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Many regions of Iran lack digital map of soil properties. The Chahardowli plain 

in western Iran is one of these areas. Due to the importance of sand, silt, and clay 

components, having quantitative and continuous data on abrupt changes in these 

two properties in this area is very critical. Therefore, to study sand, silt, and clay, 

samples were taken at depths of 0–5, 5–15, 15–30, 30–60, and 60–100 cm, 

according to GlobalSoilMap. Finally, 145 samples were collected from 30 soil 

profiles. The significant covariates were selected by Random Forest Recursive 

Feature Elimination (RF-RFE). Relationships between these characteristics and 

environmental predictors were modeled using random forest (RF), decision tree 

(DT), and multiple linear regression (MLR) models. The accuracy and precision 

of the models used for all three particles showed that the RF model had the most 

accurate prediction with R2 and RMSE of 0.82 and 2.34 for clay, 0.80 and 3.87 

for sand, and 0.85 and 2.89 for silt, respectively. In this study, terrain-based 

variables had a greater impact on improving accuracy than remote-sensing 

variables. The current study showed that even with limited information, digital 

mapping of sand, silt, and clay particles under GlobalSoilMap and the use of 

environmental factors can provide acceptable results. 
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1. Introduction 

Having precise information on the spatial variability of agricultural soil properties is vital 

(Dharumarajan et al., 2022; Kaya et al., 2022). Therefore, it is needed to depict the spatial 

changes of soils in such a way as to provide acceptable maps of the soil. We still lack soil 

mapping information for many parts of the country. Due to the importance of sand, silt, and 

clay components, having quantitative and continuous data on vertical changes is very critical 

(Mirzaeitalarposhti et al., 2022). Sand, silt, and clay components are some of the most essential 

physical features of soil, expressed as a relative percentage of sand, silt, and clay (Wu et al., 

2018; Jeihouni et al., 2020; Keshavarzi et al., 2022). The relative percentage of soil particles 

affects maintaining soil moisture, cation exchange capacity, soil water movement, the 

distribution of plant species, dissolved chemicals in soil, crop yield, and nutrient equilibrium in 

the rhizosphere (Zhang and Shi, 2019; Dharumarajan and Hegde, 2020; Taghizadeh-Mehrjardi 

et al., 2020; Chen et al., 2021). 

Clear or sudden changes in soil particle size percentage affect soil permeability and drainage, 

and thus ecosystem performance (Mehrabi-Gohari et al., 2019). Sand, silt, and clay components 

directly affects organic matter accumulation and water movement in the soil (Hook and Burke, 

2000). Sand, silt, and clay components, moisture content, and the amount of water available to 

evaporate from the earth surface, resulting in crop growth and production, were negatively 

impacted. So, acceptable information from sand, silt, and clay components data is a crucial tool 

for predicting crop yield (Kaya et al., 2022). The Chahardoli plain in western Iran is one of 

these areas. There is no information available on sand, silt, and clay components area and spatial 

distribution. Decreases in water resources and drought have led to limited use of water in 

agricultural regions. As a result, hydrological studies, crop cultivation spatial planning, and the 

design of appropriate management methods, as well as engineering work such as land 

consolidation, drainage management, erosion management, and irrigation systems in the region, 

necessitate a thorough examination of the spatial diversity of sand, silt, and clay components 

(Dharumarajan and Hegde, 2020; Keshavarzi et al., 2022). 

Sand, silt, and clay components cannot be changed quickly or by agriculture. Furthermore, 

traditional procedures such as pipette or hydrometer methods require a significant number of 

samples to determine the proportion of sand, silt, and clay components particle size. On the 

other hand, sand, silt, and clay components measurement costs are high. Therefore, digital soil 

mapping methods have overcome this problem to obtain the spatial distribution of soil particles 

(Dharumarajan and Hegde, 2020). In this approach, soil maps are predicted by a set of available 

auxiliary variables such as altitude derivatives, climate derivatives, vegetation, and parent 

materials (Mehrabi-Gohari et al., 2019; Dharumarajan and Hegde, 2020). Different soils have 

different proportions of clay, silt, and sand (Chen et al., 2021). Plants' water-holding capacity 

varies according to sand, silt, and clay components. Clay soils typically have a higher 

percentage of smaller pores and a higher water-holding capacity at low potentials, and they are 

often associated with poor drainage conditions or limited aeration for plant growth. In dry 

climates, sandy soils, on the other hand, have comparatively wide pores with a lower water 

retention capacity (Keshavarzi et al., 2022). 

Hengl et al. used computerized soil mapping methods to estimate sand, silt, and clay 

components in their research (Hengl et al., 2015). In a study to predict soil properties, the RF 

model was better than the multiple linear regression model (Zhang and Shi, 2019). In a report 

using digital soil mapping methods, African sand amounts were measured (Vagen et al., 2016). 

In Africa, sand, silt, and clay were estimated through digital mapping with a precision of 1 km 

(Hengl et al., 2014). Many models were examined to predict sand, silt, and clay components. 

Research results show that the models perform differently under different conditions (Brungard 
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et al., 2015; Taghizadeh-Mehrjardi et al., 2016). A RF, which eliminates the recursive feature, 

is the most accurate or best technique, according to Brungard et al. (2015). Jafari et al. (2012) 

predicted sand, silt, and clay component classes using tree regression in an arid region. 

In one investigation, soil surface sand, silt, and clay components were determined by 

multiple linear regression, conventional kriging, basic kriging, and global kriging (Mondejar 

and Tongco, 2019). The surface horizon sand, silt, and clay components were predicted through 

MLR (Keshavarzi et al., 2022; Schulz et al., 2023). The RF was used to create a map of sand, 

silt, and clay component classes for India on a scale of 1:250000 (Dharamarajan and Hegde, 

2020). This study examines the limited data on the spatial prediction of three particles of sand, 

silt, and clay using the samples taken according to GlobalSoilMap. This study is done with RF 

machine learning algorithms, DT, and MLR. The following are the specific goals of this study:  

A) Investigate the relationship between sand, silt, and clay components with environmental 

variables. 

 B) Validation of sand, silt, and clay component predictions with 10- fold cross validation.  

C) Choosing the best model to predict the spatial distribution of sand, silt, and clay 

components in the region. 

 

2. Material and methods 

The study steps are shown in Fig. 1. In the first step, sampling was performed at the five studied 

depths according to GlobalSoilMap. The sand, silt, and clay components were measured. 

Auxiliary data was gathered using digital elevation model (30 m) derivatives and Landsat 

images (June 2019) in the second step. The significance of variables was examined with 

Random Forest Recursive Feature Elimination (RF-RFE) (Darst et al., 2018). The fourth phase 

involved predictions from the RF, DT, and MLR models for the components of sand, silt, and 

clay. The 5-fold cross-validation approach was used in the fifth phase to assess the prediction 

models' accuracy, and the 6-step process produced a prediction map of the components of clay, 

silt, and sand based on the smallest error. 

 

2.1. Site description 

The study area is located in the foothills of the Zagros Mountains in western Iran. This region 

is part of the Chahardowli plain in Kurdistan Province. The lowlands include terraces, newly 

formed low-level piedmont fans, and valley terrace deposits. Based on the Lambert coordinate 

system, the plain is located at longitudes 1442000E to 1460000E and latitudes 1275000N to 

1290000N, and the area is about 104 km2 (Fig. 2). The slope of the area decreases from west to 

east by 268 m (slope average 7%). The highest point is 2051 m, and the lowest point is 1783 m 

above sea level. The mean annual rainfall is 332 mm. The highest and lowest precipitation 

observed in November and August, respectively. The average annual temperature is 23 °C. The 

mean monthly temperature for the study range for the warmest month of the year (August) is 

36.4 °C, and for the coldest month of the year (January), it is -3 °C. The highest relative 

humidity is 77% in February, and the lowest is 35% in August. The area has a semi-arid climate 

(based on Köppen climate classification method). Soil moisture and temperature regimes in this 

area are xeric and mesic, respectively. 

One of the prominent features of the study area is the presence of temporary and perennial 

river channels. Surface water flow generally flows from the western heights to the center and 

from the center to the north. Water flows along the Shurchai River in the north and flows into 

one of the Sefid-Rud river branches. The studied area is relatively flat, and geomorphological 

changes are not sharp. According to Mahler's classification (1970), the region's physiographic 

units include lowlands and sloping plains. The region's main uses include agriculture and 
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rangeland. In this area are cultivated crops such as wheat, barley, potatoes, chickpeas, and 

summer crops. Mollisols, Entisols, and Inceptisols are the soil order of the region. The Mollisols 

order (mostly Typic Calcixerolls) was observed in the southern part of the plain because this 

part is less affected by river activities and has not been cultivated. The Inceptisols order (mainly 

Typic Calcixerepts) was observed in the central part of the plain, where river activity is dynamic 

and the area is under cultivation. The Entisols (Lithic Xerorthents) were observed in the 

highlands (Soil and Water Research Institute, 1995). 

 

Fig. 1. The Methodological framework of the study.  

(RS: remote sensing; DEM: digital elevation model; R2: correlation coefficient; RMSE: root mean 

square error; RF: random forest; MLR: Multiple Linear Regression; DT: decision tree). 

 

 

https://www.investopedia.com/terms/m/mlr.asp
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Fig. 2. The location of the study area in Iran and the spatial distribution of  

soil profiles and the land cover map. 

 

2.2. Soil samples and analysis 

In the second step, sampling of points and laboratory analysis was performed. Predominant 

suborder groups in the plain are Typic Calcixerepts, Typic Calcixerolls, and Aquic 

Haploxerolls, and in the highland are Lithic Xerorthents (Soil and Water Research Institute, 

1995). Soil data quality depends on sampling and laboratory analysis methods. The sampling 

method involves collecting representative samples from the study area. It provides valid input 

for creating a prediction model with environmental variables (Biswas and Zhang, 2018). Study 

points were obtained by conditioned Latin hypercube sampling (cLHS) and the cLHS package 

in R software (Minasny and McBratney, 2006). CLHS is a random sampling method with the 

most classifications that ensures complete coverage of variable distribution. This has been 

developed to select an efficient set of values for the input variables in the development of 

computer models (Biswas and Zhang, 2018; Jamshidi et al., 2019). 

The first step, the selection of the number of points (15, 45, 75, 105, and 135 points), was 

done in 15,000 replications. The second step was to more accurately determine the number of 

points taken (15, 30, 45, 60, 75, 90, 105, 120, and 135) with a total of 15000 replications to 

ensure the optimal solution to minimize the objective function. Since 30% of these points were 

training points, training points were added to testing points. This resulted in 32 optimal points 

for the region. According to GlobalSoilMap, the profiles were sampled at depths of 0-5, 5-15, 

15-30, 30-60, and 60-100 cm (Hartemink et al., 2010). A total of 145 soil samples were 

collected from the 30 available profiles. After transfer, all samples were air-dried at 22 °C, the 

soil was passed through a 2 mm sieve, and then soil sand, silt, and clay components were 

measured (Sparks et al., 2020). 

 

2.3. Environmental data 

Parent material, time, climate, relief, and vegetation indices are among the input variables based 

on the SCORPAN model (McBratney et al., 2003). Because the area is small and it is not 

possible to show the effect of temperature and precipitation changes on soil variety, the climate 

index was not applied. The geological map for the area was large scale (1:50000), and the study 

area had a small scale, and the geological changes were not significant according to the existing 

map. Given that more than 95% of the study area has similar parent material and little effect on 
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soil variability, the parent material index was not considered. Satellite images were used to 

compute the vegetation index and soil-related indices. Landsat 8 images with cloud cover of 

less than 10% were selected, including bands 1 (0.433–0.45345 m), band 2 (0.450–0.515.5 m), 

band 3 (0.525–0.600 m), band 4 (0.630–0.680 m), band 5 (0.845–0.885 m), band 6 (1.560–

1.660 m), and band 7 (2.1–2.3 m) (with a pixel size of 30 m). Landsat 8 images are used to 

provide a land cover map. 

The date of sampling (June 2019) was followed while downloading images. Atmospheric 

and radiometric corrections were made in ENVI software (Version, 5.6). Land cover units were 

determined using supervised classification (maximum likelihood with an overall accuracy of 

90.35 and a Kappa coefficient of 0.87). Finally, nine land cover classes were extracted: 

irrigation agriculture, dry farming, salt crust, rangeland, marshland, river wash, mountain, 

settlement, and water (Fig. 2). The DEM (30 m) was downloaded from the ASTER database 

(ASTER GDEM V2, 30 m), and the necessary preprocessing (Planchon and Darboux, 2002) 

was performed in SAGA-GIS (Version: 5.0.0). Relief derivatives were selected based on relief 

analysis methods (Wilson and Gallant, 2000) using SAGA software (Brenning, 2008; Olaya 

and Conrad, 2009). The DEM derivatives (SAGA Development Team, 2011), vegetation 

indices (Silleos et al., 2006), and soil-related indices (Taghizadeh-Mehrjardi et al., 2014) are 

presented below. Ten vegetation indices and 24 DEM indices were computed in SAGA-GIS 

software (version 5.0.0). Six soil-related indexes were extracted in ArcGIS (Ver. 10.5). 

Ten vegetation indices were extracted using SAGA-GIS software (Version: 5.0.0), including 

corrected transformed vegetation index (CTVI), difference vegetation index (DVI), normalized 

difference vegetation index (NDVI), normalized ratio vegetation index (NRVI), perpendicular 

vegetation index (PVI), ratio vegetation index (RVI), soil-adjusted vegetation index (SAVI), 

transformed soil-adjusted vegetation index (TSAVI), Thiam’s transformed vegetation index 

(TTVI), and transformed vegetation index (TVI). The 23 indices of DEM were obtained using 

SAGA-GIS software, such as analytical hill shading (AH), channel network base level (CNBL), 

convergence index (CVI), flow accumulation (FA), longitudinal curvature (LC), aspect (A), 

slope (S), topographic position index (TPI), topographic wetness index (TWI), vertical distance 

to channel networks (VDCN), slope length (SL), multiresolution index of valley bottom 

(MIVB), LS factor (LSF), brightness index (BI), valley depth (VD), longitudinal curvature 

(LC), catchment area (CA), relative slope position (RSP), slope height (SH), general curvature 

(GC), stream power index (SPI), and profile curvature (PC). Six soil-related indexes were 

extracted with ArcGIS (Ver. 10.5), including carbonate index (CI), clay index (CLI), global 

vegetation moisture index (GVMI), gypsum index (GI), salinity index (SI), and salinity ratio 

index (SRI). The land cover map was made with Landsat 8 images. 

 

2.4. Correlation analysis and variable reduction 

There are many variables in modeling, but only a few have the required information. Variable 

selection to obtain accurate predictions is essential. In order to provide accurate results, a 

significant analysis of variables is performed (Brungard et al., 2015; Rumao, 2019). In this 

study, the significance of variables was examined using Random-Forest-Recursive Feature 

Elimination (RF-RFE) based on a random forest algorithm. RF-RFE is a wrapper algorithm. 

This algorithm examines all variables and ranks them. It predicts their importance based on 

performance (Development Core Team, R, 2016; Campos et al., 2018). The presence of 

correlated variables affects the model ability to identify the correct variables. The RF-RFE 

algorithm reduces problems into smaller data sets (Darst et al., 2018). The mean square error 

(%IncMSE) and node purity are the two most critical parameters in this technique 

(IncNodePurity). IncMSE is a report that shows the decrease in accuracy or how the prediction 
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worsens when changing the value variable. In other words, it represents an increase in mean 

squared error (MSE). That is calculated from the replacement of test data. MSE reports 

prediction error analysis for each tree. The final importance value is obtained by normalization 

with a standard error and a formula. That σδbj is the standard deviation. A variable with a higher 

IncMSE is more critical (Dewi and Chen, 2019), which is the average overall tree (B) of the 

forest where variable J has been used. 

%𝐼𝑛𝑐𝑀𝑆𝐸 =
�̅�𝑏𝑗

𝜎𝛿𝑏𝑗 √𝐵⁄
  (1) 

Δbj is obtained based on the following equation. 

𝛿�̅�𝑗 =
1

𝐵
∑ (𝑀𝑆𝐸 −𝑀𝑆𝐸𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑𝑗

) =
1

𝐵
∑ 𝛿𝑏𝑗
𝐵
𝑏=1

𝐵
𝑏=1   (2) 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1   (3) 

The second critical criterion is IncNodePurity, which is related to lost performance and is 

chosen by the most effective divisions. More useful variables further increase the purity of the 

node by finding a division that has a significant variance between nodes and a slight variance 

within the node (Dewi and Chen, 2019). 

 

2.5. Machine Learning Techniques 

In this step, the modeling process was performed with selected variables (step 4). We used the 

variables selected in the above method as a framework for all modeling methods. For modeling, 

the relationship between soil properties and environmental variables was done through three 

machine learning models, including RF, DT, and MLR. The following is a brief description of 

each model: The RF model includes a set of classification and regression (CART) trees that 

utilize these trees to predict response variables. RF use binary reverse-division trees (Breiman, 

2001). The Ranger package was used to adjust the model parameters (Wright and Ziegler, 

2015). The optimal number of trees was analyzed from 100 to 1000 trees, with an increase in 

100 tree size. The optimal value was found with the lowest error rate in 700 trees. Decision tree 

models are used for describing, classifying, and generalizing data. The decision tree model 

consists of zero or more internal nodes and one or more leaf nodes. All of these nodes have 

branches that test feature expression (Murthy, 1998). Linear models, such as MLR, have been 

proven to generate a stable model with low variance and high bias and thus run the risk of 

under-fitting the model (Heung et al., 2016). 

 

2.6. Evaluation of Algorithm Performance 

Evaluation of model performance is an essential part of every experiment and crucial when 

comparing various models. Root mean square error (RMSE) is an objective criterion for 

comparing model performance and variations. RMSE measures the error rate between two data 

sets using the following equation: A model with a smaller root mean square error value is more 

accurate at estimating soil properties. RMSE is defined as Obs is the observed soil property, n 

is the number of observations, and pred is the projected soil attribute from a given model 

(Rumao, 2019). 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑜𝑏𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖)2
𝑛
𝑖=1    (4) 
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Obsi=Actual data point (observation). 

Predi=data point predicted. 

n=Total number of data points in the test data set. 

Bias is called the average prediction error and is defined as follows. 

𝐵𝑖𝑎𝑠 =
1

𝑛
∑ (𝑜𝑏𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖)
𝑛
𝑖=1   (5) 

R2 is the square of the sample correlation coefficient (Pearson) and measures the precision 

of the relationship between the observations and the relevant predictions. When applied to 

observed and expected values, the Pearson correlation coefficient r is defined as follows: 

𝑟 =
∑ (𝑜𝑏𝑠𝑖−𝑜𝑏𝑠)
𝑛
𝑖=1 −(𝑝𝑟𝑒𝑑𝑖−𝑝𝑟𝑒𝑑)

√∑ (𝑜𝑏𝑠𝑖−𝑜𝑏𝑠)
2𝑛

𝑖=1 √∑ (𝑝𝑟𝑒𝑑𝑖−𝑝𝑟𝑒𝑑)
2𝑛

𝑖=1

  (6) 

Concordance, or more technically, the Lin concordance correlation coefficient (Lawrence 

and Lin, 1989), assesses the relationship between correctness and precision. Along a 45-degree 

line, it is called fit quality. As a result, it is likely to be a more helpful statistic than R2 alone. 

The term "concordance" is defined as follows: 

𝜌𝑐 =
2𝜌𝜎𝑝𝑟𝑒𝑑𝜎𝑜𝑏𝑠

𝜎𝑝𝑟𝑒𝑑
2 +𝜎𝑜𝑏𝑠

2 +(𝜇𝑝𝑟𝑒𝑑−𝜇𝑜𝑏𝑠)
2   (7) 

Where µpred and µobs are the means of predicted and observed values, respectively. The 

σpred and σobs are the corresponding variances. The ρ is the correlation coefficient between 

predictions and observations. 

 

2.7. Prediction accuracy 

To evaluate the performance of the ML models, we applied the 10-fold cross-validation method. 

Ten-fold cross-validation is a resampling technique in which all data are randomly divided into 

ten equal folds; one fold is put aside for validation at each run, while the remaining 10-1 folds 

are utilized for calibration. The final accuracy is then calculated using the average accuracy of 

all folds (Mirzaeitalarposhti et al., 2022). To quantify the error, common indices were 

calculated, including the root mean square error (RMSE), mean error (ME), coefficient of 

determination (R2), and line concordance coefficient (Pc). 

 

3. Results and discussion 

3.1. The statistical description of sand, silt, and clay 

Table 1 shows sand, silt, and clay contents. Sand amounts vary from 64 to 91%. The highest 

amount of sand is in layer 0–5 in rangeland and highlands and at the exit of a water channel. 

The lowest amount is in layer 30–60 cm in marshland. The coefficient of change in the sand 

does not change substantially with increasing depth. In the study of sand results, it was observed 

that by increasing the depth to a 30–60 cm layer, the average amount of sand decreases. After 

this layer, the average amount of sand increases. 

Silt results showed that with increasing depth, silt average amounts decreased. The smallest 

and greatest mean silt values are 3 and 21%, respectively. The highest and lowest average silt 

values were at 0-5 cm and 60–100 cm, respectively. The highest and lowest surface layer silt 

were observed in wetlands and areas with severe surface erosion, respectively. The silt 

coefficient of change is enhanced with increasing depth. With increasing depth, silt is different 

from numerous land cover. Surface silt differs in agricultural regions. 
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The clay results showed that the average amount of clay increased up to a 30–60 cm layer, 

and after this layer, the average amount of clay decreased. Overall, the highest and lowest 

average amounts of clay ranged from 30 to 60 cm, and the lowest average amounts varied from 

0 to 5 cm, respectively. The amount of clay varied from 2 to 23%. The lowest coefficient of 

variation in the area is related to the percentage of sand, and the highest coefficient of variation 

is related to the percentage of clay. The Anderson-Darling normality test was performed to test 

the normality of the data, which showed a normal distribution. Table 1 shows skewness and 

kurtosis results that confirm normality accuracy. 50 percent of observations in the middle 

quartile are less than or equal, and 50 percent are significant. 

Table 1. Descriptive statistics of sand, silt, and clay components. 

Soil 

properties 

(%) 

Depth 

(cm) 
Min 

1st 

Qu 
Median Mean 3rdQu Max 

Std. 

D 

CV 

(%) 
SKEW KURT 

Sand 

0-5 65.0 72.2 75.0 75.4 79.8 85.0 5.84 0.07 0.26 1.38 

5-15 66.0 71.0 75.0 74.9 78.8 85.0 5.56 0.07 -0.03 1.37 

15-30 64.0 68.0 73.0 73.0 78.0 85.0 5.74 0.07 0.0 1.15 

30-60 64.0 68.0 71.5 72.9 76.2 91.0 6.49 0.08 0.15 0.93 

60-100 65.0 71.0 73.0 75.0 80.0 86.0 6.47 0.08 0.55 1.40 

Silt 

0-5 8.0 12.0 14.5 14.3 16.0 20.0 3.17 0.22 -0.25 1.09 

5-15 6.0 13.0 13.5 13.8 15.0 20.0 3.13 0.22 0.5 2.31 

15-30 7.0 12.0 13.5 13.6 16.0 21.0 2.86 0.21 0.25 1.12 

30-60 5.0 11.0 13.0 13.0 14.6 19.0 3.06 0.23 -0.10 1.36 

60-100 5.5 9.4 11.0 11.4 13.0 17.0 2.80 0.24 0.1 1.00 

Clay 

0-5 3.0 6.2 10.0 10.3 12.0 19.0 4.41 0.43 -0.30 1.26 

5-15 2.0 7.5 12.0 12.0 15.8 22.0 5.11 0.43 -0.09 1.0 

15-30 4.0 10.5 13.0 13.5 17.0 22.0 4.53 0.34 0.23 1.07 

30-60 4.0 11.8 15.0 14.1 17.2 22.0 4.93 0.35 -0.18 1.60 

60-100 5.0 10.2 15.0 13.8 17.5 23.0 4.94 0.36 -0.31 1.05 

Minimum; Min, Lower quartile; 1st Qu, Middle quartile; Median, Mean, Upper quartile; 3rd Qu, Maximum; Max, 

Standard deviation; Std. D, Coefficient of variation; CV, Skewness; SKEW, kurtosis; KURT. 

 

3.2. Abundance distribution of clay, sand, and silt value 

The frequency distribution diagram of all three particles is shown in the Fig 3. The amount of 

sand particles compared to the other two particles is the highest in five depths and four studied 

land cover. The amount of clay and silt is almost equal to each other (Fig. 3). 

 

3.3. Selected auxiliary data and relationship between selected variables and sand, silt, and clay 

The variables of each layer for each component were selected by the RF-RFE method. Using a 

specific variable in different layers, the percentage importance of that variable compared to all 

other variables has been calculated. Fig. 4 shows the importance of auxiliary variables. The 

variables used for each layer are shown in Table 3. TTVI, CI, A, and CNBL were important 

variables for identifying sand. The A was a crucial variable in identifying silt, and for clay, 

CNBL, RVI, SRI, and LSF were the critical variables, respectively (Table. 2). The critical 

variables used in the sand study have a larger number than silt and clay particles (Fig. 4). 

 

3.4. Effective variables in the spatial prediction of sand, silt, and clay 

Clay variables include five terrain-based variables and six remote-sensing variables. Based on 

the spatial distribution of soil clay, the CNBL, LSF, RVI, and SRI variables had the highest 

percentage. The CNBL variable shows the effect of height and moisture accumulation on the 
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amount of clay in the soil (Keshavarzi et al., 2022; Schulz et al., 2023). Several studies have 

shown that variations in sand, silt, and clay components are closely related to topography 

(Dharumarajan and Hegde, 2020; Keshavarzi et al., 2022). In one study, the auxiliary data used 

to predict clay were primarily terrain-based factors (Mahmoudabadi et al., 2017). In 

southeastern Nigeria, they found that smaller particle sizes (clay and silt) correlated with slope 

and topographic index, while larger particles (sand) correlated better with area and flow strength 

index (Wu et al., 2018). According to a study, channel networks play a crucial role in sand, silt, 

and clay components variations in the region (Pahlavan-Rad and Akbarimoghaddam, 2018). 

Second place is A and VDCN. These variables are responsible for 9.52% of the variance in clay 

spatial distribution in the region. 

 

Fig.3. Chart of abundance distribution of clay, sand, and silt value at  

standard depths and different land cover. 
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Fig. 4. Important auxiliary variables for each property. 

 

Table 2. Variables used in each layer. 

Clay Silt Sand Layer 

VDCN, A, RVI, SI B4,S,A,GI A, CNBL, CI, SH, SPI, TTVI 0-5 

B2, B3, A, CNBL, MRRTF B6, A, LSF, MRVBF, TPI, B4, CI CNBL, CI, MRRTF, MRVBF, VD 5-15 

TVI, CNBL, LSF, SRI A, NDVI, SPI, TSAVI, TVI A, CNBL, CI, SH, SPI, TTVI 15-30 

VDCN, RVI, SRI, LSF, CNBL A, NDVI, SPI, TSAVI, TVI B6, A, DEM, DVI, SRI, TWI 30-60 

RVI, SRI, LSF, CNBL S, CI, DEM, DVI TVI, DVI, PC, SH, TTVI, TPI 60-100 

 

 

Fig. 5. Channel Network Base Level (CNBL), Difference Vegetation Index (DVI),  

Slope Height (SH), Ratio Vegetation Index (RVI), Thiams Transformed Vegetation Index (TTVI), 

Longitudinal Curvature (LC). 

 

In third place, the importance of the variables TVI, MRRTF, B2, B3, and SI is 6.7%. 

According to the results, the lowlands contained significantly more clay than the highlands 

(Hook and Burke, 2000). The least amount of clay was observed in rangeland with severe 

erosion (salt crusts) and highlands. Clay spatial distribution can be determined by soil erosion 

(Mahmoudabadi et al., 2017). Clay was found in abundance in rangeland with dense vegetation 

and cultivated fields. It should be emphasized that clay spatial distribution was not uniform 
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across cultivated fields and quite low in some areas. The link between regional variations in 

sand, silt, and clay components and topography has been demonstrated in studies (Keshavarzi 

et al., 2022; Schulz et al., 2023). One of the main processes of catena formation is the 

redistribution of soil particles by runoff, which generally increases silt, clay, and organic matter 

in lowlands (Hook and Burke, 2000). To estimate sand, silt, and clay fractions in floodplains, 

we used height, distance from the river, and groundwater floor distance (Wälder et al., 2008). 

The depth of the valley and the vertical distance to the channel network were other key variables 

in their study. 

In the study of silt, seven terrain-based variables and eight remote-sensing variables were 

the most significant. The aspect variable was the most critical variable, with 16% importance. 

The variables TVI, TSAVI, SPI, NDVI, S, B4, and CI are in the second order of importance, 

each with a share of 8%. The other variables with an importance of 4% are in the third order of 

importance. The highest amount of surface layer silt was observed in marshland, and in the salt 

crust, the lowest amount was observed. Increased silt in lowland areas is due to erosion in 

highland areas. In the study of sand, there were twelve terrain-based and six remote-sensing 

variables. The critical variables used are CNBL and CI to a depth of 30 cm. (Wälder et al., 

2008) identified altitude, distance from the river, and distance to the water channel as the most 

significant variables for predicting soil properties in floodplains (Wälder et al., 2008). 

(Rudiyanto et al., 2016) used distance to the river as an environmental variable and introduced 

it as the second critical variable in soil mapping in Indonesia. SH, SPI, and DVI variables are 

in a second order. 

Each of these variables has a 6.9% accuracy rate in accurately predicting the spatial 

distribution of sand in the area. Sand and clay distribution is significantly linked to landscape 

location (Karaca et al., 2018). The sand was found in the greatest concentrations in the salt 

crusts and highlands. Marshlands had the least sand quantity. The amount of sand in cultivated 

lands increased with increasing depth, due to tillage operations (Nieto et al., 2013). Higher sand 

content soils have less vegetation, making them more prone to erosion and soil organic matter 

destruction. Therefore, the percentage of soil particles has a significant impact on organic 

matter and soil vegetation. In the lowlands, soil organic matter distribution is highly linked to 

topography and soil particle fraction. In one study, the sand-clay ratio of soil increased with 

increasing height and slope (Ließ et al., 2012). Topographic impacts are less effective than 

mechanisms that influence soil particle ratios (Hook and Burke, 2000). 

 

3.5. Machine Learning Performances 

Tables 3 illustrate the statistical findings of the model. The prediction performance and 

accuracy were evaluated using the correlation coefficient (R2) and the root mean square error 

(RMSE). According to the validation results of the models, the R2 value of the RF model was 

better than the other two models. The accuracy of the model included RF, DT, and MLR, 

respectively. The difference in prediction accuracy between the RF and DT models was less 

than the difference in prediction accuracy between the RF and MLR models (Fig. 6). The 

highest R2 validations in the RF model were for silt, clay, and sand, respectively. Clay 

validation results showed that the most accurate prediction was for the RF model. The RF model 

average R2 value was 82 percent, with the 30–60 cm layer having the lowest accuracy and an 

RMSE value ranging from 0.82–3.71. The average R2 in the DT model was 0.73 percent, while 

the RMSE for the various layers ranged from 1.7 to 4.33 percent. The R2 in the MLR model 

was 0.55 percent on average, with the RMSE ranging from 4.56 to 7.22. 

The overall results of the clay study show that the prediction accuracy of the models includes 

RF, DT, and MLR, respectively. RF is one of the most popular digital mapping techniques for 
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estimating particle size fractions (Hengl et al., 2018); (Nussbaum et al., 2018); (Zeraatpisheh 

et al., 2019) tested and evaluated three algorithms for predicting clay content spatial distribution 

in a region in central Iran. Their results showed that the RF model with an R2 of 0.15 had the 

highest performance compared to the RT and MLR models. (Pahlavan-Rad and 

Akbarimoghadam 2018) also reported the high potential of the RF model for predicting particle 

size fractions in a floodplain in eastern Iran. Similarly, (Da Silva Chagas et al., 2016) used the 

RF model and MLR to estimate clay, sand, and silt content. They discovered that the RF model 

generates more accurate maps of sand, silt, and clay fractions. They obtained R2 values for clay, 

sand, and silt of 0.57, 0.63, and 0.25, respectively. 

 

Fig. 6. The result of RF, MLR, and DT models for 0-5 cm soil depth for clay, sand,  

and silt properties, respectively. 

 

In the one study using the RF model, the R2 values for clay, sand, and silt were 0.51, 0.54, 

and 0.56, respectively (Taghizadeh-Mehrjardi et al., 2020). In a study, a tree-based model such 

as RF and classification tree (CT) performed better than polynomial logistic regression, support 

vector machines (SVM), and artificial neural networks (ANN) for sand, silt, and clay 
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classification (Camera et al., 2017; Wu et al., 2018). In one report, the RF model was presented 

as the most effective strategy among the five machine-learning models for accurately assessing 

particle size distribution and sand, silt, and clay components classification (Zhang and Shi, 

2019). Wadoux (2019) showed that RF is better than CNN (larger correlation coefficient) for 

predicting soil properties, including clay, sand, and silt. 

Sand validation results showed that the RF model had the maximum prediction accuracy. In 

the RF model, the mean R2 value was 80%, and the minimum accuracy was for layer 5–15. The 

RMSE value was between 2.37 and 6.73. In the DT model, the average R2 value was 0.73%. 

The RMSE value for the different layers was between 1.05 and 8.22. In the MLR model, the 

mean R2 value was 0.72%. The RMSE value was between 2.46 and 12.82. The overall results 

of this study show that the models are accurate in RF, DT, and MLR, respectively. (Hengl et 

al., 2015) compared linear regression and RF to predict soil properties in Africa and found that 

RF performed better than the linear regression model with an average reduction of 15–75% in 

RMSE. (Da Silva Chagas et al., 2016) estimated sand, silt, and clay fractions using RF and 

multiple linear regression and discovered that RF produces more accurate change maps for 

sand, silt, and clay fractions than any other method. 

The RF model was used to map sand, silt, and clay fractions in eastern Iran (Pahlavan-Rad 

and Akbarimoghaddam, 2018). Three different methods, including multiple linear regression, 

stepwise regression, and regression trees, were applied to predict sand, silt, and clay 

components. The results showed that stepwise regression was the most effective modeling 

method in this study (Bakker, 2012). Using remote sensing data and an RF algorithm, they 

studied sand, silt, and clay components at a depth of 0–20 cm with a spatial resolution of 30 m 

in a part of the Middle East region, and the predicted maps showed that sandy and loamy soils 

are widespread in surface soils in the Middle East (Poppiel et al., 2021). 

Table 3. Results of validation of clay, sand, and silt. 

Model 

Validation 

Clay Sand Silt 

Depth R2 CCC RMSE Bias R2 CCC RMSE Bias R2 CCC RMSE Bias 

RF 

0-5 0.85 0.74 0.96 0.86 0.77 0.79 6.73 -2.23 0.84 0.65 2.24 -0.14 

5-15 0.86 0.72 0.82 0.48 0.50 0.43 3.53 1.98 0.91 0.61 1.32 0.45 

15-30 0.87 0.76 3.67 0.46 0.91 0.78 4.29 0.50 0.80 0.66 4.11 -1.59 

30-60 0.74 0.72 2.54 -1.34 0.87 0.74 2.37 1.25 0.91 0.69 3.26 -2.73 

60-100 0.80 0.71 3.71 0.02 0.96 0.72 2.43 -0.38 0.80 0.67 3.54 -3.21 

DT 

0-5 0.67 0.46 4.33 3.80 0.88 0.79 1.56 -0.18 0.86 0.72 0.917 0.22 

5-15 0.94 0.73 2.30 -1.56 0.72 0.36 5.88 -4.23 0.64 0.50 3.12 2.64 

15-30 0.72 0.63 1.72 -1.04 0.93 0.79 1.05 0.46 0.80 0.44 2.55 -1.52 

30-60 0.82 0.65 2.98 2.43 0.51 0.41 8.22 -7.16 0.51 0.20 3.78 2.95 

60-100 0.51 0.61 3.19 1.34 0.61 0.53 6.8 3.15 0.75 0.51 3.11 -2.84 

MLR 

0-5 0.65 0.24 7.22 -1.26 0.76 0.49 4.56 -2.25 0.64 0.36 1.95 1.08 

5-15 0.78 0.37 4.72 -3.94 0.50 0.37 6.75 6.0 0.80 0.61 2.32 1.86 

15-30 0.58 0.23 4.56 -4.09 0.94 0.73 2.46 2.13 0.76 0.12 2.32 -0.55 

30-60 0.52 0.21 6.67 5.34 0.83 0.39 6.05 -2.83 0.82 0.20 3.80 -3.12 

60-100 0.23 0.13 6.55 -5.9 0.59 0.21 12.82 8.69 0.76 0.66 1.13 0.21 

 

The silt validation results showed that the accurate prediction was for the RF model. In the 

RF model, the mean R2 was 0.85%. The RMSE value was between 1.32 and 4.11. In the DT 
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model, the average R2 value was 0.71%. The RMSE value for the different layers was between 

0.9 and 3.78. In the MLR model, the average R2 value was 0.76%, and the average RMSE was 

2.3%. The overall results of the silt study show that the prediction accuracy of the models is 

RF, DT, and then MLR, respectively. Different multiple regression models were used to 

correlate the parameters derived from the digital elevation model with soil properties and 

reported high success rates (Keshavarzi et al., 2022). The variables included in the model 

showed that topographic difficulties and climatic data are critical variables for sand, silt, and 

clay components modeling (Bakker, 2012). An estimation of the watershed in Canada based on 

a set of hydrographic parameters derived from the DEM and the artificial neural network model 

of sand, silt, and clay components in Canada (Zhao et al., 2009). 

 

3.6. Prediction accuracy 

Table 4 shows 10-fold cross-validation results Accuracy varies between measured and 

predicted values at different depths, and these results are acceptable for different layers. This 

accuracy is higher for sand than for silt and clay and almost the same for silt and clay. The error 

in predicting sand is also more significant than that in predicting clay, and clay is heavier than 

sand. Due to temporary and permanent water channels, sand has less spatial heterogeneity, and 

the area has less landscape complexity. It is probably because this particle estimation is more 

accurate than the other two particles. 

Table 4. Results of predictions accuracy with 10-fold cross-validation method. 

Layers 

(cm) 

Silt Sand Clay 

R2 RMSE R2 RMSE R2 RMSE 

0-5 0.37 2.56 0.28 5.29 0.21 4.13 

5-15 0.37 2.91 0.44 5.82 0.32 5.16 

15-30 0.39 2.39 0.39 4.29 0.42 4.35 

30-60 0.26 2.85 0.35 5.16 0.20 4.34 

60-100 0.30 3.02 0.42  5.73 0.36 5.07 

 

4. Conclusion 

The results showed that using variables such as channel network base level and vertical distance 

to channel networks increased the accuracy of prediction maps. The channel network plays a 

principal role in the soil distribution of the study area by affecting the rate of discharge that 

leads to erosion and sedimentation. The accuracy and precision of the models used for all three 

particles showed that the RF model had the most accurate prediction with R2 and RMSE of 0.82 

and 2.34 for clay, 0.80 and 3.87 for sand, and 0.85 and 2.89 for silt, respectively. In this study, 

terrain-based variables and remote sensing increased the accuracy of predictions, but in 

predicting sand, silt, and clay components, terrain-based variables had a greater ratio of 

predictions and increased their accuracy. The ratio of terrain-based variables used for both 

surface horizons and subsurface horizons was higher than remote sensing variables. Therefore, 

the use of geomorphometric features along with the RF model affects the prediction of the 

spatial distribution of sand, silt, and clay components in the region, and it causes increases in 

accuracy prediction. The present study showed that digital mapping of sand, silt, and clay 

particles according to GlobalSoilMap and using environmental variables with a small number 

of soil samples can provide acceptable results. 
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