within the 

urban network. 

These results highlight how important scenario selection 

is to the accuracy and dependability of the Net-KDE 

approach. The effective implementation of the third 

Scenario, which is distinguished by its strategic sampling 

and adaptive bandwidth, emphasizes the significance of a 

methodological approach that is in line with the complexity 

of urban transportation networks. It is clear that not every 

situation can benefit from a global approach, which 

highlights the necessity of a customized strategy based on 

the unique features of the urban network under study. 

8. Conclusion 

In this study, we investigated the effectiveness of the 

Network Kernel Density Estimation (Net-KDE) method in 

identifying critical locations in urban transportation 

networks. Through the assessment of three different 

scenarios, we have demonstrated the significant influence 

that scenario selection possesses on method performance. 

The results highlight the vital need for scenario 

customization to align with the distinct features of urban 

transport networks. There might not be an appropriate 

response, especially when it pertains to intricate urban 

structures. 

This research has broad consequences across various 

domains, including urban development, crisis management, 

and urban planning. It provides valuable insights for 

enhancing decision-making and resource allocation. 

There are numerous directions that require further study 

as we approach the future. To improve the accuracy and 

computational efficiency of the Net-KDE approach, one 

area of interest is the development of more effective 

sampling techniques. Furthermore, to make the approach 

flexible for changing urban environments, we propose 

investigating sophisticated methods for incorporating real-

time data. Lastly, possibilities of improving the accuracy of 

the approach arise from the optimization of the Net-KDE 

parameters and bandwidth selection procedures.  

In conclusion, our study demonstrates the adaptability of 

the Net-KDE method as an effective tool for analyzing 

urban transport networks. This research provides the 

possibility for a deeper comprehension of the spatial 

dynamics influencing critical locations within transport 

networks and facilitates more intelligent urban planning. 
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