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Abstract 

The present paper introduces an efficient higher-order theory to analyze the 

stability behavior of porous functionally graded sandwich plates (FGSPs) 

resting on various boundary conditions. The FG sandwich plate comprises 

two porous FG layers, face sheets, and a ceramic core. The material 

properties in the FGM layers are assumed to change across the thickness 

direction according to the power-law distribution. To satisfy the requirement 

of transverse shear stresses vanishing at the top and bottom surfaces of the 

FGSP, a trigonometric shear deformation theory containing four variables 

in the displacement field with indeterminate integral terms is used, and the 

principle of virtual work is applied to describe the governing equation than 

it solved by Navier solution method for simply supported boundaries. 

However, an analytical solution for FGSPs under different boundary 

conditions is obtained by employing a new shape function, and numerical 

results are presented. Furthermore, validation results show an excellent 

agreement between the proposed theory and those given in the literature. In 

contrast, the influence of several geometric and mechanical parameters, such 

as power-law index, side-to-thickness, aspect ratio, porosity distribution, 

various boundary conditions, loading type, and different scheme 

configurations on the critical buckling, is demonstrated in the details used in 

a parametric study. 
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1. Introduction 

Developing composite materials has achieved high levels of resistance, durability, and lightweight. According to 

the critical elastic deformation at the interfaces, the main drawback of convenAtional laminates is the concentration 

of stress between the layers and the propagation of cracks. Functionally graded materials are a new class of 

composite materials with specific characteristics that eliminate the weakness and the concertation stress in the 

traditional composite, specifically under high thermal loads. FGM presents continuous materials between two 

different constituents, ceramic and metal, to combine two essential properties, ceramic with thermal resistance and 

metal to resist under mechanical strength [1-3]. FGMs are an interesting material for different fields, including 

thermal and mechanical systems such as fiber-reinforced polymer in civil engineering to reinforce the concert, 

especially in bridges because the FRP materials increase corrosion resistance, aerospace applications to provide a 

high thermal barrier coating, spacecraft structures, diesel, and turbine machine, as well as the FGM has a significant 
role in the development of medical industries especially dental area [4, 5]. 

Sandwich structures are another important model designed in three layers, two face sheets in the top and bottom 

combined core layer; in most cases, the face and the core material are different, so the interface problem is so 

significant here. Hence, the key to minimizing the concentration stress is to use a smooth gradient between the two 

layers; the FGMs are considered in sandwich manufacturing [6]. 

As FGMs become more interesting materials, different plate and beam theories have a preference to study the 

FGM structures response; the theory in the plate can be regarded as an extension of the beam theory; on the other 

hand, the Euler-Bernoulli and Timoshenko beam theories both have its counterpart in Classical Love-Kirchhof plate 

theory and the first-order shear deformation theory. Therefore, the most straightforward theory is the classical plate 

theory; in the case of pure bending, the plane perpendicular to the mid-plane retains its planarity and perpendicular 

even after undergoing bending. While it is less accurate and needs to pay more attention to the effect of transverse 

stresses, it yields precise results only for thin plates [7-9]. The next plate theory in the hierarchy of refined theories is 
the first-order shear deformation theory (FSDT), another theory that extends the kinematics of the classical plate 

theory by including a gross transverse shear deformation in its kinematic assumptions. However, FSDT does not 

satisfy the stress-free boundary conditions on the surfaces of the plate and requires an arbitrary shear correction 

factor [10-13]. Furthermore, the limitation of CPT and FSDT led to the development of HSDT; the HSDT used 

polynomial shape functions or nonpolynomial shape functions to avoid the use of correction factor in FSDT and to 

develop a hypothesis more realistic from the ones of love-Kirchhoff. The HSDT introduces additional variables that 

are often difficult to interpret in physical terms[14]. 

So far, the studies on the Analysis of FG structures (beam, plate, and shell) have received too much attention 

from existing literature. Various theories have been developed to provide more helpful analysis methods with lower 

computational costs. Furthermore, some studies have been carried out on the Bending analysis of FG structures [15-

18], thermal and mechanical buckling[19-24], and free and forced vibration behavior under impact loading[25-32] 
Research on functionally graded sandwich structures and their mechanical behavior has been ongoing for many 

years. FGMs have shown great potential in eliminating stress concentration problems in sandwich structures, and 

various plate theories have been used to study their behavior. With continued research, it is expected that the 

development and application of functionally graded sandwich structures will continue to grow. 

This article presents an efficient higher-order theory for the buckling analysis of porous FGSPs with varied 

boundary conditions. The approach considers the variation of material properties across the thickness of the FGSP, 

along with the effect of porosity. The analytical solutions for the functionally graded sandwich plate (FGSP) under 

different boundary conditions have been derived using a novel shape function. They are showcased and examined in 

the findings. The findings of this study can be used in designing lightweight and high-strength structures using FG 

sandwich plates. Numerical results are presented to validate the theory's accuracy by comparing it with other 

studies, and a parametric analytic study shows the influence of various parameters on the FGSP's critical buckling 

load, which are illustrated in detail. 

2. Structure 

Consider a FGSP composed of three layers, as shown in (Figure 1). The x, y, and z coordinates are taken 

according to the length, width, and thickness, respectively. The intermediate layer is homogeneous and consists of a 

purely ceramic material. 
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Figure 1. Geometry and coordinates of FG sandwich plates. 

The material properties vary smoothly and continuously across the thickness of the FGSP and obey the following 

power-law distribution defined by[33]: 

((n) (n)

m c mP (z)= P (P P )V z)+ −  

(1) 

With the consideration of the porosity effect[34]: 

(
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

+ − − +  (02) 

Where P represents the effective material property such as E, υ, ρ; subscripts c and m denote the ceramic and 

metal phases, respectively; ζ denotes the porosity coefficient (ζ <1), and V is the volume fraction of layer defined 

by[35, 36]: 
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2.1. Kinematic and constitutive relations 

 

The displacement field of the present trigonometric shear deformation theory and satisfying the conditions of 

transverse shear stresses vanishing at the (face sheets) top and bottom surfaces of the FGSP without including shear 

correction factors is of the form[29]: 
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Where 
0 0 0, ,u v w and   represent the unknown displacements of the mid-plane and rotations of normal to mid-plane 

of the FGSP. k1 and k2 are the constants depending on the geometry. The undetermined integrals presented in the 

previous equations are solved by using Navier’s type solution and can be declared as: 
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In the present study, The new shape function 𝑓(𝑧) is proposed by[37] as follows: 
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Based on the small-strain elasticity theory, the deformations associated with the displacements are given as follows: 
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For the nth layer, the linear constitutive relations of FGSP are given as: 
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Cij in terms of engineering constants depend on the normal strain: 

•  Case of 2D shear deformation, then Cij are:            
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2.2.   Stability equations     

Applied the principle of virtual work and based on the adjacent equilibrium criterion, the stability equations are 

obtained: 
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By substituting equation. (8) into equation. (10) and the resulting equation into the equation. (12). Then, 

integrating through the thickness of the FGSP, equation (12) can be rewritten in the form: 
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The stress resultants N, M, P and Q of the FGSP are expressed by: 
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Where: hn and hn-1 represent the z-coordinates of the top and bottom surfaces, respectively, of the nth layer. 

By substituting equation. (8) into equation. (10) and subsequently substituting the obtained results into equation 

(14), the stress resultants of the FGSP can be related to the total strains by: 
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Where: Aij, Bij, Csij …etc. are the plate’s stiffness parameters, defined as follows: 
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By substituting equations (9a) and (9b) into equation (13), the following equations of equilibrium of the plate are 
obtained as follows: 
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Substituting equations (9) and (15) into equation (17), the governing equations of equilibrium of the FGSP are 

defined in terms of displacements (
0 0 0, , ,u v w  ) as: 
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2.3. Exact solution for the FGSP under various boundary conditions 

Here, we are interested in the analytical solutions of equations (17) for the FGSP under various boundary 

conditions can be constructed. A general solution of different boundary conditions is used to solve the governing 

equations based on the proposed theory. To this end, the displacement field can be considered as[22]: 

1

0

1

0

1
1 10

1

0

( )
( )

( )
( )

( ) ( )

( ) ( )

m
mn n

n
mn m

m n

mn m n

mn m n

X x
U Y yu

x
v Y y

V X x
yw

W X x Y y

X X x Y y


 
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 
         

=   
   

   
    

  (19) 

Where: Umn, Vmn, Wmn, and Xmn, are arbitrary parameters to be determined. The in-plane forces are given as 

follows:  

1 2 0
0 0 0

, ,cr crN N Nxx yy xyN N  == =  (20) 

The parameter represents the direction of the in-plane forces. 

By substituting equations. (19) and (20) into equation. (18), the obtained equations are: 
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 (21) 

The elements Lij   are expressed as follows: 
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With: 
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3. Numerical results and discussion 

   This section presents and discusses multiple numerical examples of simply supported FGSPs. The goal is to 

validate the accuracy of the proposed theory in predicting the bending behavior by comparing the results with 

existing data in the literature. The FGSPs in these examples comprise Aluminum (Al) as the metal phase and 

Zirconia (ZrO2) as the ceramic phase. The mechanical properties of the FGSPs, including Young's modulus, 

Poisson's ratio, and density, are defined as follows[38, 39]    

➢ Aluminum (Al):     70 , 0.3m mE Gpa = =     and   
32702m kg m =  

➢ Zirconia ( ZrO2):    380 , 0.3c cE Gpa = =  and     
33100c kg m =  

 

The results of the numerical analysis are expressed using non-dimensional stresses and deflection. The 

Dimensionless parameters utilized in this study are listed below: 
2

3

0

,
100

cr

N a
N

h E
=  

Where the reference value is taken as E0 = 1 GPa 

Table 1. Dimensionless buckling load Ncr of square plates under uniaxial compression (γ1 =-1, γ2= 0, a/h = 10) 

k Theory 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

0 El Meiche et al[40] 13.0055 13.0055 13.0055 13.0055 13.0055 

Huu-Tai T et al.[36] 13.0045 13.0045 13.0045 13.0045 13.0045 

Meksi et al. [41] 13.0236 13.0236 13.0236 13.0236 13.0236 

Present  13.0051 13.0051 13.0051 13.0051 13.0051 

0.5 El Meiche et al[40] 7.3638 7.9405 8.4365 8.8103 9.2176 

Huu-Tai T et al. [36] 7.3634 7.9403 8.4361 8.8095 9.2162 

Meksi et al. [41] 7.3664 7.9442 8.4423 8.8182 9.2277 

Present  7.3648 7.9412 8.4366 8.8100 9.2166 

1 El Meiche et al[40] 5.1663 5.8394 6.4645 6.9495 7.5072 

Huu-Tai T et al.[36] 5.1648 5.8387 6.4641 6.9485 7.5056 

Meksi et al. [41] 5.1651 5.8392 6.4664 6.9536 7.5138 

Present  5.1676 5.8405 6.4649 6.9495 7.5063 

5 El Meiche et al [40] 2.6568 3.0414 3.5787 4.1116 4.7346 

Huu-Tai T et al.[36] 2.6415 3.0282 3.5710 4.1024 4.7305 

Meksi et al. [41] 2.6518 3.0369 3.5756 4.1103 4.7351 

Present  2.6590 3.0408 3.5800 4.1124 4.7347 

10 El Meiche et al[40] 2.4857 2.7450 3.1937 3.7069 4.2796 

Huu-Tai T et al.[36] 2.4666 2.7223 3.1795 3.6901 4.2728 

Meksi et al. [41] 2.4808 2.7397 3.1898 3.7048 4.2789 

Present  2.4881 2.7470 3.1952 3.7079 4.2800 
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Table 2. Dimensionless buckling load Ncr of square plates under biaxial compression (γ1 =-1, γ2= -1, a/h = 10) 

k Theory 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

0 Huu-Tai T et al.[36] 6.5022 6.5022 6.5022 6.5022 6.5022 

Meksi et al. [41] 6.5118 6.5118 6.5118 6.5118 6.5118 

Daikh et al.[34]  6.5026 6.5026 6.5026 6.5026 6.5026 

Present  6.5026 6.5026 6.5026 6.5026 6.5026 

0.5 Huu-Tai T et al.[36] 3.6817 3.9702 4.2181 4.4047 4.6081 

Meksi et al. [41] 3.6832 3.9721 4.2212 4.4091 4.6138 

Daikh et al. [34] 3.6825 3.9706 4.2183 4.4050 4.6083 

Present  3.6824 3.9706 4.2183 4.4050 4.6083 

1 Huu-Tai T et al.[36] 2.5824 2.9193 3.2320 3.4742 3.7528 

Meksi et al. [41] 2.5826 2.9196 3.2332 3.4768 3.7569 

Daikh et al. [34] 2.5839 2.9203 3.2325 3.4748 3.7531 

Present  2.5838 2.9202 3.2325 3.4748 3.7532 

5 Huu-Tai T et al. [36] 1.3208 1.5141 1.7855 2.0512 2.3652 

Meksi et al. [41] 1.3259 1.5185 1.7878 2.0551 2.3676 

Daikh et al. [34] 1.3296 1.5216 1.7900 2.0562 2.3673 

Present  1.3295 1.5216 1.7900 2.0562 2.3673 

10 Huu-Tai T et al.[36] 1.2333 1.3612 1.5897 1.8450 2.1364 

Meksi et al. [41] 1.2404 1.3699 1.5949 1.8524 2.1395 

Present  1.2441 1.3735 1.5976 1.8539 2.1400 

 

Tables 1 and 2 present the non-dimensional values of the critical buckling load, Ncr, for various types of simply 

supported sandwich square plates under uniaxial and biaxial compression, respectively, and different values of index 

k. The results obtained from the present theory are compared with those presented by Meiche et al. [40], Huu-Tai 

Thai et al. [36], Daikh et al. [34], and Meksi et al. [41]. It is to be noted that the critical buckling decreases with 

increasing index k. Furthermore, the present hyperbolic shear deformation theory (HPT) gives a very good accuracy. 

Table 3. Dimensionless buckling load Ncr of square plates under Various Boundary Conditions (γ1 =-1, γ2= -1, a/h = 10). 

Boundary 

conditions 
Theory 

k 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

SSSS 

Huu-Tai T et al. [36] 
0.5 3.6817 3.9702 4.2181 4.4047 4.6081 

1 2.5824 2.9193 3.2320 3.4742 3.7528 

Present 
0.5 3.6824 3.9706 4.2183 4.4050 4.6083 

1 2.5838 2.9202 3.2325 3.4748 3.7532 

CSCS 

Huu-Tai T et al. [36] 
0.5 6.8587 7.3942 7.8489 8.1861 8.5573 

1 4.8390 5.4712 6.0504 6.4925 7.0048 

Present 
0.5 6.8613 7.3960 7.8500 8.1872 8.5583 

1 4.8441 5.4744 6.0520 6.4944 7.0063 

CCCC 

Huu-Tai T et al. [36] 
0.5 9.2338 9.9529 10.5578 11.0011 11.4933 

1 6.5434 7.3990 8.1753 8.7612 9.4443 

Present 
0.5 9.2438 9.9618 10.566 11.010 11.5018 

1 6.5565 7.4091 8.1830 8.7697 9.4524 

FCFC 

Huu-Tai T et al. [36] 
0.5 10.8640 11.7085 12.4145 12.9276 13.5006 

1 7.7220 8.7323 9.6429 10.3246 11.1229 

Present 
0.5 10.8712 11.7137 12.4180 12.9315 13.5042 

1 7.7353 8.7409 9.6475 10.3300 11.1273 
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Table 3 illustrates the effect of various boundary conditions, different schemes of sandwich configuration, and 

index k on the critical buckling load, Ncr, of the FGM sandwich plate under a biaxial compression load with (γ1=-1, 

γ2=-1, a/h=10). It can be noted that the configuration 1-2-1 with FCFC has the highest critical buckling load values. 

Furthermore, it has been noted that the current results agree well with those obtained by Huu-Tai T et al. [36]. 
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Fig 2.a Critical buckling load Ncr versus the ratio a/h for the different values of porosity coefficient of simply supported FGM sandwich 

square plates under uniaxial compression. 
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Figure 2.b Critical buckling load Ncr versus the ratio a/h for the different values of porosity coefficient of simply supported FGM 

sandwich square plates under bi-axial compression. 

 

Figures 2.a and 2.b show the impact of the side-to-thickness ratio and the porosity distribution on the critical 

buckling load Ncr of the FG sandwich plate (2-1-2, 1-0-1, 1-2-1 and 1-1-1), k = 2. It can be seen that the critical 

buckling increases with increasing a/h when the inclusion of porosity reduces the critical buckling; this is because of 

the porosity coefficient's effect on the plate's stiffness. 
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Figure 3.a Critical buckling load Ncr versus the ratio a/b for the different values of porosity coefficient of simply supported FGM 

sandwich plates under uniaxial compression. 
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Figure 3.b Critical buckling load Ncr versus the ratio a/b for the different values of porosity coefficient of simply supported FGM  

sandwich plates under bi-axial compression. 

 

Figures 3.a and 3.b depict the variation of the critical buckling load versus the aspect ratio a/b for the FG 

sandwich plate under uniaxial and bi-axial load with various values of porosity coefficient. It is observed that the 

increase of the aspect ratio increases the critical buckling load; however, the increase in the porosity coefficient 

decreases the critical buckling.    
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Figure 4. Critical buckling load Ncr versus the ratio a/b of the (1–2-1)/ (1–0–1) porous square FGM sandwich plates with various 

boundary conditions under uniaxial loads 
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Figure 5. Critical buckling load Ncr versus the ratio a/b of the (1–2-1)/ (1–0–1) porous square FGM sandwich plates with various 

boundary conditions under bi-axial loads 

 

Figure 4 presents the variation of the Critical buckling load Ncr of FG plates with ratio a/b resting on different 

boundary conditions under uniaxial compression loads. The plate with a higher volume fraction of ceramics has a 

significantly higher Critical buckling load Ncr than the plate with a higher metal volume fraction, particularly for 

plates with a larger a/b aspect ratio. Notably, the plate with all edges clamped boundary condition shows the highest 

non-dimensional Critical buckling load, owing to the more significant constraint at the edges, as depicted in Figure 

5. 

4. Conclusion 

This study aims to analyze the effect of the different porosity sizes and various boundary conditions on the 

stiffness of the sandwich plate made on functionally graded materials under axial and bi-axial mechanical loading. 

So, an efficient higher-order theory is proposed for analyzing the buckling response of functionally graded sandwich 

plates; the mathematical formulation, including the indeterminate integral terms in the displacement field, and the 

governing equations are obtained by Hamilton's principle. The study presents analytical solutions with different 

boundary conditions. It provides numerical results to validate the accuracy of the proposed theory. 

The following conclusions from the numerical computations are given as follows: 

• The findings reveal that the buckling load for fully clamped-free-clamped-free boundary conditions is 

higher than other boundary conditions, including simply supported-simply supported, clamped-clamped, 

and clamped-simply supported.  

• The 1-2-1 type sandwich has the highest critical buckling load, while the 2-1-2 type has the lowest.  

• The results also suggest that the side-to-thickness ratio's effect on the critical buckling load of FGM 

sandwich plates diminishes for larger ratio values.  

• Finally, the study shows that increasing the porosity coefficient reduces the critical buckling load values. 
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