تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,036 |
تعداد مشاهده مقاله | 125,508,882 |
تعداد دریافت فایل اصل مقاله | 98,772,188 |
کاربرد ویژگیهای میکروسکوپی منافذ خاک در ارزیابی کیفیت فیزیکی خاک | ||
تحقیقات آب و خاک ایران | ||
دوره 54، شماره 10، دی 1402، صفحه 1581-1596 اصل مقاله (1.76 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.363159.669546 | ||
نویسندگان | ||
آیدا بخشی خرمدره1؛ پریسا علمداری* 2؛ احمد حیدری3؛ محمدحسین محمدی3 | ||
1گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران. | ||
2گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران | ||
3گروه علوم خاک، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، البرز، ایران. | ||
چکیده | ||
منافذ خاک به دلیل اثرپذیری از شرایط محیطی، به عنوان یکی از مهمترین شاخصهای کیفیت فیزیکی خاک شناخته میشود. در این مطالعه پارامترهای مختلف مربوط به منافذ خاک تعیین و در کنار برخی دیگر از ویژگیهای فیزیکی و شیمیایی خاک برای تعیین دسته داده حداقل، مورد تجزیه و تحلیل قرار گرفت تا قابلیت آنها در بکارگیری به عنوان شاخصهای کیفیت فیزیکی خاک سنجیده شود. در بازه سالهای 1399 تا 1401 و در کارگاه میکرومورفولوژی گروه علوم خاک دانشگاه تهران، پارامترهای مربوط به منافذ ناشی از 126 واحد آزمایشی شامل تیمارهای آزمایشی اصلاحی و تخریبی و متاثر از 22 دوره تر و خشک شدن در دو خاک شن لومی و رس سیلتی ازجمله ضریب گردی، کشیدگی، مساحت و فشردگی منافذ با استفاده از روش آنالیز تصویر تعیین شد. نهایتاً این ویژگیها با روش تجزیه مولفه اصلی پالایش گشته و مهمترین ویژگیهای تعیینکننده کیفیت فیزیکی خاک تعیین گردید. دو مولفه اصلی اول و دوم (PC1 و PC2) بیانگر بیش از 70درصد از تغییرات خاکهای مورد مطالعه بود. از طرفی با توجه به همبستگی قوی مشاهده شده، پارامترهای ضریب گردی (81 و 80 درصد همبستگی با PC1 و PC2) و کشیدگی منافذ (با 77 و 83 درصد همبستگی با PC1 و PC2) در خاک شن لومی و پارامترهای کشیدگی (با 53 و 87 درصد همبستگی با PC1 و PC2) و مساحت منافذ (با 48 و 68 درصد همبستگی با PC1 و PC2) در خاک رس سیلتی به عنوان شاخصهای تعیین کیفیت شناسایی شدند. با توجه به توانایی در بیان تغییرات خاکها، ویژگیهای میکروسکوپی منافذ با موفقیت در این مطالعه جهت تعیین کیفیت خاک بکارگیری شدند. ازطرفی به دلیل خاصیت فراکتالی منافذ، میتوان از این شیوه در تعیین کیفیت خاک در مقیاس بزرگتر استفاده نمود. | ||
کلیدواژهها | ||
آنالیز تصویر؛ تجزیه و تحلیل مولفه اصلی؛ دسته داده حداقل؛ ویژگیهای خاک | ||
عنوان مقاله [English] | ||
Application of microscopic features of soil pores in the assessment of soil physical quality | ||
نویسندگان [English] | ||
aida Bakhshi khorramdarre1؛ Parisa Alamdari2؛ Ahmad Heidari3؛ Mohammad Hosein Mohammadi3 | ||
1Department of soil science, Faculty of Agriculture, University of ZANJAN, ZANJAN, IRAN. | ||
2Department of soil science, Faculty of agriculture, university of Zanjan, Zanjan, Iran | ||
3Department of soil science, Faculty of Agriculture and Natural resource, University of TEHRAN, ALBORZ, IRAN. | ||
چکیده [English] | ||
Researchers consistently seek methods that minimize data requirements and decrease soil quality assessment costs. Soil pores are recognized as indicators of soil physical quality due to their environmental sensitivity. This study identified key parameters related to soil pores and physico-chemical properties to assess their potential as indicators of soil physical quality. Conducted between 2020 and 2022 at the University of Tehran's Soil Sciences Department Micromorphology Laboratory, the study used image analysis to determine the parameters related to pores resulting from 126 experimental units, including ammendments, removals and disruptive experimental treatments and affected by 22 cycles of wetting and drying which were determined in two types of soils, sandy loam and silty clay. Parameters included sphericity, elongation, area, and compactness. The first two principal components (PC1 and PC2) represent more than 70% of the variations in the studied soils. Parameters like sphericity (81% and 80% correlation with PC1 and PC2) and elongation (77% and 83% correlation with PC1 and PC2) in loamy sand, and elongation (53% and 87% correlation with PC1 and PC2) and pore area (48% and 68% correlation with PC1 and PC2) in silty clay loam were identified as quality indicators. Comparing soil quality based on pores in different treatments with control showed 32% and 18% differences in loamy sand and silty clay loam, respectively, demonstrating indicator efficacy in reflecting soil quality changes. The microscopic features of pores that possess fractal properties were successfully utilized in this study for assessing soil quality. Based on this method, it is possible to employ this approach for determining soil quality on a field scale. | ||
کلیدواژهها [English] | ||
Image analysis, Minimum dataset, Principal component analysis, soil properties | ||
مراجع | ||
Andrews, S. S., Karlen, D. L., & Cambardella, C. A. (2004). The soil management assessment framework: a quantitative soil quality evaluation method. Soil Science Society of America Journal. 68(6), 1945-1962. Angelaki, A., Bota, V., & Chalkidis, I. (2023). Estimation of Hydraulic Parameters from the Soil Water Characteristic Curve. Sustainability. 15(8), 6714. Armenise, E., Redmile-Gordon, M. A., Stellacci, A. M., Ciccarese, A., & Rubino, P. (2013). Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil and Tillage Research. 130, 91-98. Askari, M. S., & Holden, N. M. (2014). Indices for quantitative evaluation of soil quality under grassland management. Geoderma. 230, 131-142. Bakhshi, A., Heidari, A., Mohammadi, M. H., & Ghezelbash, E. (2023). Estimation of Water Retention at Low Matric Suctions Using the Micromorphological Characteristics of Soil Pores. Eurasian Soil Science, 1-14. Bastida, F., Moreno, J. L., Hernandez, T., & García, C. (2006). Microbiological activity in a soil 15 years after its devegetation. Soil Biology and Biochemistry. 38(8), 2503-2507. Bian, X., Zhang, W., Li, X., Shi, X., Deng, Y., & Peng, J. (2022). Changes in strength, hydraulic conductivity and microstructure of superabsorbent polymer stabilized soil subjected to wetting–drying cycles. Acta Geotechnica, 17(11), 5043-5057. Davidson, D. A. (2000). Soil quality assessment: recent advances and controversies. Progress in Environmental Science. 2(4), 342-350. Farahani, E., Emami, H., & Keller, T. (2018). Impact of monovalent cations on soil structure. Part II. Results of two Swiss soils. International Agrophysics, 32(1). Fu, B. J., Liu, S. L., Chen, L. D., Lü, Y. H., & Qiu, J. (2004). Soil quality regime in relation to land cover and slope position across a highly modified slope landscape. Ecological Research. 19, 111-118. Guo, L., Sun, Z., Ouyang, Z., Han, D., & Li, F. (2017). A comparison of soil quality evaluation methods for Fluvisol along the lower Yellow River. Catena. 152, 135-143. Hussain, I. M. T. I. A. Z., Olson, K. R., Wander, M. M., & Karlen, D. L. (1999). Adaptation of soil quality indices and application to three tillage systems in southern Illinois. Soil and tillage Research. 50(3-4), 237-249. Karlen, D. L., Ditzler, C. A., & Andrews, S. S. (2003). Soil quality: why and how?. Geoderma. 114(3-4), 145-156. Karlen, D. L., Hurley, E. G., Andrews, S. S., Cambardella, C. A., Meek, D. W., Duffy, M. D., & Mallarino, A. P. (2006). Crop rotation effects on soil quality at three northern corn/soybean belt locations. Agronomy journal. 98(3), 484-495. Karlen, D. L., Mausbach, M. J., Doran, J. W., Cline, R. G., Harris, R. F., & Schuman, G. E. (1997). Soil quality: a concept, definition, and framework for evaluation (a guest editorial). Soil Science Society of America Journal. 61(1), 4-10. Lehmann, P., Assouline, S., & Or, D. (2008). Characteristic lengths affecting evaporative drying of porous media. Physical Review E, 77(5), 056309. Li, P., Shi, K., Wang, Y., Kong, D., Liu, T., Jiao, J., & Hu, F. (2019). Soil quality assessment of wheat-maize cropping system with different productivities in China: Establishing a minimum data set. Soil and Tillage Research, 190, 31-40. Masto, R. E., Chhonkar, P. K., Purakayastha, T. J., Patra, A. K., & Singh, D. (2008). Soil quality indices for evaluation of long‐term land use and soil management practices in semi‐arid sub‐tropical India. Land degradation & development. 19(5), 516-529. Moncada, M. P., Penning, L. H., Timm, L. C., Gabriels, D., & Cornelis, W. M. (2014). Visual examinations and soil physical and hydraulic properties for assessing soil structural quality of soils with contrasting textures and land uses. Soil and Tillage Research, 140, 20-28. Mukherjee, A., & Lal, R. (2014). Comparison of soil quality index using three methods. PloS one. 9(8), e105981. Nakajima, T., Lal, R., & Jiang, S. (2015). Soil quality index of a crosby silt loam in central Ohio. Soil and Tillage Research. 146, 323-328. Navas, M., Benito, M., Rodríguez, I., & Masaguer, A. (2011). Effect of five forage legume covers on soil quality at the Eastern plains of Venezuela. Applied soil ecology. 49, 242-249. Obade, V., & Lal, R. (2016). A standardized soil quality index for diverse field conditions. Science of the total environment. 541, 424-434. Pagliai, M., & Vignozzi, N. (2002). The soil pore system as an indicator of soil quality. Advances in GeoEcology. 35, 69-80. Paz-Kagan, T., Shachak, M., Zaady, E., & Karnieli, A. (2014). A spectral soil quality index (SSQI) for characterizing soil function in areas of changed land use. Geoderma. 230, 171-184. Qi, Y., Darilek, J. L., Huang, B., Zhao, Y., Sun, W., & Gu, Z. (2009). Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma. 149(3-4), 325-334. Rahmanipour, F., Marzaioli, R., Bahrami, H. A., Fereidouni, Z., & Bandarabadi, S. R. (2014). Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecological indicators. 40, 19-26. Ringrose-Voase, A. J. (1996). Measurement of soil macropore geometry by image analysis of sections through impregnated soil. Plant and Soil. 183, 27-47. Sarkar, D., De, D. K., Das, R., & Mandal, B. (2014). Removal of organic matter and oxides of iron and manganese from soil influences boron adsorption in soil. Geoderma, 214, 213-216. Shukla, M. K., Lal, R., & Ebinger, M. (2006). Determining soil quality indicators by factor analysis. Soil and Tillage Research, 87(2). 194-204. Vereecken, H., Huisman, J. A., Bogena, H., Vanderborght, J., Vrugt, J. A., & Hopmans, J. W. (2008). On the value of soil moisture measurements in vadose zone hydrology: A review. Water resources research, 44(4). Wang, S., Lv, L., Xue, K., Zhang, D., Li, M., Li, D., & Yuan, C. (2022). Micropore structure and fractal characteristics of clays due to freeze-thaw and compression based on mercury intrusion porosimetry. Frontiers in Earth Science, 10, 851673. Wei, T., Fan, W., Yu, N., & Wei, Y. N (2019). Three-dimensional microstructure characterization of loess based on a serial sectioning technique. Engineering Geology. 261, 105265. Yu, P., Liu, S., Zhang, L., Li, Q., & Zhou, D. (2018). Selecting the minimum data set and quantitative soil quality indexing of alkaline soils under different land uses in northeastern China. Science of the Total Environment. 616, 564-571. | ||
آمار تعداد مشاهده مقاله: 202 تعداد دریافت فایل اصل مقاله: 199 |