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Abstract 

In this paper, a thermo-elastic analysis is presented to obtain stresses, 

displacements, and the thermal field in the axisymmetric clamped–clamped 

rotating thick cylindrical shell with nonlinear variable thickness. This shell is 

subjected to mechanical and thermal load in two dimensions. The governing 

equations are formulated as a set of non-homogeneous ordinary differential 

equations with variable coefficients. The system of partial differential 

equations is semi-analytically solved by using (MLM). The solution of 

equations is obtained by applying boundary conditions and ensuring 

continuity between the layers. The problem is also solved, using the finite 

element method (FEM). The obtained results of the disk form multi-layers 

method (MLM) are compared with those of FEM. 

Keywords: Thermo-elastic; Thick cylinder; variable thickness; Multi-layer method (MLM); First-order 

shear deformation theory (FSDT); Bi-dimensional. 

1. Introduction 

Shells serve as prevalent structural components across numerous engineering applications, encompassing pressure 

vessels, submarine and ship hulls, aircraft wings and fuselages, pipes, rocket and missile exteriors, automobile tires, 

concrete roofs, chimneys, cooling towers, liquid storage tanks, and an array of other structures. Additionally, they 

exist in nature, manifested in entities such as eggs, leaves, inner ears, skulls, and geological formations. The art of 
crafting shell structures has been honed by humans over centuries [1]. A number of papers on shells are available 

(Fatehi and Nejad, [2]; Nejad et al. [3]; Mazarei et al. [4]; Nejad and Kashkoli [5]; Shahani and Kiarasi [6]; Nejad et 

al. [7]; Taghizade et al. [8]; Farajpour and Rastgoo [9]; Kashkoli et al. [10]; Nejad et al. [11]; Ebrahimi et al. [12]; 

Kashkoli et al. [13]; Dindarloo and Li [14]; Lamba [15]; Dehghan et al. [16]; Nejad and Fatehi [17]; Kashkoli et al. [18]; 

Delouei et al. [19]; Sofiyev and Fantuzzi [20]; Nejad et al. [21]; Zhang and She [22]; Ipek [23]; Kashkoli and Nejad [24, 

25]). The practical and intriguing importance of shells in addressing temperature-related challenges has also captured 

the attention of researchers. Panferov [26] utilized the successive approximations method to derive a solution to the 

problem of thermal loading on an elastic truncated conical pipe that has a uniform thickness. Hongjun et al. [27] 

investigated the elasticity of heterogeneous thick-walled cylinders using the Lamé method to analyze cases involving 

linear and exponential changes in properties within the thick-walled cylinders. Arefi and Rahimi [28] investigated the 

thermoelastic behavior of a cylinder made of functionally graded material (FGM) when subjected to both mechanical 
and thermal loads. Nejad and Rahimi [29] studied deformations and stresses in FGM pressurized thick hollow cylinder 

based on closed form solutions for one-dimensional steady-state thermal stresses. Xin et al. [30] introduced a thermo-

elasticity solution for one-dimensional FG cylinders that is based on the constituents' volume fraction and accounts 
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for both thermal and mechanical loads. Nejad et al. [31] presented on a consistent 3-D set of field equations developed 

by tensor analysis on an FGM thick shell with variable thickness. Yasinskyy and Tokova [32] conducted a study on a 

one-dimensional temperature transient analysis and thermal stress analysis in a FG cylinder. Ghannad and Nejad [33] 

presented an elastic analysis of axisymmetric thick-walled cylinders with different boundary conditions at the two 

ends based on first-order shear deformation theory (FSDT) and the virtual work principle. Kang [34] studied thick-

walled shells for arbitrary geometry and thickness variations using three-dimensional elasticity theory. The equations 

are derived using the continuum mechanics in curvilinear coordinates. Nejad et al. [35] developed an elastic solution 

to determine displacements and stresses in a thick truncated conical shell under uniform pressure. The solution 

employed the MLM. Ghannad et al. [36] studied displacements and stresses in pressurized thick cylindrical shells with 

variable thickness using the perturbation technique. Sundarasivarao and Ganesan [37] investigated a conical shell by 

using the finite element technique that was exposed to pressure. Mirsky and Hermann [38] studied the solution for 

thick cylindrical shells made of isotropic materials and uniform by utilizing the FSDT. Witt [39] demonstrated 
axisymmetric temperature distributions in conical shells using a differential equation. To solve this equation, Witt 

proposed an assumption that the temperature distribution could be a combination of hyperbolic and cubic functions. 

Eipakchi et al. [40] have analyzed thick-walled cone structures subjected to varying internal pressure. In this study, 

equations are derived using second-order shear deformation theory, and solutions are obtained through the 

perturbation theory approach. Ghannad and Nejad [41] investigated elastic solution of pressurized clamped-clamped 

thick cylindrical shells made of FGMs based on the FSDT. Jane and Wu [42] presented research on the problem of 

thermoelasticity using the curvilinear circular conical coordinate system. Ghannad et al. [43] obtained an elastic 

solution for truncated conical shells characterized by their significant thickness and uniform thickness distribution. 

Obata and Noda [44] analyzed steady one-dimensional thermal stresses in hollow cylindrical and spherical objects 

using perturbation technique. Ghannad et al. [45] analyzed the analytical solution of pressurized thick cylindrical shells 

with variable thickness based on the FSDT and using the asymptotic method (MAM) of the perturbation theory. 
Eipakchi [46] utilized a third-order shear deformation theory in conjunction with matched asymptotic expansion 

(MAE) from perturbation theory. This approach was applied to ascertain displacements and stresses within a thick 

conical shell. The shell's properties included homogeneity, isotropy, and axisymmetric, with non-uniform internal 

pressure leading to thickness variations. Kao et al. [47] provided an analytical solution for the buckling of cylindrical 

shell structures subjected to axial pressure. The symmetric and asymmetric axial loadings were solved using 

perturbation theory and Fourier series. Nejad et al. [48] presented semi-analytically of FG rotating thick hollow 

cylinder with variable thickness and clamped ends based on the FSDT using MLM. Civalek [49] utilized free vibration 

analysis in the of laminated conical shells. The author studied the cases of isotropic, orthotropic, and laminated 

materials and used the numerical solution of governing differential equations of motion based on transverse shear 

deformation theory to obtain the results. Nejad et al. [50] studied a mathematical solution that partially uses analysis 

and partially uses numerical methods to calculate the displacements and stresses in a cylindrical shell with varying 

thickness under a non-uniform pressure They systematically examined how the primary factors of the problem affect 
displacement and stress levels. Ray et al. [51] conducted an analysis of heat conduction through conical shells with 

varying inner radii and thicknesses. Nejad et al. [52] studied a semi-analytical solution in rotating thick 

truncated conical shells made of FGMs under non-uniform pressure using FSDT and MLM. Jabbari et al. [53] 

employed a research on the thermoelastic analysis of a thick constant thickness truncated conical shell that rotates, 

and is exposed to a temperature gradient and non-uniform internal pressure. Jabbari et al. [54] utilized a thermo-elastic 

analysis of a rotating truncated conical shell subjected to temperature, internal pressure, and external pressure by using 

the FSDT and MLM. They derived a solution for the problem by reducing it to a reverse thermo-elasticity problem.  

Hamzah et al. [55] investigated a comprehensive study of the vibration characteristics of cylindrical shells under 

different ambient temperatures by using (FEM). Kashkoli [56] studied a thermomechanical solution for creep analysis 

of FG thick cylindrical pressure vessels with variable thickness using the FSDT and MLM. Gharooni et al. [57] studied 

an analytical solution in axisymmetric clamped-clamped thick cylindrical shells made of FGM Using the third-order 
shear deformation theory. Jabbari et al. [58] analyzed Thermo-elastic analysis in rotating truncated conical shells with 

varying thickness made of FGMs higher-order shear deformation theory and MLM. Lai et al. [59] introduced an 

analytical method for the analysis of thick-walled cylindrical shells with circumferential corrugations. The formulation 

and solution involve shear deformation theory, by using eigenvectors and Fourier series. Nejad et al. [60] presented 

thermo-elastic analysis in a FG thick shell of revolution with arbitrary curvature and variable thickness based on 

higher-order shear deformation theory. Aghaienezhad et al. [61] studied GDQ method to analyze the behavior of 

spherical and cylindrical shells subjected to external pressure. Ifayefunmi and Ruan [62] analyzed a computational 

finite element study on the instability behavior of cylinder shells under axial compressive load. Ariatapeh et al. [63] 

presented stress and deformation in thick-walled cylindrical pressure vessels/pipes made of Mooney-Rivlin 

hyperelastic materials. They presented their distributions, and evaluates the effects of various factors. Mannani et al. 

[64] studied the mechanical stress, static strain, and deformation of a cylindrical pressure vessel under mechanical 
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loads using higher-order sinusoidal shear deformation theory and thickness stretching formulation. 

In this study, based on FSDT and multi-layer method, a thermo-elastic analysis presented for thick cylindrical 

shells with nonlinear variable thickness subjected mechanical and bi-directional thermal load. 

2. Problem Formulation 

Consider an axisymmetric, thick-walled cylindrical shell with an inner radius of 
ir and a length of L . This shell 

with nonlinear variable thickness is subjected to uniform pressure, internal pressure 
iP  and external pressure 

oP , while 

also rotating at a constant angular velocity  (Fig. 1.). The displacement and temperature field in this shell is analyzed 

using the FSDT method. In the FSDT, sections initially straight and perpendicular to the mid-plane of the shell will 

remain straight after deformation, although they may not necessarily remain perfectly perpendicular. It is assumed 

that the shear strain remains constant across the thickness of the shell. The position of a typical point ' m ' within the 

thick cylindrical shell element can be determined by R  and z , as: 

 
Fig. 1. Cross section of the rotating thick cylindrical pressure vessels with clamped–clamped ends. 
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where z  is the distance of a typical point from the middle surface and ( )R x  represents the distance of the middle 

surface from the axial direction. Variable thickness h and ( )R x are as follow: 
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where oR  is tapering angle as: 
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2.1. Thermal and mechanical field relation 

In the FSDT, the general axisymmetric displacement field ( ,  x zU U ) and Temperature field ( ,  x z  ) be defined in 

the following form 
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Where 0( )u x  and 0( )w x  are the displacement components of the middle surface. Also, 1( )u x and 1( )w x  are the 

functions used to determine the displacement field. *T  is assumed as the reference temperature and 0  , 1  denote 

the temperature variations relative to a reference temperature, specifically representing the zero-order and first-order 
components, respectively. 

 In the thermal part due to the influence of ( ) 0  = , the temperature distribution function within the cylinder can 
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be expressed solely as a function of the radial coordinate ( r ) and the axial coordinate ( x ), therefore 

( ),T T r x=
 (5) 

In the first-order temperature theory (FTT), the temperature field for this cylinder with varying thickness is 

expressed as follows [39, 65]: 
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where, 0T  and 1T  are the zero-order and first-order components of temperature respectively, which are only a 

function of axial direction x . The strain-displacement relationships within a cylindrical coordinate system are as 

follows: 
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  Also, the calculation of thermal strain and heat flux in an axisymmetric cylinder with varying thickness is 

performed as outlined below 
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where , ,t t t

z x    and t

xz  are the thermal strain. In addition, 
zq  and 

xq  are heat flux components in the radial ( )z  and 

axial ( )x  directions. Also, K  is the thermal conduction coefficient. In Eq. (9), ,ze e  and 
xe  are thermal field 

components in the radial, circumferential, and axial directions which are defined as follows 
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 Taking into account the impact of thermal strain in homogeneous and isotropic materials, the stress-strain 

relations, or constitutive equations, are as follows: 
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Here, , , ,z x zx    and , , ,z x zx     are the stresses and strains in the axial ( )x , circumferential ( )  and radial 

( )z  directions, respectively. Furthermore, , Ε, αv  and T are Poisson’s ratio, modulus of elasticity, the coefficient of 

thermal expansion and temperature gradient, respectively.  
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The normal forces ( ), , ,, ,m t m t m t

z xN N N
,  bending moments ( ), , ,, ,m t m t m t
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, shear force ( )xQ , and the torsional moment 

( )xzM  in terms of mechanical(index m) and thermal (index t) stress resultants are: 

 

(1 )
2

2

(1 )

m zN
z z Rh
mN dz

h
m zN
x x R




 



  
+  

     
=    

   −
   +        

 

2

(1 )2

mM h
zdzzmM h x Rx






   
   

=    
+   −

    

 

2 1
1

2

mQ h
zx

k dz
zxm z RM h

zx



 
    

= +     
    −

   

 

2
1

2

tN hh
zz z

dz
t h RN h xx

       
= +    

    −     

 

 
2

1

2

h
ztM h zdz

z x R
h

 
= +  

 −  

(12) 

In this paper, k  represents a correction factor that is introduced into the shear stress term. In the static state, for 

cylindrical shells 5 / 6k = [66].  

2.2. Equilibrium Equations 

 

In accordance with the principle of virtual work, the changes in strain energy are equal to the changes in external 

work done. The total energy   can be represented as U W = −  where U is the total strain energy of the body and W is 

the total external work done on the body by the total specified external forces. By substituting strain energy and the 

work of external forces, we have 
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By substituting Eqs. (13,14) into U W = − and applying the calculus of variation and the virtual work principle 

with respect to Eq. (12), we derive the governing equations as follows: 
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Additionally, the boundary conditions are as follows: 
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The number of thermal and mechanical resultants does not match the number of equations specified in Eq. (15). 

Therefore, to solve the set of differential equations Eq. (16), it is necessary to express thermal and mechanical 

quantities in terms of the components of the temperature and displacement fields. Eq. (16) defines the boundary 
conditions that must be satisfied at the two ends of the cylinder. By substituting Eq. (12) into Eq. (15), the set of 

differential equations (Eq. (15)) can be rewritten as follows 
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3. Thermo-Elastic Solution 

3.1. Multi-Layered Method (MLM)  

In the Method of Layering (MLM), a homogeneous cylinder subjected to non-uniform pressure is divided into 

disc-shaped layers with a small thickness  k
h . Under these assumptions, the set of nonhomogeneous linear differential 

equations is transformed into a set of nonhomogeneous differential equations with constant coefficients using the 

MLM. The equations for each homogeneous disc with a small thickness are obtained as follows 

  
Fig. 2. Division of cylindrical shell with variable thickness to homogenous disks with constant thickness. 

As a result, the governing equations are transformed into a non-homogeneous set of differential equations featuring 

constant coefficients.  k
x  and  k

R  are length and  radius of middle of disks. The modulus of elasticity  and Poisson’s 

ratio of disks are assumed be constant. The length of middle of an arbitrary disk (Fig. 2.) is as follows 
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Poisson’s ratio of disks is assumed to be constant. The governing equations for each  homogenous disk are derived 

as follow 
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Defining the differential operator ( )P D , Eq. (3) is written as: 
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Thus 
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The above differential equation represents the complete solution, which includes the general solution for the 

homogeneous case. The homogeneous case is as follows: 

    
 

  kk k
y y y

ph
= +

 
(34) 

Therefore, the complete solution for both the thermal and mechanical aspects is expressed as follows: 
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(35) 

In a general state, the thermoelastic solution for each disk comprises 12 unknown values denoted as    
,

k T k

i jC C  and 

an eighth-order polynomial. This polynomial consists of a sixth-order polynomial pertaining to displacement and a 

second-order polynomial related to thermal effects. The determination of these    
,

k T k

i jC C  values is finalized by applying 

the appropriate boundary and continuity conditions to complete the result of the determinant mentioned above.  

4. Boundary and Continuity Conditions 

In this problem, the boundary conditions for the clamped-clamped cylindrical shell subjected to temperature are 

as follows: 
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In dick form multi-layers method (MLM), at the boundary between two layers, forces, stresses, and displacements 

remain continuous due to the overall continuity and homogeneity of the cylinder. The continuity conditions are as 

follows: 
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And 
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(40) 

According to the continuity conditions, in terms of ,  z T , 12 equations are obtained. In general, if the shell is 

divided into n  disk layers, ( )12 1n−  equations are obtained. Utilizing the 12 equations of boundary condition, 12n  

equations are obtained. The solution of these equations yields 12n  unknown constants.  

5. Results and discussion  

 The solution described in the preceding section is applicable to a cylindrical shell with nonlinear variable thickness 

h , 
1 40 mmh = , 

2 20 mmh = , 
1 100R mm=  and 1000L mm=  will be considered subjected to uniform pressure. The key 

parameters and conditions for this problem are as: 117 GPaE = , 0.3 = , 6 o22(10 ) 1 C −=  and o391 W m C = . 

Mechanical loading is applied in the form of uniform internal pressure with values of 80 MPaP = ,and the cylinder 

rotates with 150 rad s = .Thermal loading is in the form of internal heat flux of 2150 W miH =  and applied temperature 

at the heads of the shell with values of o

1 50 CT = and o

2 50 CT = . The cylindrical shell is subject to clamped-clamped 

boundary conditions. Displacement and stresses are normalized by dividing them by the internal radii and the internal 

pressure, respectively. The material properties of the constituent are evaluated at the reference temperature * o25 CT =

. 

The displacement distributions obtained through MLM are compared with those derived from FEM solutions, and 

these comparisons are graphically presented in Fig. 3. The number of disk layers is considered to be 80 for achieving 

convergence in this context. Increasing the number of layers beyond 80 in this study has no effect on the output results. 

Notably, the results demonstrate a strong alignment with validated FEM outcomes. Based on the observations obtained 

from the figure below, the radial displacement of points distant from the border increases along the length, while, 
under the same conditions, the radial displacement decreases from the inner layer to the outer layer at a specific point. 

 
Fig. 3. Normalized radial displacement distribution in different layers ( 500 rad s = ) 

Fig. 4. shows the values of shear stress in three specific layers in the longitudinal direction. Based on the 

observations, the values of shear stress in the longitudinal direction can be ignored. 
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Fig. 4 Normalized shear stress distribution in different layers ( 500 rad s = ) 

In Fig. 5, the changes in circumferential stress are depicted in terms of the cylinder's length. Across all three 

investigated layers, the circumferential stresses are tensile. At a specific point of interest, the circumferential stress 

has decreased from the inner layer to the outer layer. Furthermore, it's worth noting that the circumferential stress 

exhibits an increase in the longitudinal direction. 

 
Fig. 5. Normalized circumferential stress distribution in different layers ( 500 rad s = ) 

In Fig. 6, von Mises stress is utilized to represent the equivalent stress in the longitudinal direction. von Mises 

stress increases in points far from the boundary in the longitudinal direction and gives tensile values. Furthermore, 

these equivalent stress values decrease from the inner layer to the outer layer. 

 
Fig. 6. Normalized equivalent stress distribution in different layers ( 500 rad s = ) 

In Figs. 7 - 10, the effects of angular velocity on displacement and stresses have been investigated. As shown in 

the Fig. 7, In the investigation of radial displacement in the middle layer, it was observed that the amount of radial 

displacement increased with the increase in ω for points far from the boundary. This change in the longitudinal 
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direction is also incremental. Furthermore, the shape of the displacement profiles in the figure below remained 

consistent when compared to the displacement profile in Fig. 3. 

 
Fig. 7. Normalized radial displacement distribution subjected to different angular velocity ( 0h = ) 

In Fig. 8, the shear stress distribution along the length of the cylinder is illustrated at different angular velocities. 

As indicated in the figure, like in Fig. 4, it is apparent that shear stress can be safely ignored in all layers when 

positioned far from the boundary. Additionally, the effect of angular velocity on shear stress is negligible. 

 
Fig. 8. Normalized shear stress distribution subjected to different angular velocity ( 0h = ) 

In Fig. 9, the investigated circumferential stress behavior at different angular velocities is similar to Fig. 5. As the 

angular velocity increases, the circumferential stress increases and this stress remains tensile. 

 
Fig. 9. Normalized circumferential stress distribution subjected to different angular velocity ( 0h = ) 

In Fig. 10, the equivalent stress at different angular velocities in the middle layer has been investigated. An increase 

in angular velocity leads to an increase in equivalent stress. In addition, the equivalent stress is increasing in the 

longitudinal direction. 
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Fig. 10. Normalized equivalent stress distribution subjected to different angular velocity ( 0h = ) 

6. Conclusions 

In this article, the governing equations in a cylinder with a nonlinear variable thickness under mechanical and bi-

directional thermal loading have been investigated. In this cylinder, the relations have been obtained using the theory 

of first-order shear deformation and the MLM. Temperature has been investigated in two directions. The results of 

stresses and displacements have been compared with the finite element method and the results have shown good 

agreement. To calculate the equivalent stress, the von Mises stress has been used. In the outputs of this study, the 

effect of angular velocity has been investigated under the boundary conditions of the clamp-clamp.  

The method of MLM that utilizes multilayered discs shows promise as an alternative for assessing thick-walled 

shells. With this approach, it becomes easier to solve problems involving shells of varying shapes, diverse loading 

conditions, different boundary constraints, and even fluctuating pressures. This stands in contrast to existing analytical 

methods, which encounter difficulties because of their complex mathematical formulations. The described technique 

is especially suited for determining radial stress, circumferential stress, shear stress, and radial displacement. 
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