تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,086,948 |
تعداد دریافت فایل اصل مقاله | 97,190,135 |
تصحیح خطای پیشبینیهای کوتاهمدت دمای کمینه و بیشینه مدل WRF با استفاده از ماشین تعقیبکننده | ||
فیزیک زمین و فضا | ||
مقاله 12، دوره 50، شماره 2، تیر 1403، صفحه 465-479 اصل مقاله (1.85 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2024.363736.1007552 | ||
نویسندگان | ||
مجتبی شکوهی* ؛ مهدی مصری زاده؛ ابراهیم اسعدی اسکویی | ||
پژوهشگاه هواشناسی و علوم جو، تهران، ایران. | ||
چکیده | ||
برونداد مدلهای پیشبینی عددی وضع هوا دارای خطا است. جهت اصلاح پیشبینیهای کوتاهمدت (24، 48 و 72 ساعته) دمای بیشینه و کمینه مدل WRF، از یک روش یادگیری ماشین به نام ماشین تعقیبکننده استفاده شد. در این روش با سری زمانی 300 روزه از خطای برونداد مدل و با بهکارگیری روش کمترینمربعات طیفی شبه فوریه-سری زمانی، خطای پیشبینیهای مدل WRF برآورد شد. خطای پیشبینیها در دوره 01/11/2020 الی 05/03/2023 برای 560 ایستگاه هواشناسی برآورد شد. یکی از نقاط قوت این روش، استفاده از تنها یک متغیر برای کاهش خطای پیشبینیهای است. عملکرد پیشبینی مدل WRF بسته به مکان و زمان متفاوت است، مثلاً نمره مهارت مدل برای دمای بیشینه در ماه سپتامبر نسبت به سایر ماهها کمتر و در مناطق جنوب غربی زاگرس نسبت به سایر مناطق کمتر است، که بعد از اصلاح این وابستگی حذف، و پیشبینی در تمام مناطق و زمانها عملکرد یکسانی دارد. نتایج نشان داد نمره مهارت، RMSE و شاخص اطمینانپذیری پس از اصلاح خطای مدل به شکل قابلتوجهی بهبود مییابد. پس از اصلاح خطا، نمره مهارت مدل برای پیشبینی دمای بیشینه از 1/0- به 85/0 و برای دمای کمینه از 38/0 به 72/0 میرسد. بهطور متوسط RMSE برای پیشبینی دمای بیشینه از 6 به 2 درجه وبرای دمای کمینه از 5/4 به 3 درجه سلسیوس میرسد. پس از اصلاح خطای مدل، تغییرپذیری نمره مهارت پیشبینیها کاهش یافته و با کاهش مقدار خطای پیشبینیها، قابلیت اطمینانپذیری به پیشبینیهای مدل بهطور متوسط از 60 درصد به 85 درصد میرسد. | ||
کلیدواژهها | ||
خطای طیفی؛ سری زمانی؛ قابلیت اطمینان؛ نمره مهارت؛ یادگیری ماشین | ||
عنوان مقاله [English] | ||
Bias Correction of Short-Term Minimum and Maximum Temperature Forecasts of the WRF Model by Using the Pursuit Machine | ||
نویسندگان [English] | ||
Mojtaba Shokouhi؛ Mehdi Mesrizadeh؛ Ebrahim Asadi Oskouei | ||
Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran. | ||
چکیده [English] | ||
The importance of accurate forecasting in agricultural hydrometeorology is clear. This research is an approach towards the use of a tracking machine with a hidden layer for error prediction at stationary points. The predicted error will be used to modify the model output. One of the strengths of this method is the use of a meteorological variable such as maximum and minimum temperature in applications. A tracking machine with a hidden layer tracks the time series of the short-term prediction error of the maximum and minimum temperature of the model with the kernel of trigonometric functions, which is formulated as follows: It provides an error prediction that will effectively modify the model prediction. This machine is compact in terms of computing. The value of the standard deviation of the statistical population of the maximum temperature during the period was 10 celsius, which shows a significant improvement from the value of 9.5 to 10.01 by the tracking machine. Also, the standard deviation of the minimum temperature was about 8.5 degrees Celsius, which was improved by the machine from 7.7 to 8.4 degrees Celsius. In this research, we use the skill score criterion, whose value will show that the skill score of the model for short-term maximum temperature has grown from a negative value with a leap to more than 0.8, which shows the significant impact of the machine in improving forecasting. The minimum temperature prediction skill score of the model will show an increase in the way of improving the prediction. The comparison of the obtained results shows that the skill score and RMSE of predicting the maximum and minimum temperature of the modification of the output of the model have increased significantly compared to the model. Also, the monthly change in the skill score indicates the effect of the chasing car on the ability to correct the forecast, especially for the short-term maximum temperature. Investigations will show that the modification of the model has a uniform overfitting in the studied period. In addition, a powerful index independent of the concept of accuracy size will be introduced and used as a method to check the reliability of the model and tracking machine outputs, which indicates the level of confidence that can be had in the model and machine outputs. In this case, the reliability of the maximum and minimum temperature predictions and the significant growth of the index have shown stability in providing the output. After bias correction, the variability of the skill score has been significantly reduced, and by reducing the amount of forecasting error, the reliability of the model forecasts has increased from 60% to more than 85%. Depending on the location and time, the WRF model's forecasting performance is different, but after bias correction, this dependence is removed, and forecasting in all regions and times has almost the same performance. | ||
کلیدواژهها [English] | ||
Machine Learning, Reliability, Skill Score, Spectral Error, Time Series | ||
مراجع | ||
افشاری، ف.(1393). پیشبینی عددی دمای دو متری با استفاده از برونداد مدل wrf بر روی ایران. پایان نامه کارشناسی ارشد. به راهنمایی مجید آزادی و پروین غفاریان. دانشگاه هرمزگان، دانشکده علوم پایه.
آزادی، م. و محمدی، س. ع. (1398). پیشبینی احتمالاتی دمای کمینه و بیشینه روزانه روی ایران با استفاده از سامانه همادی دو عضوی. نیوار، 43، 54-62.
آزادی، م.؛ شیرغلامی، م.؛ حجام، س. و صحراییان، ف. (1390). پسپردازش برونداد مدل WRF برای بارندگی روزانه در ایران. مجله تحقیقات منابع آب، 7 (4)، 71-81.
آزادی، م.؛ جعفری، س.؛ میرزایی، ا. و عربلی، پ. (١٣٨٧). پسپردازش برونداد مدل میان مقیاس 5MM برای دمای بیشینه و کمینه با استفاده از فیلتر کالمن. مجله فیزیک زمین و فضا، ٣٤ (١)، ٤٥–٦١.
پیله وران، ر. و اکبری، ز. (1397). پس پردازش برونداد مدل WRF برای دماهای بیشینه و کمینه در استان لرستان. نخستین همایش ملی"آینده نگاری راهبردی در حوزه علوم جغرافیایی و مطالعات شهری-منطقهای".
شکوهی، م.؛ اسعدی اسکویی، ا. و محمدپور پنچاه، م. ر. (1401). پسپردازش خروجی مدل WRF به روش کوکریجینگ، برای کمیتهای دمای کمینه و بیشنه بر روی ایران. مجله فیزیک زمین و فضا، 48 (1)، 227-242.
قره داغی، ر. و دیندار، ا. (1400). مروری بر تنش گرمایی در جوجههای گوشتی و نقش عوامل تغذیهای و افزودنیها در کنترل آن. علمی-ترویجی (حرفهای) دامِستیک. 21(3)، 22-29.
مرادی، م. و مرتضیپور، س. (١٣٩٧). پسپردازش خروجی مدل WRF به روش میانگین لغزان برای دما، دمای نقطه شبنم، دمای بیشینه و دمای کمینه، در ایستگاه هواشناسی فرودگاه رشت. نشریه هواشناسی و علوم جو، 1(2)، 190-202.
نصراصفهانی، م.؛ یزدان پناه، ح.ا. و نصراصفهانی، م.ع. (١٣٩٨). ارزیابی مدل WRF برای پیشبینی دما و رخداد سرمازدگی در حوضه آبریز زاینده رود. پژوهشهای جغرافیای طبیعی، ٥١ (1)، ١٦٣–182.
Abhishek. K., Singh. M., Ghosh. S. & Anand. A. (2012).Weather Forecasting Model using Artificial Neural Network. Procedia Technol, 4, 311-318. Avery T., Patterson C., & Jacobs, D. J. (2021). Molecular function recognition by supervised projection pursuit machine learning. Scientific repor, 4, 42-47. Chevalier, R.F., Hoogenboom, G., McClendon, R.W., & Paz J.A. (2010). Support vector regression with reduced training sets for air temperature prediction: A comparison with artificial neural networks. Neural Comput, 9, 151-159. Craymer, M. (2002). The Least Squares Spectrum, Its Inverse Transform and Autocorrelation Function: Theory and Some Applications in Geodesy. Ph.D. Dissertation, University of Toronto, Canada. Davis, C., & Bosart, L. F. (2002). Numerical simulations of the genesis of Hurricane Diana (1984). Part II: Sensitivity of track and intensity prediction. Monthly weather review, 130(5), 1100-1124. Grear, T., Avery, C., Patterson, J., & Jacobs, D. J. (2021). Molecular function recognition by supervised projection pursuit machine learning. Scientific reports, 11(1), 4247. Gordon. I., Lupo. W. J., Sands-Lincoln. C., George. M., Jackson. J., & Ganguli. D. W. (2020). Machine learning and the pursuit of high-value health care. NEJM Catalyst Innovations in Care Delivery. Hacker, J. P. and Rife, D. L. (2007). A Practical Approach to Sequential Estimation of Systematic Error on Near-Surface Mesoscale Grids. Weather and Forecasting. 22, 1257– 1273. Kumar A. & Ram M. (2021). The Handbook of Reliability, Maintenance, and System Safety through Mathematical Modeling. Academic Press. Kumar, U.D., Crocker, J., Knezevic, J., El-Haram, M., Kumar, U.D., Crocker, J., Knezevic, J., & El-Haram, M. (2000). Reliability, Maintenance, and Logistic Support — Introduction. In: Reliability, Maintenance and Logistic Support. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4655-9_1 Mellit, A., Pava, A. M., & Benghanem, M. (2011). Least squares support vector machine for short-term prediction of meteorological time series. Theor. Appl. Climato, 111.297-307. Mohammadi, S. A., Azadi, M., & Rahmani, M. (2017). Comparison of spatial interpolation methods for gridded bias removal in surface temperature forecasts. Journal of Meteorological Research, 31, 791–799. Omerbashich, M. (2006). Gauss-Vanicek spectral analysis of the Sepkoski compendium: no new life cycles. Computing in Science & Engineering, 4, 26-30. Ortiz-García, E., Salcedo-Sanz, C. U., Casanova-Mateo, C., Paniagua-Tineo, A., & Portilla-Figueras, J. (2012). Accurate local very short-term temperature prediction based on synoptic situation Support Vector Regression banks. Atmos, 107. 1-8. Torrance, C. H., Scheinerman, R. & Yoon, N. (2021). Machine learning in medicine: should the pursuit of enhanced interpretability be abandoned. Journal of Medical Ethics, 48(9), 581-585. Valappil, V. K., Temimi, M., Weston, M., Fonseca, R., Nelli, N. R., Thota, M., & Kumar, K. N. (2020). Assessing Bias correction methods in support of operational weather forecast in arid environment. Asia-Pacific Journal of Atmospheric Sciences, 56, 333–347. | ||
آمار تعداد مشاهده مقاله: 573 تعداد دریافت فایل اصل مقاله: 496 |