تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,121,781 |
تعداد دریافت فایل اصل مقاله | 97,229,268 |
Microwave Irradiation in Green Antimicrobial Silver Nanoparticles Synthesis using Arabic Gum: Preparation, Optimization and Characterization | ||
Journal of Chemical and Petroleum Engineering | ||
دوره 58، شماره 1، شهریور 2024، صفحه 149-163 اصل مقاله (669.41 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jchpe.2024.369492.1472 | ||
نویسندگان | ||
Shahin Nasiri؛ Hoda Jafarizadeh-Malmiri* | ||
Faculty of Chemical Engineering, Sahand University of Technology, East Azarbaijan, Tabriz, Iran. | ||
چکیده | ||
Silver nanoparticles (Ag NPs) as a new antibiotic generation were green produced using Arabic gum, as capping and stabilizing agents, under microwave heating. Results indicated that using 0.5 mL of 3 mM silver nitrate solution and 0.5 mL of Arabic gum solution (1 % W/V), and microwave heating time of 150 s, Ag NPs were fabricated minimum broad emission peak (λmax) and maximum concentration of 424±2 nm and 25±2 ppm, respectively. Transmission electron microscopy and dynamic light scattering analyses specified that the fabricated spherical Ag NPs using these optimal synthetic parameters had particle size, polydispersity index and zeta potential values of the 89 nm, 0.238 and +50 mV. Furthermore, antibacterial test indicated that diameters of the formed clear zones around the holes having Ag NPs were 13 and 15 mm, toward Escherichia coli and Staphilococcus aurous, respectively. Antifungal assessment also shown that synthesized Ag NPs could strongly inhibit the growth of Aspergillus flavus mycelia in the plate during incubation for 7 days. Synthesized Ag NPs using the obtained optimum conditions can be widely used in the food, pharmaceutical and cosmetics areas, due to those high antimicrobial activities. | ||
کلیدواژهها | ||
Accelerated Heating Method؛ Arabic Gum؛ Green Synthesis؛ Microwave Irradiation؛ Silver Nanoparticles | ||
مراجع | ||
[1] Mohammadlou M, Maghsoudi H, Jafarizadeh-Malmiri H. A review on green silver nanoparticles based on plants: Synthesis, potential applications and eco-friendly approach. Int. Food Res. J. 2016; 23: 446-463. [2] Zinsaz P, Jafarizadeh-Malmiri H, Anarjan N, Nekoueifard A, Javadi A. Effectiveness of pH and amount of Artemia urumiana extract on physical, chemical, and biological attributes of UV-fabricated biogold nanoparticles. Green Process. Synth. 2023; 12: 20228062. https://doi.org/10.1515/gps-2022-8062 [3] Esmaili S, Zinsaz P, Ahmadi O, Najian Y, Vaghari H, Jafarizadeh-Malmiri H. Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract. Z. fur. Phys. Chem. 2022; 236: 1567-81. https://doi.org/10.1515/zpch2022-0036 [4] Sayyar Z, Jafarizadeh-Malmiri H. Effectiveness of temperature and preparation method on stability kinetic of Curcumin nanodispersion: Cytotoxicity and in vitro release assessment. J. Drug Deliv. Sci. Technol. 2023; 80: 104190. https://doi.org/10.1016/j.jddst.2023.104190 [5] Zinsaz P, Jafarizadeh-Malmiri H, Anarjan N, Nekoueifard A, Javadi A. Biogenic synthesis of gold nanoparticles using Artemia urumiana extract and five different thermal accelerated techniques: fabrication and characterization. Z. Naturforsch. C. J. Biosci. 2022; 77: 395- 402. https://doi.org/10.1515/znc-2021-0323 [6] Eslami H, Jafarizadeh-Malmiri H, Khonakdar HA. Effectiveness of different accelerated green synthesis methods in zinc oxide nanoparticles using red pepper extract: Synthesis and characterization. Green Process. Synth. 2022; 11: 686-696. https://doi.org/10.1515/gps2022-0053 [7] Yari T, Vaghari H, Adibpour M, Jafarizadeh-Malmiri H, Berenjian A. Potential application of Aspergillus terreus, as a biofactory, in extracellular fabrication of silver nanoparticles. Fuel. 2022; 308: 122007. https://doi.org/10.1016/j.fuel.2021.122007 [8] Eshghi M, Kamali-Shojaei A, Vaghari H, Najian Y, Mohebian Z, Ahmadi O, JafarizadehMalmiri H. Corylus avellana leaf extract-mediated green synthesis of antifungal silver nanoparticles using microwave irradiation and assessment of their properties. Green Process. Synth. 2021; 10: 606-613. https://doi.org/10.1515/gps-2021-0062 [9] Jafari A, Vaghari H, Jafarizadeh-Malmiri H. Development of Antimicrobial Films Based on Aloe vera and Fabricated AgNPs Using Propolis... Natl. Acad. Sci. India Sect. B. Biol. Sci. 2021; 91: 95-103. https://doi.org/10.1007/s40011-020-01202-1 [10] Saemi R, Taghavi E, Jafarizadeh-Malmiri H, Anarjan N. Fabrication of green ZnO nanoparticles using walnut leaf extract to develop an antibacterial film based on polyethylene–starch–ZnO NPs. Green Process. Synth. 2021; 10: 112-124. https://doi.org/10.1515/gps-2021-0011 [11] Hatami R, Javadi A, Jafarizadeh-Malmiri H. Effectiveness of six different methods in green synthesis of selenium nanoparticles using propolis extract: Screening and characterization. Green Process. Synth. 2020; 9: 685-692. https://doi.org/10.1515/gps-2020-0065 [12] Sheikhlou K, Allahyari S, Sabouri S, Najian Y, Jafarizadeh-Malmiri H. Walnut leaf extractbased green synthesis of selenium nanoparticles via microwave irradiation and their characteristics assessment. Open Agric. 2020; 5: 227-235. https://doi.org/10.1515/opag2020-0024 [13] Vahidi A, Vaghari H, Najian Y, Najian MJ, Jafarizadeh-Malmiri H. Evaluation of three different green fabrication methods for the synthesis of crystalline ZnO nanoparticles using Pelargonium zonale leaf extract. Green Process. Synth. 2019; 8: 302-308. https://doi.org/10.1515/gps-2018-0097 [14] Abbasian R, Jafarizadeh-Malmiri H. Green approach in gold, silver and selenium nanoparticles using coffee bean extract. Open Agric. 2020; 5: 761-767. https://doi.org/10.1515/opag-2020-0074 [15] Soltani-Horand P, Vaghari H, Soltani-Horand J, Adibpour M, Jafarizadeh-Malmiri H. Extracellular mycosynthesis of antibacterial silver nanoparticles using Aspergillus flavus and evaluation of their characteristics. Int. J. Nanosci. 2020; 19: 1950009. https://doi.org/10.1142/S0219581X19500091 [16] Ahmadi O, Jafarizadeh-Malmiri H, Jodeiri N. Optimization of processing parameters for hydrothermal silver nanoparticles synthesis using Aloe vera leaf extract and estimation of their physico-chemical and antifungal properties. Z. fur Phys. Chem. 2019; 233: 651-667. https://doi.org/10.1515/zpch-2017-1089 [17] Rahimirad A, Javadi A, Mirzaei H, Anarjan N, Jafarizadeh-Malmiri H. Biosynthetic potential assessment of four food pathogenic bacteria in hydrothermally silver nanoparticles fabrication. Green Process. Synth. 2019; 8: 629-634. https://doi.org/10.1515/gps-2019- 0033 [18] Torabfam M, Jafarizadeh-Malmiri H. Microwave-enhanced silver nanoparticle synthesis using chitosan biopolymer: optimization of the process conditions and evaluation of their characteristics. Green Process. Synth. 2018; 7: 530-537. https://doi.org/10.1515/gps-2017- 0139 [19] Sabouri Z, Akbari A, Hosseini HA, Khatami M, Darroudi M. Green-based bio-synthesis of nickel oxide nanoparticles in Arabic gum and examination of their cytotoxicity, photocatalytic and antibacterial effects. Green Chem. Lett. Rev. 2021; 14: 404-414. https://doi.org/10.1080/17518253.2021.1923824 [20] Prasad N, Thombare N, Sharma SC, Kumar S. Gum arabic–A versatile natural gum: A review on production, processing, properties and applications. Ind. Crops Prod. 2022; 187: 115304. https://doi.org/10.1016/j.indcrop.2022.115304 [21] Moghadam A, Mobarakeh MS, Safaei M, Kariminia S. Synthesis and characterization of novel bio-nanocomposite of polyvinyl alcohol-Arabic gum-magnesium oxide via direct blending method. Carbohydr. Polym. 2021; 260: 117802. https://doi.org/10.1016/j.carbpol.2021.117802 [22] Araujo FP, Trigueiro P, Honório LM, Oliveira DM, Almeida LC, Garcia RP, Lobo AO, Cantanhede W, Silva-Filho EC, Osajima JA. Eco-friendly synthesis and photocatalytic application of flowers-like ZnO structures using Arabic and Karaya Gums. Int. J. Biol. Macromol. 2020; 165: 2813-2822. https://doi.org/10.1016/j.ijbiomac.2020.10.132 [23] Agnihotri AS, Nidhin M, Rison S, Akshaya KB, Varghese A. Tuning of the surface structure of silver nanoparticles using Gum arabic for enhanced electrocatalytic oxidation of morin. Appl. Surf. Sci. Adv. 2021; 6:100181-100196. https://doi.org/10.1016/j.apsadv.2021.100181 [24] Ahmadi O, Jafarizadeh-Malmiri H, Jodeiri N. Eco-friendly microwave-enhanced green synthesis of silver nanoparticles using Aloe vera leaf extract and their physico-chemical and antibacterial studies. Green Process. Synth. 2018; 7: 231-240. https://doi.org/10.1515/gps2017-0039 [25] Fardsadegh B, Vaghari H, Mohammad-Jafari R, Najian Y, Jafarizadeh-Malmiri H. Biosynthesis, characterization and antimicrobial activities assessment of fabricated selenium nanoparticles using Pelargonium zonale leaf extract. Green Process. Synth. 2019; 8: 191-198. https://doi.org/10.1515/gps-2018-0060 [26] Mohammadlou M, Jafarizadeh-Malmiri H, Maghsoudi H. Hydrothermal green synthesis of silver nanoparticles using Pelargonium/Geranium leaf extract and evaluation of their antifungal activity. Green Process. Synth. 2017; 6: 31-42. https://doi.org/10.1515/gps-2016- 0075 [27] Eskandari-Nojehdehi M, Jafarizadeh-Malmiri H, Jafarizad A. Microwave accelerated green synthesis of gold nanoparticles using gum Arabic and their physico-chemical properties assessments. Z. fur Phys. Chem. 2018; 232: 325-343. https://doi.org/10.1515/zpch-2017- 1001 [28] Eskandari-Nojedehi M, Jafarizadeh-Malmiri H, Rahbar-Shahrouzi J. Hydrothermal green synthesis of gold nanoparticles using mushroom (Agaricus bisporus) extract: physicochemical characteristics and antifungal activity studies. Green Process. Synth. 2018; 7: 38- 47. https://doi.org/10.1515/gps-2017-0004 [29] Fardsadegh B, Jafarizadeh-Malmiri H. Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Process. Synth. 2019; 8: 399-407. https://doi.org/10.1515/gps-2019-0007 [30] Hashemilar H, Jafarizadeh-Malmiri H, Ahmadi O, Jodeiri N. Enzymatically preparation of starch nanoparticles using freeze drying technique–Gelatinization, optimization and characterization. Int. J. Biol. Macromol. 2023; 237: 124137. https://doi.org/10.1016/j.ijbiomac.2023.124137 [31] Sayyar Z, Jafarizadeh-Malmiri H. Effectiveness of temperature and preparation method on stability kinetic of Curcumin nanodispersion: Cytotoxicity and in vitro release assessment. J. Drug Deliv. Sci. Technol. 2023; 80: 104190. https://doi.org/10.1016/j.jddst.2023.104190 [32] Ghanbari S, Vaghari H, Sayyar Z, Adibpour M, Jafarizadeh-Malmiri H. Autoclave-assisted green synthesis of silver nanoparticles using A. fumigatus mycelia extract and the evaluation of their physico-chemical properties and antibacterial activity. Green Process. Synth. 2018; 7: 217-224. https://doi.org/10.1515/gps-2017-0062 [33] Dong C, Zhang X, Cai H, Cao C. Facile and one-step synthesis of monodisperse silver nanoparticles using gum acacia in aqueous solution. J. Mol. Liq. 2014; 196: 135-141. https://doi.org/10.1016/j.molliq.2014.03.009 [34] Rao YN, Banerjee D, Datta A, Das SK, Guin R, Saha A. Gamma irradiation route to synthesis of highly re-dispersible natural polymer capped silver nanoparticles. Phys. Chem. 2010; 79: 1240-1246. https://doi.org/10.1016/j.radphyschem.2010.07.004 [35] Al-Ansari MM, Al-Dahmash ND, Ranjitsingh AJ. Synthesis of silver nanoparticles using gum Arabic: Evaluation of its inhibitory action on Streptococcus mutans causing dental caries and endocarditis. J. Infect. Public Health. 2021; 14: 324-330. https://doi.org/10.1016/j.jiph.2020.12.016 [36] Hamoud Alshahrani S, Alameri AA, Zabibah RS, Turki Jalil A, Ahmadi O, Behbudi G. Screening method synthesis of AgNPs using Petroselinum crispum (parsley) leaf: Spectral analysis of the particles and antibacterial study. J. Mex. Chem. Soc. 2023; 4:480-487. https://doi.org/10.29356/jmcs.v66i4.1803 | ||
آمار تعداد مشاهده مقاله: 238 تعداد دریافت فایل اصل مقاله: 345 |