
تعداد نشریات | 162 |
تعداد شمارهها | 6,693 |
تعداد مقالات | 72,239 |
تعداد مشاهده مقاله | 129,219,752 |
تعداد دریافت فایل اصل مقاله | 102,048,054 |
The Inhibitory Effect of Camel Lactoferrin-chimera, a Recombinant Antimicrobial Peptide, on Avian Influenza Virus Subtype H9N2 | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 7، دوره 19، شماره 2، تیر 2025، صفحه 237-254 اصل مقاله (8.18 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.19.2.1005499 | ||
نویسندگان | ||
Moein Khodayari1؛ Mohammad Hadi Sekhavati2؛ Seyed Mostafa Peighambari1؛ Abbas Barin3؛ Omid Dezfoulian4؛ Jamshid Razmyar* 1 | ||
1Department of Avian Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. | ||
2Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran. | ||
3Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. | ||
4Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorramabad, Iran. | ||
چکیده | ||
Background: Avian influenza subtype H9N2 is poultry’s most prevalent influenza virus worldwide. It imposes economic losses to the poultry industry and has zoonotic potential. Currently, the two main groups of anti-influenza drugs are adamantanes and neuraminidase inhibitors. In recent years, there has been an increase in the resistance to existing anti-influenza drugs. Antimicrobial peptides are a group of potential drug candidates with broad-spectrum activity. Camel lactoferrin (cLF)-chimera is an antimicrobial peptide synthesized from camel milk lactoferrin. Objectives: This study aims to evaluate the inhibitory effects of cLF-chimera on avian influenza, subtype H9N2. Methods: One hundred and seventy 11-day-old specific pathogen-free (SPF) embryonated eggs were randomly distributed into 17 groups. Different virus and peptide concentrations were injected into the eggs. The eggs were incubated for four days, and daily candling was done for viability assessment. On the 4th day of incubation, each group’s live or dead embryos were sorted and evaluated for gross anomalies. Next, for histopathological analysis, chick embryos were fixed with 10% neutral buffered formalin for one week. The 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) assay was performed to determine peptide and virus concentrations. Results: Embryo viability results and macroscopic and histopathologic findings showed that the peptide had inhibitory effects against the virus. These results are consistent with the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide) (MTT) assay. Moreover, the peptide has proven effects against pathogenic bacteria, which can be advantageous compared to common anti-influenza medications. Conclusion: According to the results, cLF-chimera has an inhibitory effect on the H9N2 influenza virus. | ||
کلیدواژهها | ||
Antimicrobial peptide؛ Avian influenza؛ Camel lactoferrin (cLF)-chimera؛ Histopathology؛ Subtype H9N2 | ||
اصل مقاله | ||
Introduction
The data from V2 groups are similar to those of V1, but all cell viability percentages are higher (Figure 4). In these groups, like V1, the amount of virus is constant; the decrease in cell vitality is related to peptide toxicity. Compared to the virus control, in the V2 groups, the peptide partially inhibited the harmful effects of the virus.
Ahmadi, S., Rajabi, & Vasfi-Marandi, M. (2018). Evaluation of the antiviral effects of aqueous extracts of red and yellow onions (Allium Cepa) against avian influenza virus subtype H9N2. Iranian Journal of Veterinary Science and Technology, 10(2), 23-27. [DOI:10.22067/veterinary.v2i10.74060] Abdi, H. M., Mayahi, M., Boroomand, Z., & Shoshtari, A. (2021). Avian Influenza-Killed Vaccine on Tissue Distribution and Shedding of Avian Influenza Virus H9N2 in Ducklings. Archives of Razi Institute, 76(3), 437–444. [DOI:10.22092/ar2020.342078.1452] Ali, M., Yaqub, T., Mukhtar, N., Imran, M., Ghafoor, A., & Shahid, M. F., et al. (2019). Avian influenza A (H9N2) virus in poultry worker, Pakistan, 2015. Emerging Infectious Diseases, 25(1), 136–139. [DOI:10.3201/eid2501.180618][PMID] Amarelle, L., Lecuona, E., & Sznajder, J. I. (2017). Anti-influenza treatment: Drugs currently used and under development. Tratamiento Antigripal: Fármacos Actualmente Utilizados y Nuevos Agentes en Desarrollo. Archivos de Bronconeumologia, 53(1), 19–26. [DOI:10.1016/j.arbres.2016.07.004][PMID] Anand, U., Jacobo-Herrera, N., Altemimi, A., & Lakhssassi, N. (2019). A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites, 9(11), 258. [DOI:10.3390/metabo9110258][PMID] Arbi, M., Larbi, I., Nsiri, J., Behi, I. E., Rejeb, A., & Miled, K., et al. (2022). Inhibition of avian influenza virus H9N2 infection by antiviral hexapeptides that target viral attachment to epithelial cells. Virus Research, 313, [DOI:10.1016/j.virusres.2022.198745] [PMID] Bahar, A. A., & Ren, D. (2013). Antimicrobial peptides. Pharmaceuticals, 6(12), 1543-1575. [DOI:10.3390/ph6121543][PMID] Bahuguna, A., Khan, I., Bajpai, V. K., & Kang, S. C. (2017). MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh Journal of Pharmacology, 12(2), 115-118. [Link] Chen, H., Yuan, H., Gao, R., Zhang, J., Wang, D., & Xiong, Y., et al. (2014). Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: A descriptive study. Lancet (London, England), 383(9918), 714–721. [DOI:10.1016/S0140-6736(14)60111-2] [PMID] Chen, J. J., Lin, P. H., Lin, Y. Y., Pu, K. Y., Wang, C. F., & Lin, S. Y., et al. (2022). Detection of cytopathic effects induced by influenza, parainfluenza, and enterovirus using deep convolution neural network. Biomedicines, 10(1), 70. [DOI:10.3390/biomedicines10010070][PMID] Daneshmand, A., Kermanshahi, H., Sekhavati, M. H., Javadmanesh, A., & Ahmadian, M. (2019). Antimicrobial peptide, cLF36, affects performance and intestinal morphology, microflora, junctional proteins, and immune cells in broilers challenged with E. coli. Scientific Reports, 9(1), 14176. [DOI:10.1038/s41598-019-50511-7][PMID] Daneshmand, A., Kermanshahi, H., Sekhavati, M. H., Javadmanesh, A., Ahmadian, M., & Alizadeh, M., et al. (2020).Effects of cLFchimera peptide on intestinal morphology, integrity, microbiota, and immune cells in broiler chickens challenged with necrotic enteri Scientific Reports, 10(1), 17704. [DOI:10.1038/s41598-020-74754-x][PMID] De Angelis, M., Casciaro, B., Genovese, A., Brancaccio, D., Marcocci, M. E., & Novellino, E., et al. (2021). Temporin G, an amphibian antimicrobial peptide against influenza and parainfluenza respiratory viruses: Insights into biological activity and mechanism of action. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 35(2), e21358. [DOI:10.1096/fj.202001885RR] [PMID] Fan, J., Fu, A., & Zhang, L. (2019). Progress in molecular docking. Quantitative Biology, 7, 83-89. [Link] Ghoke, S. S., Sood, R., Kumar, N., Pateriya, A. K., Bhatia, S., & Mishra, A., et al. (2018). Evaluation of antiviral activity of Ocimum sanctum and Acacia arabica leaves extracts against H9N2 virus using embryonated chicken egg model. BMC Complementary and Alternative Medicine, 18(1), 174. [DOI:10.1186/s12906-018-2238-1][PMID] Hartung, T. (2007) Food for thought... on cell culture. ALTEX, 24(3), 143–152. [DOI:10.14573/altex.2007.3.143] Hussain, M., Galvin, H. D., Haw, T. Y., Nutsford, A. N., & Husain, M. (2017). Drug resistance in influenza A virus: The epidemiology and management. Infection and Drug Resistance, 10, 121–134. [DOI:10.2147/IDR.S105473][PMID] Jones, J. C., Turpin, E. A., Bultmann, H., Brandt, C. R., & Schultz-Cherry, S. (2006). Inhibition of influenza virus infection by a novel antiviral peptide that targets viral attachment to cells. Journal of Virology, 80(24), 11960–11967. [DOI:10.1128/JVI.01678-06][PMID] Kang, H. K., Kim, C., Seo, C. H., & Park, Y. (2017). The therapeutic applications of antimicrobial peptides (AMPs): A patent review. Journal of Microbiology (Seoul, Korea), 55(1), 1–12. [DOI:10.1007/s12275-017-6452-1] [PMID] Koszalka, P., Tilmanis, D., & Hurt, A. C. (2017). Influenza antivirals currently in late‐phase clinical trial. Influenza and Other Respiratory Viruses, 11(3), 240–246. [DOI:10.1111/irv.12446][PMID] Lam, T. T., Wang, J., Shen, Y., Zhou, B., Duan, L., & Cheung, C. L., et al. (2013). The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature, 502(7470), 241–244. [DOI:10.1038/nature12515][PMID] Lehnert, R., Pletz, M., Reuss, A., & Schaberg, T. (2016). Antiviral medications in seasonal and pandemic influenza: A systematic review. Deutsches Arzteblatt International, 113(47), 799–807. [DOI:10.3238/arztebl.2016.0799][PMID] Lei, J., Sun, L., Huang, S., Zhu, C., Li, P., & He, J., et al. (2019).The antimicrobial peptides and their potential clinical applications. American Journal of Translational Research, 11(7), 3919-3931. [PMID] Li, Q., Zhao, Z., Zhou, D., Chen, Y., Hong, W., & Cao, L., et (2011). Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses. Peptides, 32(7), 1518–1525. [DOI:10.1016/j.peptides.2011.05.015][PMID] Liu, R., Zhao, B., Li, Y., Zhang, X., Chen, S., & Chen, T. (2018). Clinical and epidemiological characteristics of a young child infected with avian influenza A (H9N2) virus in China. The Journal of International Medical Research, 46(8), 3462–3467. [DOI:10.1177/0300060518779959][PMID] Mehrabadi, M. H. F., Ghalyanchilangeroudi, A., Rabiee, M. H., & Tehrani, F. (2019). Prevalence and risk factors of avian influenza H9N2 among backyard birds in Iran in 2015. Asian Pacific Journal of Tropical Medicine, 12(12), 559-564. [Link] Mehrbod, P., Abdalla, M. A., Njoya, E. M., Ahmed, A. S., Fotouhi, F., & Farahmand, B., et al. (2018). South African medicinal plant extracts active against influenza A virus. BMC Complementary and Alternative Medicine, 18(1), 112. [DOI:10.1186/s12906-018-2184-y][PMID] Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. [DOI:10.2174/157340911795677602][PMID] Michálek, P., O. Zítka, R. Guráň, V. Milosavljevič, P. Kopel, V. Adam and Z. Hegar (2015). Effect of melittin on influenza-infected chicken embryos, MendelNet. 2015, 475-479. [Link] Mohammadi, E., Sekhavati, M. H., Pirkhezranian, Z., Shafizade, N., Dashti, S., & Saedi, N. (2023). Designing and computational analysis of chimeric avian influenza antigen: A yeast-displayed universal and cross-protective vaccine candidate. Journal of Poultry Sciences and Avian Diseases, 1(1). [DOI:10.61838/kman.jpsad.1.1.1] Mostafa, A., Abdelwhab, E. M., Mettenleiter, T. C., & Pleschka, S. (2018). Zoonotic potential of influenza A viruses: A comprehensive overview. Viruses, 10(9), 497. [DOI:10.3390/v10090497][PMID] Motamedinasab, S. I., Pourbakhsh, S. A., & Nazarpak, H. H. (2023). Evaluation of inactivated vaccine’s Antibody response to different H9N2 Vaccination programs with Hemagglutination Inhibition (HI) assay. Journal of Poultry Sciences and Avian Diseases, 1(3), 51-58. [DOI:10.61838/kman.jpsad.1.3.5] Nagy, A., Mettenleiter, T. C., & Abdelwhab, E. M. (2017). A brief summary of the epidemiology and genetic relatedness of avian influenza H9N2 virus in birds and mammals in the Middle East and North Africa. Epidemiology and Infection, 145(16), 3320–3333. [DOI:10.1017/S0950268817002576][PMID] Nili, H., & Asasi, K. (2003). Avian influenza (H9N2) outbreak in Iran. Avian Diseases, 47(3 Suppl), 828–831. [DOI: 10.1637/0005-2086-47.s3.828] [PMID] Ong, Z. Y., Wiradharma, N., & Yang, Y. Y. (2014). Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Advanced Drug Delivery Reviews, 78, 28–45. [DOI:10.1016/j.addr.2014.10.013] [PMID] Özbil, M. (2019). Computational investigation of influenza A virus M2 protein inhibition mechanism by ion channel blockers. Turkish Journal of Chemistry, 43(1), 335-351. [Link] Pagadala, N. S., Syed, K., & Tuszynski, J. (2017). Software for molecular docking: A review. Biophysical Reviews, 9(2), 91–102. [DOI:10.1007/s12551-016-0247-1][PMID] Peacock, T. H., James, J., Sealy, J. E., & Iqbal, M. (2019). A global perspective on H9N2 avian influenza virus. Viruses, 11(7), 620. [DOI:10.3390/v11070620][PMID] Perez DR, C. S., Cardenas-Garcia S, Ferreri LM., Santos J, Rajao DS., Poole. (2019) Avian Influenza V Samal SK (ed), Avian Virology current research and future trends. Poole; Caister Academic Press. Pirkhezranian, Z., Tahmoorespur, M., Daura, X., Monhemi, H., & Sekhavati, M. H. (2020). Interaction of camel Lactoferrin derived peptides with DNA: A molecular dynamics study. BMC Genomics, 21(1), 60. [DOI:10.1186/s12864-020-6458-7][PMID] Porter, K. A., Xia, B., Beglov, D., Bohnuud, T., Alam, N., & Schueler-Furman, O., et al. (2017). ClusPro PeptiDock: Efficient global docking of peptide recognition motifs using FFT. Bioinformatics (Oxford, England), 33(20), 3299–3301. [DOI:10.1093/bioinformatics/btx216][PMID] Pusch, E. A., & Suarez, D. L. (2018). The Multifaceted Zoonotic Risk of H9N2 Avian Influenza. Veterinary Sciences, 5(4), 82. [DOI:10.3390/vetsci5040082][PMID] Radmehri, M., Talebi, A., Mousaviyan, S. M., Gholipour, M. A. J., & Taghizadeh, M. (2021). Comparative study on the efficacy of MF 59, ISA70 VG, and nano-aluminum hydroxide adjuvants, alone and with nano-selenium on humoral immunity induced by a bivalent newcastle+ avian influenza vaccine in chickens. Archives of Razi Institute, 76(5), 1213-1220. [PMID] Rajik, M., Jahanshiri, F., Omar, A. R., Ideris, A., Hassan, S. S., & Yusoff, K. (2009). Identification and characterisation of a novel anti-viral peptide against avian influenza virus H9N2. Virology Journal, 6,[DOI:10.1186/1743-422X-6-74][PMID] Rosenberg, M. R., & Casarotto, M. G. (2010). Coexistence of two adamantane binding sites in the influenza A M2 ion channel. Proceedings of the National Academy of Sciences of the United States of America, 107(31), 13866–13871. [DOI:10.1073/pnas.1002051107][PMID] Roshanak, S., Pirkhezranian, Z., Shahidi, F., & Hadi Sekhavati, M. (2020). Antibacterial activity of cLFchimera and its synergistic potential with antibiotics against some foodborne pathogens bacteria.[Link] Sala, A., Ardizzoni, A., Ciociola, T., Magliani, W., Conti, S., & Blasi, E., et al. (2019). Antiviral activity of synthetic peptides derived from physiological proteins. Intervirology, 61(4), 166–173. [DOI:10.1159/000494354] [PMID] Sauerbrei, A., Haertl, A., Brandstaedt, A., Schmidtke, M., & Wutzler, P. (2006). Utilization of the embryonated egg for in vivo evaluation of the anti-influenza virus activity of neuraminidase inhibitors. Medical Microbiology and Immunology, 195(2), 65–71. [DOI: 10.1007/s00430-005-0002-x] [PMID] Schrödinger L, D. W. (2020) PyMOL. Retrieved from: [Link] Seto, W., J. Conly, C. Pessoa-Silva, Malik, M., & Eremin, S. (2013). Infection prevention and control measures for acute respiratory infections in healthcare settings: An update. Eastern Mediterranean Health Journal, 19 (Suppl 1), S39-47. [DOI:10.26719/2013.19.supp1.S39] Shah, S. I. A., Tipu, M. Y., Aslam, A., Khan, A. U., Shafee, M., & Khan, S. A., et al. (2021). Elucidating antiviral activity of Curcuma longa against H9 N2 influenza virus using embryonated chicken egg m Tropical Biomedicine, 38(3), 353–359. [DOI:10.47665/tb.38.3.078] [PMID] Sharif, A., & Ahmad, T. (2018). Preventing vaccine failure in poultry flocks. In N. Wang & T. Wang (Eds.), Immunization - Vaccine Adjuvant Delivery System and Strategies. London: [DOI:10.5772/intechopen.79330] Shen, H., Wu, B., Li, G., Chen, F., Luo, Q., & Chen, Y., et al. (2014). H9N2 subtype avian influenza viruses in China: Current advances and future perspectives. Hosts and Viruses, 1(2), 54-63. [Link] Shen, Y., Maupetit, J., Derreumaux, P., & Tufféry, P. (2014). Improved PEP-FOLD approach for peptide and miniprotein structure prediction. Journal of Chemical Theory and Computation, 10(10), 4745–4758. [DOI:10.1021/ct500592m] [PMID] Marashi, S. M., Sheykhi, N., Modirrousta, H., Nikbakht Broujeni, G., Vasfimarandi, M., & Fereidouni, S. (2021). Surveillance of Highly Pathogenic Avian Influenza Viruses (H5Nx Subtypes) in Wild Birds in Iran, 2014-2019. Archives of Razi Institute, 76(3), 487–498. [PMID] Skalickova, S., Heger, Z., Krejcova, L., Pekarik, V., Bastl, K., & Janda, J., et al. (2015). Perspective of use of antiviral peptides against influenza virus. Viruses, 7(10), 5428–5442. [DOI:10.3390/v7102883][PMID] Song, W., & Qin, K. (2020). Human‐infecting influenza A (H9N2) virus: A forgotten potential pandemic strain? Zoonoses and Public Health, 67(3), 203–212. [DOI:10.1111/zph.12685] [PMID] Swayne, D. E., Suarez, D. L., & Sims, L. D. (2020). Influenza. In D. E. Swayne, M. Boulianne, Ch. M. Logue, L. R. McDougald, V. Nair, & D. L Suarez (Eds.), Diseases of Poultry(pp. 210-256). New Jersey: John Wiley & Sons, Inc. [DOI:10.1002/9781119371199.ch6] Tahmoorespur, M., Azghandi, M., Javadmanesh, A., Meshkat, Z., & Sekhavati, M. H. (2020). A novel chimeric anti-HCV peptide derived from camel lactoferrin and molecular level insight on its interaction with E2. International Journal of Peptide Research and Therapeutics, 26, 1593-1605. [DOI:10.1007/s10989-019-09972-7] Tanhaeian, A., Sekhavati, M. H., & Moghaddam, M. (2020). Antimicrobial activity of some plant essential oils and an antimicrobial-peptide against some clinically isolated pathogens. Chemical and Biological Technologies in Agriculture, 7, 1-11. [Link] Tanhaiean, A., Azghandi, M., Razmyar, J., Mohammadi, E., & Sekhavati, M. (2018). Recombinant production of a chimeric antimicrobial peptide in E. coli and assessment of its activity against some avian clinically isolated pathogens. Microbial Pathogenesis, 122, 73–78. [DOI:10.1016/j.micpath.2018.06.012] [PMID] Tanhaieian, A., Sekhavati, M. H., Ahmadi, F. S., & Mamarabadi, M. (2018). Heterologous expression of a broad-spectrum chimeric antimicrobial peptide in Lactococcus lactis: Its safety and molecular modeling evaluation. Microbial Pathogenesis, 125, 51–59. [DOI:10.1016/j.m2018.09.016] [PMID] Tare, D. S., & Pawar, S. D. (2015). Use of embryonated chicken egg as a model to study the susceptibility of avian influenza H9N2 viruses to oseltamivir carboxylate. Journal of Virological Methods, 224, 67–72. [DOI:10.1016/j.jvir2015.08.009] [PMID] Tolosa, L., Donato, M. T., & Gómez-Lechón, M. J. (2015). General cytotoxicity assessment by means of the MTT assay. Methods in Molecular Biology (Clifton, N.J.), 1250, 333–348. [DOI:10.1007/978-1-4939-2074-7_26] [PMID] Torres, N. I., Noll, K. S., Xu, S., Li, J., Huang, Q., & Sinko, P. J., et al. (2013) Safety, formulation and in vitro antiviral activity of the antimicrobial peptide subtilosin against herpes simplex virus type 1. Probiotics and Antimicrobial Proteins, 5(1), 26– [DOI:10.1007/s12602-012-9123-x][PMID] Tripathi, A., & Bankaitis, V. A. (2017). Molecular docking: From lock and key to combination lock. Journal of Molecular Medicine and Clinical Applications, 2(1), 10.16966/2575-0305.106. [DOI:10.16966/2575-0305.106][PMID] Tsuruoka, Y., Nakajima, T., Kanda, M., Hayashi, H., Matsushima, Y., & Yoshikawa, S., et al. (2017). Simultaneous determination of amantadine, rimantadine, and memantine in processed products, chicken tissues, and eggs by liquid chromatography with tandem mass spectrometry. Journal of Chromatography. B, Analytical Technologies in The Biomedical and Life Sciences, 1044-1045, 142–148. [DOI:10.1016/j.jchromb.2017.01.014] [PMID] VasfiMarandi, M., Bozorgmehri Fard, M.H. (2002) Isolation of H9N2 Subtype of Avian Influenza Viruses during an Outbreak in Chickens in Iran. Iranian Biomedical Journal 6: 13-17. [Link] Villegas, P. (2008) Titration of biological suspensions. A laboratory manual for the isolation, identification, and characterization of avian pathogens. Jacksonville: American Association of Avian Pathologists. Watanabe, T., & Kawaoka, Y. (2015). Influenza virus-host interactomes as a basis for antiviral drug development. Current Opinion in Virology, 14, 71–78. [DOI:10.1016/j.coviro.2015.08.008][PMID] Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., & Gumienny, R., et al. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. [DOI:10.1093/nar/gky427][PMID] Yang, J., Li, M., Shen, X., & Liu, S. (2013). Influenza A virus entry inhibitors targeting the hemagglutinin. Viruses, 5(1), 352–373.[DOI:10.3390/v5010352][PMID] Yeaman, M. R., & Yount, N. Y. (2003). Mechanisms of antimicrobial peptide action and resista Pharmacological Reviews, 55(1), 27–55. [DOI:10.1124/pr.55.1.2] [PMID] Zhao, H., To, K. K. W., Sze, K. H., Yung, T. T., Bian, M., & Lam, H., et al. (2020). A broad-spectrum virus-and host-targeting peptide against respiratory viruses including influenza virus and SARS-CoV-2. Nature Communications, 11(1), 4252. [DOI:10.1038/s41467-020-17986-9][PMID] Zhao, H., Zhou, J., Zhang, K., Chu, H., Liu, D., & Poon, V. K., et al. (2016). A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses. Scientific Reports, 6, [DOI:10.1038/srep22008] [PMID] | ||
مراجع | ||
Ahmadi, S., Rajabi, , & Vasfi-Marandi, M. (2018). Evaluation of the antiviral effects of aqueous extracts of red and yellow onions (Allium Cepa) against avian influenza virus subtype H9N2. Iranian Journal of Veterinary Science and Technology, 10(2), 23-27. [DOI:10.22067/veterinary.v2i10.74060]
Abdi, H. M., Mayahi, M., Boroomand, Z., & Shoshtari, A. (2021). Avian Influenza-Killed Vaccine on Tissue Distribution and Shedding of Avian Influenza Virus H9N2 in Ducklings. Archives of Razi Institute, 76(3), 437–444. [DOI:10.22092/ar2020.342078.1452]
Ali, M., Yaqub, T., Mukhtar, N., Imran, M., Ghafoor, A., & Shahid, M. F., et al. (2019). Avian influenza A (H9N2) virus in poultry worker, Pakistan, 2015. Emerging Infectious Diseases, 25(1), 136–139. [DOI:10.3201/eid2501.180618][PMID]
Amarelle, L., Lecuona, E., & Sznajder, J. I. (2017). Anti-influenza treatment: Drugs currently used and under development. Tratamiento Antigripal: Fármacos Actualmente Utilizados y Nuevos Agentes en Desarrollo. Archivos de Bronconeumologia, 53(1), 19–26. [DOI:10.1016/j.arbres.2016.07.004][PMID]
Anand, U., Jacobo-Herrera, N., Altemimi, A., & Lakhssassi, N. (2019). A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites, 9(11), 258. [DOI:10.3390/metabo9110258][PMID]
Arbi, M., Larbi, I., Nsiri, J., Behi, I. E., Rejeb, A., & Miled, K., et al. (2022). Inhibition of avian influenza virus H9N2 infection by antiviral hexapeptides that target viral attachment to epithelial cells. Virus Research, 313, [DOI:10.1016/j.virusres.2022.198745] [PMID]
Bahar, A. A., & Ren, D. (2013). Antimicrobial peptides. Pharmaceuticals, 6(12), 1543-1575. [DOI:10.3390/ph6121543][PMID]
Bahuguna, A., Khan, I., Bajpai, V. K., & Kang, S. C. (2017). MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh Journal of Pharmacology, 12(2), 115-118. [Link]
Chen, H., Yuan, H., Gao, R., Zhang, J., Wang, D., & Xiong, Y., et al. (2014). Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: A descriptive study. Lancet (London, England), 383(9918), 714–721. [DOI:10.1016/S0140-6736(14)60111-2] [PMID]
Chen, J. J., Lin, P. H., Lin, Y. Y., Pu, K. Y., Wang, C. F., & Lin, S. Y., et al. (2022). Detection of cytopathic effects induced by influenza, parainfluenza, and enterovirus using deep convolution neural network. Biomedicines, 10(1), 70. [DOI:10.3390/biomedicines10010070][PMID]
Daneshmand, A., Kermanshahi, H., Sekhavati, M. H., Javadmanesh, A., & Ahmadian, M. (2019). Antimicrobial peptide, cLF36, affects performance and intestinal morphology, microflora, junctional proteins, and immune cells in broilers challenged with E. coli. Scientific Reports, 9(1), 14176. [DOI:10.1038/s41598-019-50511-7][PMID]
Daneshmand, A., Kermanshahi, H., Sekhavati, M. H., Javadmanesh, A., Ahmadian, M., & Alizadeh, M., et al. (2020).Effects of cLFchimera peptide on intestinal morphology, integrity, microbiota, and immune cells in broiler chickens challenged with necrotic enteri Scientific Reports, 10(1), 17704. [DOI:10.1038/s41598-020-74754-x][PMID]
De Angelis, M., Casciaro, B., Genovese, A., Brancaccio, D., Marcocci, M. E., & Novellino, E., et al. (2021). Temporin G, an amphibian antimicrobial peptide against influenza and parainfluenza respiratory viruses: Insights into biological activity and mechanism of action. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 35(2), e21358. [DOI:10.1096/fj.202001885RR] [PMID]
Fan, J., Fu, A., & Zhang, L. (2019). Progress in molecular docking. Quantitative Biology, 7, 83-89. [Link]
Ghoke, S. S., Sood, R., Kumar, N., Pateriya, A. K., Bhatia, S., & Mishra, A., et al. (2018). Evaluation of antiviral activity of Ocimum sanctum and Acacia arabica leaves extracts against H9N2 virus using embryonated chicken egg model. BMC Complementary and Alternative Medicine, 18(1), 174. [DOI:10.1186/s12906-018-2238-1][PMID]
Hartung, T. (2007) Food for thought... on cell culture. ALTEX, 24(3), 143–152. [DOI:10.14573/altex.2007.3.143]
Hussain, M., Galvin, H. D., Haw, T. Y., Nutsford, A. N., & Husain, M. (2017). Drug resistance in influenza A virus: The epidemiology and management. Infection and Drug Resistance, 10, 121–134. [DOI:10.2147/IDR.S105473][PMID]
Jones, J. C., Turpin, E. A., Bultmann, H., Brandt, C. R., & Schultz-Cherry, S. (2006). Inhibition of influenza virus infection by a novel antiviral peptide that targets viral attachment to cells. Journal of Virology, 80(24), 11960–11967. [DOI:10.1128/JVI.01678-06][PMID]
Kang, H. K., Kim, C., Seo, C. H., & Park, Y. (2017). The therapeutic applications of antimicrobial peptides (AMPs): A patent review. Journal of Microbiology (Seoul, Korea), 55(1), 1–12. [DOI:10.1007/s12275-017-6452-1] [PMID]
Koszalka, P., Tilmanis, D., & Hurt, A. C. (2017). Influenza antivirals currently in late‐phase clinical trial. Influenza and Other Respiratory Viruses, 11(3), 240–246. [DOI:10.1111/irv.12446][PMID]
Lam, T. T., Wang, J., Shen, Y., Zhou, B., Duan, L., & Cheung, C. L., et al. (2013). The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature, 502(7470), 241–244. [DOI:10.1038/nature12515][PMID]
Lehnert, R., Pletz, M., Reuss, A., & Schaberg, T. (2016). Antiviral medications in seasonal and pandemic influenza: A systematic review. Deutsches Arzteblatt International, 113(47), 799–807. [DOI:10.3238/arztebl.2016.0799][PMID]
Lei, J., Sun, L., Huang, S., Zhu, C., Li, P., & He, J., et al. (2019).The antimicrobial peptides and their potential clinical applications. American Journal of Translational Research, 11(7), 3919-3931. [PMID]
Li, Q., Zhao, Z., Zhou, D., Chen, Y., Hong, W., & Cao, L., et (2011). Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses. Peptides, 32(7), 1518–1525. [DOI:10.1016/j.peptides.2011.05.015][PMID]
Liu, R., Zhao, B., Li, Y., Zhang, X., Chen, S., & Chen, T. (2018). Clinical and epidemiological characteristics of a young child infected with avian influenza A (H9N2) virus in China. The Journal of International Medical Research, 46(8), 3462–3467. [DOI:10.1177/0300060518779959][PMID]
Mehrabadi, M. H. F., Ghalyanchilangeroudi, A., Rabiee, M. H., & Tehrani, F. (2019). Prevalence and risk factors of avian influenza H9N2 among backyard birds in Iran in 2015. Asian Pacific Journal of Tropical Medicine, 12(12), 559-564. [Link]
Mehrbod, P., Abdalla, M. A., Njoya, E. M., Ahmed, A. S., Fotouhi, F., & Farahmand, B., et al. (2018). South African medicinal plant extracts active against influenza A virus. BMC Complementary and Alternative Medicine, 18(1), 112. [DOI:10.1186/s12906-018-2184-y][PMID]
Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. [DOI:10.2174/157340911795677602][PMID]
Michálek, P., O. Zítka, R. Guráň, V. Milosavljevič, P. Kopel, V. Adam and Z. Hegar (2015). Effect of melittin on influenza-infected chicken embryos, MendelNet. 2015, 475-479. [Link]
Mohammadi, E., Sekhavati, M. H., Pirkhezranian, Z., Shafizade, N., Dashti, S., & Saedi, N. (2023). Designing and computational analysis of chimeric avian influenza antigen: A yeast-displayed universal and cross-protective vaccine candidate. Journal of Poultry Sciences and Avian Diseases, 1(1). [DOI:10.61838/kman.jpsad.1.1.1]
Mostafa, A., Abdelwhab, E. M., Mettenleiter, T. C., & Pleschka, S. (2018). Zoonotic potential of influenza A viruses: A comprehensive overview. Viruses, 10(9), 497. [DOI:10.3390/v10090497][PMID]
Motamedinasab, S. I., Pourbakhsh, S. A., & Nazarpak, H. H. (2023). Evaluation of inactivated vaccine’s Antibody response to different H9N2 Vaccination programs with Hemagglutination Inhibition (HI) assay. Journal of Poultry Sciences and Avian Diseases, 1(3), 51-58. [DOI:10.61838/kman.jpsad.1.3.5]
Nagy, A., Mettenleiter, T. C., & Abdelwhab, E. M. (2017). A brief summary of the epidemiology and genetic relatedness of avian influenza H9N2 virus in birds and mammals in the Middle East and North Africa. Epidemiology and Infection, 145(16), 3320–3333. [DOI:10.1017/S0950268817002576][PMID]
Nili, H., & Asasi, K. (2003). Avian influenza (H9N2) outbreak in Iran. Avian Diseases, 47(3 Suppl), 828–831. [DOI: 10.1637/0005-2086-47.s3.828] [PMID]
Ong, Z. Y., Wiradharma, N., & Yang, Y. Y. (2014). Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Advanced Drug Delivery Reviews, 78, 28–45. [DOI:10.1016/j.addr.2014.10.013] [PMID]
Özbil, M. (2019). Computational investigation of influenza A virus M2 protein inhibition mechanism by ion channel blockers. Turkish Journal of Chemistry, 43(1), 335-351. [Link]
Pagadala, N. S., Syed, K., & Tuszynski, J. (2017). Software for molecular docking: A review. Biophysical Reviews, 9(2), 91–102. [DOI:10.1007/s12551-016-0247-1][PMID]
Peacock, T. H., James, J., Sealy, J. E., & Iqbal, M. (2019). A global perspective on H9N2 avian influenza virus. Viruses, 11(7), 620. [DOI:10.3390/v11070620][PMID]
Perez DR, C. S., Cardenas-Garcia S, Ferreri LM., Santos J, Rajao DS., Poole. (2019) Avian Influenza V Samal SK (ed), Avian Virology current research and future trends. Poole; Caister Academic Press.
Pirkhezranian, Z., Tahmoorespur, M., Daura, X., Monhemi, H., & Sekhavati, M. H. (2020). Interaction of camel Lactoferrin derived peptides with DNA: A molecular dynamics study. BMC Genomics, 21(1), 60. [DOI:10.1186/s12864-020-6458-7][PMID]
Porter, K. A., Xia, B., Beglov, D., Bohnuud, T., Alam, N., & Schueler-Furman, O., et al. (2017). ClusPro PeptiDock: Efficient global docking of peptide recognition motifs using FFT. Bioinformatics (Oxford, England), 33(20), 3299–3301. [DOI:10.1093/bioinformatics/btx216][PMID]
Pusch, E. A., & Suarez, D. L. (2018). The Multifaceted Zoonotic Risk of H9N2 Avian Influenza. Veterinary Sciences, 5(4), 82. [DOI:10.3390/vetsci5040082][PMID]
Radmehri, M., Talebi, A., Mousaviyan, S. M., Gholipour, M. A. J., & Taghizadeh, M. (2021). Comparative study on the efficacy of MF 59, ISA70 VG, and nano-aluminum hydroxide adjuvants, alone and with nano-selenium on humoral immunity induced by a bivalent newcastle+ avian influenza vaccine in chickens. Archives of Razi Institute, 76(5), 1213-1220. [PMID]
Rajik, M., Jahanshiri, F., Omar, A. R., Ideris, A., Hassan, S. S., & Yusoff, K. (2009). Identification and characterisation of a novel anti-viral peptide against avian influenza virus H9N2. Virology Journal, 6,[DOI:10.1186/1743-422X-6-74][PMID]
Rosenberg, M. R., & Casarotto, M. G. (2010). Coexistence of two adamantane binding sites in the influenza A M2 ion channel. Proceedings of the National Academy of Sciences of the United States of America, 107(31), 13866–13871. [DOI:10.1073/pnas.1002051107][PMID]
Roshanak, S., Pirkhezranian, Z., Shahidi, F., & Hadi Sekhavati, M. (2020). Antibacterial activity of cLFchimera and its synergistic potential with antibiotics against some foodborne pathogens bacteria.[Link]
Sala, A., Ardizzoni, A., Ciociola, T., Magliani, W., Conti, S., & Blasi, E., et al. (2019). Antiviral activity of synthetic peptides derived from physiological proteins. Intervirology, 61(4), 166–173. [DOI:10.1159/000494354] [PMID]
Sauerbrei, A., Haertl, A., Brandstaedt, A., Schmidtke, M., & Wutzler, P. (2006). Utilization of the embryonated egg for in vivo evaluation of the anti-influenza virus activity of neuraminidase inhibitors. Medical Microbiology and Immunology, 195(2), 65–71. [DOI: 10.1007/s00430-005-0002-x] [PMID]
Schrödinger L, D. W. (2020) PyMOL. Retrieved from: [Link]
Seto, W., J. Conly, C. Pessoa-Silva, Malik, M., & Eremin, S. (2013). Infection prevention and control measures for acute respiratory infections in healthcare settings: An update. Eastern Mediterranean Health Journal, 19 (Suppl 1), S39-47. [DOI:10.26719/2013.19.supp1.S39]
Shah, S. I. A., Tipu, M. Y., Aslam, A., Khan, A. U., Shafee, M., & Khan, S. A., et al. (2021). Elucidating antiviral activity of Curcuma longa against H9 N2 influenza virus using embryonated chicken egg m Tropical Biomedicine, 38(3), 353–359. [DOI:10.47665/tb.38.3.078] [PMID]
Sharif, A., & Ahmad, T. (2018). Preventing vaccine failure in poultry flocks. In N. Wang & T. Wang (Eds.), Immunization - Vaccine Adjuvant Delivery System and Strategies. London: [DOI:10.5772/intechopen.79330]
Shen, H., Wu, B., Li, G., Chen, F., Luo, Q., & Chen, Y., et al. (2014). H9N2 subtype avian influenza viruses in China: Current advances and future perspectives. Hosts and Viruses, 1(2), 54-63. [Link]
Shen, Y., Maupetit, J., Derreumaux, P., & Tufféry, P. (2014). Improved PEP-FOLD approach for peptide and miniprotein structure prediction. Journal of Chemical Theory and Computation, 10(10), 4745–4758. [DOI:10.1021/ct500592m] [PMID]
Marashi, S. M., Sheykhi, N., Modirrousta, H., Nikbakht Broujeni, G., Vasfimarandi, M., & Fereidouni, S. (2021). Surveillance of Highly Pathogenic Avian Influenza Viruses (H5Nx Subtypes) in Wild Birds in Iran, 2014-2019. Archives of Razi Institute, 76(3), 487–498. [PMID]
Skalickova, S., Heger, Z., Krejcova, L., Pekarik, V., Bastl, K., & Janda, J., et al. (2015). Perspective of use of antiviral peptides against influenza virus. Viruses, 7(10), 5428–5442. [DOI:10.3390/v7102883][PMID]
Song, W., & Qin, K. (2020). Human‐infecting influenza A (H9N2) virus: A forgotten potential pandemic strain? Zoonoses and Public Health, 67(3), 203–212. [DOI:10.1111/zph.12685] [PMID]
Swayne, D. E., Suarez, D. L., & Sims, L. D. (2020). Influenza. In D. E. Swayne, M. Boulianne, Ch. M. Logue, L. R. McDougald, V. Nair, & D. L Suarez (Eds.), Diseases of Poultry(pp. 210-256). New Jersey: John Wiley & Sons, Inc. [DOI:10.1002/9781119371199.ch6]
Tahmoorespur, M., Azghandi, M., Javadmanesh, A., Meshkat, Z., & Sekhavati, M. H. (2020). A novel chimeric anti-HCV peptide derived from camel lactoferrin and molecular level insight on its interaction with E2. International Journal of Peptide Research and Therapeutics, 26, 1593-1605. [DOI:10.1007/s10989-019-09972-7]
Tanhaeian, A., Sekhavati, M. H., & Moghaddam, M. (2020). Antimicrobial activity of some plant essential oils and an antimicrobial-peptide against some clinically isolated pathogens. Chemical and Biological Technologies in Agriculture, 7, 1-11. [Link]
Tanhaiean, A., Azghandi, M., Razmyar, J., Mohammadi, E., & Sekhavati, M. (2018). Recombinant production of a chimeric antimicrobial peptide in E. coli and assessment of its activity against some avian clinically isolated pathogens. Microbial Pathogenesis, 122, 73–78. [DOI:10.1016/j.micpath.2018.06.012] [PMID]
Tanhaieian, A., Sekhavati, M. H., Ahmadi, F. S., & Mamarabadi, M. (2018). Heterologous expression of a broad-spectrum chimeric antimicrobial peptide in Lactococcus lactis: Its safety and molecular modeling evaluation. Microbial Pathogenesis, 125, 51–59. [DOI:10.1016/j.m2018.09.016] [PMID]
Tare, D. S., & Pawar, S. D. (2015). Use of embryonated chicken egg as a model to study the susceptibility of avian influenza H9N2 viruses to oseltamivir carboxylate. Journal of Virological Methods, 224, 67–72. [DOI:10.1016/j.jvir2015.08.009] [PMID]
Tolosa, L., Donato, M. T., & Gómez-Lechón, M. J. (2015). General cytotoxicity assessment by means of the MTT assay. Methods in Molecular Biology (Clifton, N.J.), 1250, 333–348. [DOI:10.1007/978-1-4939-2074-7_26] [PMID]
Torres, N. I., Noll, K. S., Xu, S., Li, J., Huang, Q., & Sinko, P. J., et al. (2013) Safety, formulation and in vitro antiviral activity of the antimicrobial peptide subtilosin against herpes simplex virus type 1. Probiotics and Antimicrobial Proteins, 5(1), 26– [DOI:10.1007/s12602-012-9123-x][PMID]
Tripathi, A., & Bankaitis, V. A. (2017). Molecular docking: From lock and key to combination lock. Journal of Molecular Medicine and Clinical Applications, 2(1), 10.16966/2575-0305.106. [DOI:10.16966/2575-0305.106][PMID]
Tsuruoka, Y., Nakajima, T., Kanda, M., Hayashi, H., Matsushima, Y., & Yoshikawa, S., et al. (2017). Simultaneous determination of amantadine, rimantadine, and memantine in processed products, chicken tissues, and eggs by liquid chromatography with tandem mass spectrometry. Journal of Chromatography. B, Analytical Technologies in The Biomedical and Life Sciences, 1044-1045, 142–148. [DOI:10.1016/j.jchromb.2017.01.014] [PMID]
VasfiMarandi, M., Bozorgmehri Fard, M.H. (2002) Isolation of H9N2 Subtype of Avian Influenza Viruses during an Outbreak in Chickens in Iran. Iranian Biomedical Journal 6: 13-17. [Link]
Villegas, P. (2008) Titration of biological suspensions. A laboratory manual for the isolation, identification, and characterization of avian pathogens. Jacksonville: American Association of Avian Pathologists.
Watanabe, T., & Kawaoka, Y. (2015). Influenza virus-host interactomes as a basis for antiviral drug development. Current Opinion in Virology, 14, 71–78. [DOI:10.1016/j.coviro.2015.08.008][PMID]
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., & Gumienny, R., et al. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. [DOI:10.1093/nar/gky427][PMID]
Yang, J., Li, M., Shen, X., & Liu, S. (2013). Influenza A virus entry inhibitors targeting the hemagglutinin. Viruses, 5(1), 352–373.[DOI:10.3390/v5010352][PMID]
Yeaman, M. R., & Yount, N. Y. (2003). Mechanisms of antimicrobial peptide action and resista Pharmacological Reviews, 55(1), 27–55. [DOI:10.1124/pr.55.1.2] [PMID]
Zhao, H., To, K. K. W., Sze, K. H., Yung, T. T., Bian, M., & Lam, H., et al. (2020). A broad-spectrum virus-and host-targeting peptide against respiratory viruses including influenza virus and SARS-CoV-2. Nature Communications, 11(1), 4252. [DOI:10.1038/s41467-020-17986-9][PMID]
Zhao, H., Zhou, J., Zhang, K., Chu, H., Liu, D., & Poon, V. K., et al. (2016). A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses. Scientific Reports, 6, [DOI:10.1038/srep22008] [PMID] | ||
آمار تعداد مشاهده مقاله: 227 تعداد دریافت فایل اصل مقاله: 456 |