Experimental Investigation and Modeling of Denitrification of
 Water in a Column Bioreactor using Clinoptilolite Zeolite

• Abstract

٣

٤

٦ The efficiency of nitrate removal in a 9.5 L packed bed column bioreactor was assessed using various feeding strategies and initial concentrations. Zeolite mineral Clinoptilolite particles were ۷ employed in the bioreactor to trap and immobilize Thiobacillus denitrificans. Different hydraulic ٨ ٩ retention times were tested to evaluate nitrate removal effectiveness. In the most favorable 1. scenario, there was an 87% reduction in nitrate concentration from an influent of 400 mg/L over a three-hour period. To determine the optimal bioreactor length, a computational fluid dynamics 11 model was created. By comparing simulations with experimental results, the ideal heights for ۱۲ ۱۳ complete denitrification were found to be 90 cm, 45 cm, 30 cm, and 20 cm for influent nitrate concentrations of 400 mg/L, 250 mg/L, 120 mg/L, and 80 mg/L, respectively. ١٤

- ١٥
- Keywords: Denitrification, Modified Zeolite, Column Bioreactor, CFD
- ۱۷
- Synopsis: *Thiobacillus denitrificans* is evaluated in a pilot-scale reactor for the first time for its
 ability to denitrify water containing high sulfur concentrations.
- ۲.

1. Introduction

Nitrate is the most common pollutant in water resources of ecosystems. Moreover, its inputs to the
 environment have been on the rise for the past few decades [1], making the availability of a

sustainable source of healthy water increasingly important to many countries because of the
increasing population, expansion of industries, and climate change effects. Various methods are
available for nitrate removal from water, such as reverse osmosis, ion exchange, electrodialysis,
and membrane processes [2-5]. Additionally, there is a rising interest in biological methods [6].
One significant aspect of these biological approaches is microbial denitrification, a respiratory
process carried out by autotrophic and heterotrophic microorganisms [7].

۳.

۳١ The majority of denitrifying microorganisms are heterotrophs, relying on complex organic ٣٢ substances like methanol, ethanol, methane, carbon monoxide, and acetic acid as electron donors ٣٣ for the conversion of nitrate to nitrogen [8]. Additionally, some researchers have utilized natural ٣٤ materials like wheat straw and plant wood as sources of organic carbon for heterotrophic ۳0 denitrification. While this method is cost-effective, it comes with a lengthy and intricate pre-37 treatment process. In practical applications, for the removal of nitrate from drinking water, simple and readily degradable substrates like methanol, ethanol, and acetic acid are predominantly utilized ٣٧ ۳۸ <mark>[9].</mark>

A diverse array of autotrophic bacteria finds application in the denitrification of water with minimal organic matter content. These microorganisms utilize an inorganic carbon source, such as
 CO₂, as their carbon source [9]. Their advantage lies in not necessitating an external organic substrate, making them a more cost-effective option [10]. Furthermore, these microorganisms yield low biomass, thereby minimizing the risk of contamination [1].

٤٥

٤٦ Sulfur-based autotrophic denitrification is a type of denitrification wherein elemental sulfur, ٤٧ hydrogen sulfide, or thiosulfate serves as electron donors. Certain properties of sulfur make it wellź٨ suited for denitrification, such as its non-toxic nature, insolubility in water, and stability under ٤٩ normal conditions [10]. However, a few species of microorganisms are capable to reduce nitrate through oxidizing sulfur elements $(S^{2-}, S_2O_3^{2-}, SO_3^{2-})$ [11-14]. A number of researchers have ٥. 01 studied the autotrophic denitrification process by Thiobacillus denitrificans (enriched sludge or pure culture) for the removal of nitrate from drinking water, groundwater, and wastewater using ٥٢ reduced sulfur compounds as electron donors [10, 15-19]. However, only a limited number of ٥٣ 05 studies have investigated the effectiveness of immobilized Thiobacillus denitrificans 00 Immobilization has the potential to improve denitrification efficiency and safeguard the bacteria from adverse environmental conditions. The colonization and activation of denitrifying bacteria ٥٦ ٥٧ communities on supports are critical factors to obtain high denitrification efficiency [20]. Denitrificans can perfectly grow in a packed bed reactor, where the biofilm grows around the fixed ٥٨ 09 carrier comprised of porous organic matter or mineral matrixes formed by large surface area ٦. particles [1]. There have been many different materials used as bacteria supports in the past, such ٦١ as metal oxides [21, 22], zeolites [23], biodegradable polymers [24], woods [25], or carbon ٦٢ materials [26]. Organic supports, such as polymers, pose various challenges, including issues related to stability and disposal [27]. Conversely, inorganic materials like silica and alumina ٦٣ ٦٤ exhibit thermal and mechanical stability, along with robust strength [27]. Furthermore, Battista-20 Toledo et al. [28] found that different inorganic materials, like ZSM5, 13X, and b-zeolite, perform 77 well as bacterial supports for a heterotrophic bacteria called *Escherichia coli*.

٦٨ In addition to the characteristics of the supports, environmental parameters such as C/N ratio, ٦٩ temperature, and pH of polluted water influence the community structure and activity of ٧. denitrifying bacteria. There are several investigations [6, 7, 9, 29-34] on the denitrifying 21 bioreactors. Torrentó et al. [35] found that nitrate input concentration plays an essential role in the ۲۷ denitrification efficiency of the reactor. Nitrate removal improves by lowering the initial nitrate ۷٣ concentration and grain size. According to Carrera et al. [36], denitrification is more efficient at ٧٤ high temperatures rather than at low temperatures. However, even at low temperatures, the desired nitrate removal efficiency can be achieved by increasing the hydraulic retention time (HRT). This ٧0 parameter is a significant factor that should be considered during the design of a reactor. In a ٧٦ ٧٧ heterotrophic system, HRT is adjusted based on the growth rate of microorganisms, initial nitrate ۷٨ concentration, presence of other inhibitory species, and temperature [9].

٧٩

This work aims to investigate the effectiveness of Clinoptilolite zeolite particles as a support for ٨٠ *Thiobacillus denitrificans* as well as evaluate the performance of a 9.5 L pilot-scale bioreactor ۸١ filled with Clinoptilolite zeolite mineral for denitrification process. Furthermore, a computational ۸۲ ٨٣ fluid dynamics (CFD) model is developed using COMSOL 5.4 software in an attempt to ٨٤ investigate what the optimal length of the bioreactor would be for a desired HRT. CFD has proven Λ٥ to be a promising tool to study the flow fields in a reactor and can be successfully applied for ٨٦ design, redesign, and scale-up purposes in the future. Taking into account the above-mentioned ۸٧ goals, different feeding strategies, and various initial concentrations of nitrate ions were applied at various hydraulic retention times. $\lambda\lambda$

٨٩

9. 2. Materials and Methods

2.1. Column Bioreactor

٩٢ The bioreactor used for the denitrification process was a packed bed reactor which was 90% filled ٩٣ with Clinoptilolite zeolite particles of different sizes. Fig. 1 illustrates a schematic picture of this ٩٤ bioreactor, as well as how different particles were arranged inside it. An upward flow was 90 considered for this system to prevent the accumulation of nitrogen and other gases inside the ٩٦ column. Therefore, the inlet to the bioreactor is located at the bottom. Deoxygenated synthetic water (by Nitrogen gas) was pumped from the feeding tank into the column, and it was treated by ٩٧ ٩٨ autotrophic denitrifying microorganisms attached to the zeolite, and exited from the top of the 99 upper portion of the column. The bioreactor was a Plexiglas cylinder, measuring 100 cm in height 1 . . and 5.5 cm in diameter (9.5 L). It can be seen in Fig. 1 that four ports for liquid samples were installed along the column at 25 cm apart from each other. In addition, two ports were considered 1.1 1.1 for the sampling particles. Larger particles were placed at the bottom, and smaller ones were 1.5 toward the top of the bed. Change of particle size along the column was considered to increase the contact area as the influent raises in the bioreactor, compensating for lower nitrate concentration 1.5 due to the denitrification process at the bottom. The characteristics of Clinoptilolite zeolite 1.0 1.7 particles are given in Table 1. Their sizes ranged between 0.4 and 6 mm and had irregular shapes. The average porosity of particles was determined to be 50% and the density ranged between 0.5 1.1 and 1.1 kg. m³ ۱.۸

1.9

2.2. Zeolite Modification

Before starting the test and in order to remove surface impurities, zeolite particles were washed
 with water for 48 hours and then dried in an oven at 105 °C for 48 hours. Then, 20 vol.%
 hydrochloric acid was applied for four hours, followed by extensive washing with distilled water

112	until pH 6 was reached in the effluent. The particles were then dried in an oven at 105 °C for 48
110	hours. The color of zeolite became brighter after modification by acid.

- 117
- **2.3.** Microbiological Culture

114 This investigation was part of a bigger plan for denitrification of water containing nitrite and sulfur 119 elements in large scales. In this regard, *Thiobacillus* microorganism (ATCC 23644 Gram-negative) 17. was used for the simultaneous elimination of nitrite and sulfur. The microorganism was obtained from the German DSMZ microbial collection. This microorganism utilizes sulfur for energy 171 (hydrogen sulfide, elemental sulfur, or thiosulfate) and requires a pHof 7 and a temperature of 30 177 ۱۲۳ °C for optimum growth. Thiobacillus denitrificans were cultivated on a basal salt medium (BSM) which was prepared in three separate and isolated parts. The composition of BSM is presented in 172 170 Table 2. Compounds containing phosphorus and chlorine were esterified separately. An autoclave 127 was used to sterilize all the ingredients of the culture medium for 20 minutes at 121 °C and 1.5 ١٢٧ atm pressure. Once the sterile solutions were removed from the autoclave, they were cooled down to 50 °C, mixed together, and divided into sterile vials. The strains were mixed using a flame and ۱۲۸ 189 sterilized syringe under the biological hood, then inoculated into the vials at a rate of 10% and incubated at 30 °C for one week. The stored microorganism cultures were transferred to the new 17. ۱۳۱ environment on a monthly basis and the new cultures replaced the previous ones. To avoid ۱۳۲ interference from photoautotrophic microorganisms, aluminum foil was used to cover the column, ۱۳۳ preventing the penetration of light into the system.

- ۱۳٤
- **170 2.4. Operational Plan**

The operating plan for this investigation is reported in Table 3. The whole operation took about 4 months, and sampling for physicochemical properties was performed 2 to 3 times per week from the designated ports. There were three phases in the operational plan, each with a different objective. Detailed descriptions of each phase are provided below.

١٤٠

Before starting the process and in order to reach a usable level of cell population in the column inoculation, 5 L of BSM was inoculated by *Thiobacillus denitrificans*. It was incubated in an Erlenmeyer flask at 30 °C under sterile conditions for 30 days. The number of cells was counted under an optical microscope to ensure the growth and division of cells. Also, every week, 10% of the medium was replaced with a fresh BSM.

127

The first stage (set-up) involved adding 4 *L Thiobacillus denitrificans* medium from the discontinuous culture, and 6 L of non-sterile BSM to the reactor inlet. The reactor operated in a closed loop in order to provide sufficient contact time between cells, nutrients and substrate. During this period, 1 L of fresh BSM was added to an influent nitrate concentration of 550 mg. L⁻¹ each day. It should be mentioned that until the 6th day (end of set-up stage), the HRT was set to 25 hours and to 32 hours afterward. The hydraulic retention time was calculated as follows:

$$HRT = \frac{Pore \ bed \ volume}{Flow \ rate} = \frac{V\varepsilon}{Q} \tag{1}$$

where V is the volume of the bed, ε is the porosity, and Q is the flow rate.

In the growth and incubation stage, the reactor cycle was changed from closed to open to form the microbial biofilm and the column was treated with a BSM containing 550 mg. L^{-1} nitrate ion. The concentration of nitrate ions was measured each day to monitor its significant reduction in the

effluent. This reduction indicated that the bioreactor was ready for the gradual replacement of
 BSM with synthetic water (SW). The compounds present in different concentrations of synthetic
 water (SW) are given in Table 4.

171

١٦٢ Finally, once the denitrification rate remained stable and the column reached the steady-state 177 condition, feeding experiments were carried out and the performance of the column in removing nitrate ions was evaluated based on different nitrate input concentrations and HRTs. The feeding 172 170 experiments started from the longest hydraulic retention time (25 hours) and shorter HRTs were employed based on the reactor performance and standard limits for nitrite and nitrate ions in the 177 177 effluent. It is worth mentioning that with increasing nitrate ion concentration, alkaline and ۱٦٨ thiosulfate ion values also increase. Therefore, the pH of the environment was adjusted in the 179 range of 7.7-8 using 2 molar NaOH solution.

17.

3. Physicochemical Analyses

- **3.1. Nitrate Test**
- In this study, the Chromotropic Acid method was employed to quantify nitrate levels, with the specified range for nitrogen being 1-130 mg/L. The underlying principle of this method involves the creation of a yellow solution through the reaction of Nitrate Reagent A and Nitrate Reagent B with nitrate. Subsequently, the absorbance of the resulting solution was measured using a spectrophotometer at a wavelength of 410 nm. To establish the nitrate standard curve, varying concentrations of nitrate solution were prepared using potassium nitrate. Each test tube containing Nitrate Reagent A received 1 ml of nitrate solution, and the tube was shaken 10 times. Following
- 14. that, Nitrate Reagent B was added to each tube through a funnel, and the tubes were shaken another

- 10 times. Once the yellow color fully developed, a specific volume of the solution was withdrawn
- using a Pasteur pipette and transferred to the cuvette. The device was initially calibrated with
- nitrate-free distilled water, and the absorbance of each test tube was then read at a wavelength of
- 142 410 nm to establish the nitrate standard curve.
- 170
- 147 To measure nitrate in the samples after obtaining the nitrate standard curve, cells were separated
- from the culture medium through centrifugation at 5000 rpm for 20 minutes. After passing the
- samples through a 0.45-micron filter paper and conducting the dilution process, one milliliter of
- the resultant solution was transferred to a test tube containing Nitrate Reagent A, followed by 10
- shakes. Subsequently, Nitrate Reagent B was introduced into the test tube using a funnel, and the
- tube was shaken another 10 times until the yellow color fully manifested. Spectrophotometer data
- 197 and absorbance changes were then compared with the absorption standard curve, ultimately
- **yielding the nitrate concentration.**
- 195
- 190 **3.2.** Nitrite Test
- To quantify nitrite levels, the USEPA Diazotization method was employed with a measurement
- range of 0.002-0.03 mg/L of nitrogen. The methodology involves creating nitrite solutions using
- sodium nitrite at various concentrations. Subsequently, Nitrite Reagent is introduced to 10 ml of
- these solutions using a funnel, followed by shaking the tubes 10 times. After approximately 20
- ^{*}•• minutes, a pink coloration develops. A specific volume of the solution is then extracted using a
- Yes Pasteur pipette and transferred to a cuvette. The instrument is initially calibrated to zero using
- $\gamma \cdot \gamma$ distilled water devoid of nitrite. Subsequently, the absorbance of the samples is read at a
- **X**•X wavelength of 507 nm, and a nitrite standard curve is generated. The method relies on the reaction

- the nitrite standard curve, cells were separated from the culture medium via centrifugation at 5000
- rpm for 20 minutes. Following filtration through a 0.45-micron filter paper and necessary dilution
- Y·V steps, 10 mL of the upper solution was combined with the Nitrite Reagent using a funnel. After
- Y•A shaking the tubes and the complete development of the pink color, the absorbance of the samples
- ^Y was measured at a wavelength of 507 nm. Spectrophotometer data and absorption changes were
- then compared with the absorption standard curve to determine the nitrite concentration.
- 211
- **3.3. pH Test**
- The pH of the samples was instantly measured using a digital pH meter, without filtration or
- the dilution, immediately after sampling.
- 210
- **3.4. Characterization of Zeolite Particles**
- In order to characterize the zeolite particles used in the research, scanning electron microscope
- (SEM) images were used to study the surface structure and morphology. Also, to determine the
- the elemental composition of samples, energy dispersive X-ray (EDX) method was used at room
- temperature. In this method, the surface of the sample is bombarded by an electron beam inside
- the microscope, and when the electrons of this beam collide with the electrons of the atoms of the
- sample under investigation, some of these electrons are displaced. Due to the fact that the place of
- atoms cannot remain empty and must reach the equilibrium state, electrons from higher atomic
- **TYE** layers migrate to this empty place and fill its place. In order to perform this action, the electrons
- of the higher layers, which have more energy, must lose some of their energy to reach the energy
- **TTT** level of the new layer and be stable, and this energy is emitted as X-rays.

227	The magnitude of energy emitted depends on the specific layers involved—both the la	<mark>yer from</mark>
229	which the electron is detached and the layer to which it migrates. Additionally, each elen	nent's X-
۲۳.	rays emit a distinct amount of energy during the transition from one atomic layer to	another.
221	Consequently, by quantifying the energy in X-rays released during electron beam bomb	ardment,
222	it becomes feasible to discern the type of atom within the sample. The outcome of an EDX	analysis
۲۳۳	is a spectrum, where the displayed peaks are unique to individual atoms, signifying the	presence
272	of a specific element.	
220		
222	4. Computational Fluid Dynamics Model Development	
227	COMSOL Multiphysics 5.4 software was utilized for generating the bioreactor config	guration,
227	meshing, and solving the governing equations using the finite element method. To obtain	the flow
229	profiles inside the bed, fluid properties were considered as water. Such an assumption is re	asonable
۲٤.	due to the low nitrate concentration in water.	
251		
7 2 7	4.1. Governing Equations	
252	The governing equations for the porous fixed bed bioreactor are:	
	$\frac{\partial}{\partial t} (\epsilon_p, \rho) \nabla (\rho, \mathbf{u}) = \mathbf{Q}$	(2)
	$u = -\frac{K}{\mu}\nabla\rho$	(3)

where ϵ_p is the porosity of the bed, ρ is the density of the fluid, u is velocity, K is the permeability, ٢ ٤ ٤

250 and μ is the viscosity.

Y ξV The equation of mass transfer for species *i* in the reactor, which includes diffusion, convection and Y ξA chemical reaction, is as follows:

$$\frac{\partial S_i}{\partial t} + \nabla (-D_i \nabla S_i) + \nabla (\vec{u}S_i) = R_i$$
(4)

where *t* is time, S_i is concentration of species *i*, D_i is diffusion coefficient of the species *i*, \vec{u} is velocity, and R_i is chemical reaction rate for the species *i*.

201

4.2. Reaction Kinetics

To describe the denitrification process in this study, the Monod equation was used:

$$r_s = -\frac{\mu_m s}{K_s + s} \tag{5}$$

where r_s is the growth rate of microorganism, μ_m is the maximum growth rate of microorganism, K_s is the half-velocity constant, and S is the concentration of the substrate for growth.

202

4.3. Model Configuration

To reach comparable results with experimental data, a 9.5 L cylindrical bioreactor was generated
with the same height and diameter as actual setup. Then, the generated geometry was meshed using
tetrahedral mesh elements. The generated mesh used for CFD simulations is shown in Fig. 2. As
the concentration of the nitrate drops by going upward through the bioreactor, four different mesh
sizes were applied ranging from coarse at the inlet to fine at the outlet to acquire precise results.

- It was considered that the influent enters the bioreactor with a fixed velocity (u_0) and concentration (S_{0i}) in the simulation. The velocity was calculated based on the residence time of the fluid. Table
- 5 summarizes the values and parameters used for the simulation based on the experimental values.

- 221 Due to the low concentration of nitrate in water, the physical properties of the fluid in the reactor ۲٦٨ were considered to be the same as water at 30 °C.
- 229
- ۲۷۰ 5. Results and Discussion
- ۲۷۱ **5.1. Zeolite Modification**
- ۲۷۲ The mineral morphology of water-washed zeolite, acid-modified zeolite, and zeolite-
- microorganism were assessed using scanning electron microscopy (SEM). Figs 3, 4, and 5 display ۲۷۳
- SEM images of water-washed zeolite, acid-modified zeolite, and zeolite-biofilm, respectively, at ۲۷٤
- 200 various magnifications.
- 277
- 777 Upon comparing acid-modified zeolite with natural zeolite, it is evident that acid modification
- 777 results in more significant and larger pores. This augmentation enhances the specific surface area
- ۲۷۹ of the zeolite, facilitating the formation of microbial biofilm. Fig. 5 presents the SEM imaging
- ۲٨٠ results of particles after development of microbial biofilm. As depicted in the figure, the microbial
- ۲۸۱ cells exhibit a bacilli shape, with lengths ranging from 0.5 to 1.4 µm, mirroring the findings of the
- ۲۸۲ study conducted by Gu et al. [37]. The dimensions of the microorganisms captured in the images ۲۸۳
- align entirely with those of Thiobacillus denitrificans.
- ۲۸٤
- 270 Furthermore, the EDX results for both natural zeolite and modified zeolite are depicted in Figs. 6 ۲۸٦
- and 7, along with corresponding data presented in Tables 6 and 7, respectively. Based on the EDX
- ۲۸۷ findings, the Si/Al ratio in natural zeolite is 5.45, while in acid-washed zeolite, it has increased to
- ۲۸۸ 11.75. In a study conducted by Shirazi et al. [38], SEM results revealed that zeolite with varying
- ۲۸۹ Si/Al ratios exhibits distinct morphologies and pore sizes. Surface area measurement demonstrated

that reducing the Si/Al ratio leads to a decrease in the zeolite's surface area [68]. Additionally, the
acidity analysis of synthetic zeolite indicated that different Si/Al ratios impact the surface acidity,
which consequently impact microorganism immobilization. Therfore, the acid-modified zeolite
with a higher Si/Al ratio possesses an increased surface area, enhancing the optimal conditions for
biofilm formation.

290

5.2. Experimental Measurements

۲۹۷ Fig. 8 shows the whole denitrification process, including set-up, growth, and feeding stages with ۲۹۸ different HRTs. It also shows nitrate concentrations in the influent and effluent, and the removal 299 efficiency during these periods. As mentioned above, during the set-up and growth stages (Fig. 8a), a constant 550 mg. L⁻¹ concentration of nitrate was introduced to the bioreactor. In the set-up ۳.. 3.1 which lasted 7 days, the bioreactor had a negative efficiency and the concentration of nitrate in the ۳.۲ effluent was higher than in the influent. This negative efficiency happened due to the conversion of ammonium ions into nitrate during this period. Between days 7 to 30 (the growth stage), the ۳.۳ 3.5 nitrate concentration gradually decreased in the outlet, indicating the growth and stabilization of 5.0 autotrophic microorganisms in the bioreactor. Finally, the bioreactor reached an exploitation level 3.1 in less than 22 days and the denitrification process could be started from this day. However, the ۳.۷ stabilization process continued till day 30 to increase the population growth and the efficiency of ۳.۸ the bioreactor. It is worth noting that the set-up and growth times in different systems only depend 8.9 on the type and size of the bioreactor and the type of microorganisms. Thus, different times are ۳١. reported in different research for these stages [15, 39, 40].

 r_{11} In the feeding stages (Figs. 8b to 8g), the performance of the bioreactor was tested at different r_{11} HRTs (25, 15, 12, 10, 6 and 3 hours) and various nitrate input concentrations for each HRT (400, r_{12} 250, 120 and 80 mg. L⁻¹). As expected, the efficiency of the bioreactor increased by lowering the r_{10} input concentration in each HRT which is due to the strengthening of the biofilm and population r_{11} growth on particles during the operation of the bioreactor.

312

Comparing different HRTs, the outlet concentrations of nitrate were always below the standard 311 value (45 mg. L⁻¹) for the influents with nitrate concentrations of 120 and 80 mg. L⁻¹. Thus, it can 319 ۳۲. be said that these concentrations are less than the potential power of the bioreactor in the intended ۳۲۱ HRTs. In the case of the influent with a concentration of 250 mg. L^{-1} , the effluent nitrate concentration was always below or near the standard level in all HRTs, ensuring that higher nitrate ٣٢٢ ۳۲۳ inputs are feasible. However, for the influent with a nitrate concentration of 400 mg. L⁻¹, the ٣٢٤ efficiency of the bioreactor was considerably low, and the output nitrate concentrations were 370 higher than the standard limit in all HRTs. To overcome this problem without increasing the HRT, 377 a nitrate shock was applied to the bioreactor by injecting the synthetic influent with a nitrate concentration of 1500 mg L⁻¹. This shock was like a new growth in the incubation stage for the 377 bioreactor was and applied between days 95 and 101 with a 3-hour HRT. This shock significantly ۳۲۸ ۳۲۹ increased the uptake of nutrients and the efficiency of the bioreactor, such that the effluent nitrate concentration for the 400 mg. L⁻¹ influent reached 44 mg. L⁻¹, just below the standard value. ۳۳. ۳۳۱ Overall, the efficiency of the bioreactor was always above 50% and in a constant range of 59-68% ٣٣٢ in different HRTs for the influent with a concentration of 400 mg. L⁻¹. However, after the nitrate 377 shock on the 104th day of the operation, a significant increase was observed in the efficiency of ٣٣٤ nitrate removal up to 87%, which can be the result of microorganism cell growth and the increased

number of cells. Zhao et al. [33] also reached 90% nitrate removal efficiency in a 3-hour HRT.
However, the initial concentration of nitrate and the volume of the bioreactor were much lower
than in the current study.

۳۳۸

In this work, the main concern about the effluent quality was the concentration of nitrate and nitrite ions. Therefore, these two concentrations were measured every 1 to 3 days. Fig. 9 shows the concentration profile of the input nitrate, output nitrate and output nitrite ions at different HTRs throughout the entire duration of the operation of the bioreactor. It can be seen in this figure that the amount of nitrite in the outlet was always below the standard limit (3 mg. L⁻¹), except in the growth and the nitrate shock phases. Nitrate was incompletely reduced in these phases due to the higher concentrations rather than the standard capacity of the bioreactor.

322

ΥΞΥ 5.3. CFD Simulations

The precision of simulation results strongly depends on the quality and size of meshes. In order to determine the proper element size, computational error of nitrate removal was calculated for each mesh size by considering the difference between experimental data and simulation results. Fig. 10 shows the error nitrate removal efficiency for different mesh sizes named by their number of elements. According to this figure, as the error does not decrease with further decreasing of the size of elements, the mesh with 155661 elements was selected for performing the simulations.

rooTo ensure the reliability of CFD results, the same scenario as the experimental test was applied,rorwith the exception that there was no need for the set-up and growth stages. An excellent agreementrovbetween the experimental data of growth rate and the prediction of Eq. (5) was observed.

٣٥٨ Maximum growth of microorganisms (μ_m) and half-velocity constant (K_s) , which are shown in 309 Table 8, were calculated through monod equation linearization [41] and applying the least-square ۳٦. method on nitrate concentrations at influent and effluent.

311

The comparison of CFD simulation results with experiments is shown in Fig. 11. A good 377 377 agreement between the experimental and simulated values can be seen in this figure and the relative error can be attributed to the environmental factors such as temperature oscillations in the 377 370 experiment. Furthermore, the presence of other minerals which affect the active surface of the particles has not been taken into account in the simulations. These minerals fill the empty space of 322 311 the particles and reduce the mass transfer rate for nitrate absorption.

- 377
- 379

5.4. Optimal Reactor Height Determination

۳۷. CFD simulation was utilized for further understanding of the bioreactor performance as an 371 alternative for the time demanding and costly experiments. Fig. 12 shows the profile of nitrate 3777 concentration along the bioreactor for various initial concentrations in the 3-hour retention time. 377 The main purpose of this investigation is to reach the maximum nitrate removal with the minimum HRT and reactor volume. It can be seen in this figure that for the influent with 400 mg. L⁻¹ nitrate 372 ۳۷٥ concentration, the bioreactor length is optimal and the effluent concentration has reached the 377 standard level at the end of the packed bed (90 cm). However, for the influents with 250, 120 and 7VV 80 mg. L^{-1} of nitrate concentration, the standard level could be obtained at 45, 30 and 20 cm of the 371 reactor length.

349 6. Conclusions ۳٨٠ The effectiveness of nitrate removal was assessed in a 9.5 L packed bed column bioreactor through ۳۸۱ the evaluation of various feeding strategies and initial concentrations. The bioreactor was filled ۳۸۲ with zeolite mineral particles modified through acid washing process. Acid washing increased the pore size of zeolite particles compared to natural zeolite which facilitates the formation of ۳۸۳ 372 microbial biofilm. Multiple hydraulic retention times were investigated to determine the efficiency 300 of nitrate removal. The results demonstrate that the designed bioreactor is capable of achieving an 87% reduction in nitrate levels within a three-hour timeframe. This indicates that the bioreactor ۳۸٦ 347 system can effectively remove nitrate ions from water, even when the initial nitrate content is as ۳۸۸ high as 400 mg/L, which exceeds the standard limit of 45 mg/L. The computational fluid dynamics 344 (CFD) model yielded satisfactory results, confirming the effectiveness of the bioreactor design. It ۳٩. revealed that the optimal length of the bioreactor is suitable for influents containing 400 mg/L of 391 nitrate. However, for influents with lower nitrate concentrations or when employing lower 392 hydraulic retention times (HRTs), the bioreactor can be constructed with shorter heights. The CFD model can serve as a valuable tool for future studies, particularly in scaling up the bioreactor ۳۹۳ 395 system.

- 390
- Considering the fact that nitrate-contaminated wastewater usually contains COD, N and P
 simultaneously, further research is needed to investigate the performance of the presented system
 in this regard. Furthermore, performing microbial community analysis is highly recommended for
 the future works to investigate the possibility of microbial consortium instead of Thiobacillus
 denitrificans alone [42].
- ٤.١
- $\xi \cdot \gamma$ 7. Nomenclature

Abbreviations

<mark>BSM</mark>	Basal Salt Medium
<mark>CFD</mark>	Computational Fluid Dynamics

EDX Energy Dispersive X-ray

HRT Hydraulic Retention Times

SEM Scanning Electron Microscope

SW Synthetic Water

Symbols

D _i Diffusion coefficient	cient $(m^2. s^{-1})$
--------------------------------------	-----------------------

K Bed permeability (s)

K_s Half-growth rate constant (kg. m⁻³)

n Normal unit vector

Q Flow rate (m³. h⁻¹)

- R_i Reaction rate (kg. m³ s⁻¹)
- r_s Concentration change (kg/m³. s)
- S_i Nitrate concentration of species *i* (kg. m⁻³)
- S_0 Inlet nitrate concentration (kg. m⁻³)

t Time (s)

- u Velocity (m. s^{-1})
- u_0 Inlet velocity (m. s⁻¹)

V Bed volume (m^3)

Greek letters

3	Porosity of bed
---	-----------------

- Density (kg. m⁻³) ρ
- Viscosity (Pa.s) μ
- ecentral contractions of the second μ_{m}

٤.٣

٤.٤

	Table 1. Properties of ze	olite particles	
	Size (mm)	0.4 - 6	
	Shape	Irregular	
	Particle Porosity (%)	50	
	Density (kg/m ³)	0.5 - 1.1	
	X		
X í			

٤.0

$\begin{tabular}{ c c c c c c } \hline \hline Chemical Formula & Amount \\ \hline KH_2PO_4 & 1.8 (g/L) \\ Na_3HPO_4 & 1.2 (g/L) \\ MgSO_4.7H_2O & 0.1 (g/L) \\ (NH_4)_2SO_4 & 0.1 (g/L) \\ CaCl_2.2H_2O & 0.03 (g/L) \\ Na_3S_2O_3.5H_2O & 15 (g/L) \\ FeCl_3.6H_2O & 0.02 (g/L) \\ MnSO_4 & 0.02 (g/L) \\ NaHCO_5 & 0.5 (g/L) \\ EDTA & 0.0005 (g/L) \\ EDTA & 0.00005 (g/L) \\ CnCl_2.2H_2O & 0.00001 (g/L) \\ CnCl_2.4H_2O & 0.00003 (g/L) \\ CoCl_2.6H_2O & 0.00003 (g/L) \\ FeSO_4.7H_2O & 0.00003 (g/L) \\ FeSO_4.7H_2O & 0.00003 (g/L) \\ NiCl_2.6H_2O & 0.00003 (g/L) \\ NiCl_2.6H_2O & 0.00002 (g/L) \\ \hline \hline \\ \hline $	Chemical Formula Amount KH ₂ PO ₄ 1.8 (g/L) MgSO ₄ , 7H ₂ O 0.1 (g/L) (NH ₄) ₂ SO ₄ 0.1 (g/L) CaCl ₂ ,2H ₂ O 0.03 (g/L) Na ₂ S ₂ O ₃ ,5H ₂ O 15 (g/L) FeCl ₃ ,6H ₂ O 0.02 (g/L) MnSO ₄ 0.02 (g/L) KNO ₃ 5 (g/L) EDTA 0.00005 (g/L) ZnSO ₄ ,7H ₂ O 0.00003 (g/L) CoCl ₂ ,6H ₂ O 0.00003 (g/L) CoCl ₂ ,6H ₂ O 0.00003 (g/L) FeSO ₄ ,7H ₂ O 0.00003 (g/L) H ₃ BO ₃ 0.00003 (g/L) NiCl ₂ ,6H ₂ O 0.00002 (g/L) NiCl ₂ ,6H ₂ O 0.00002 (g/L)	Chemical Formula Amount KH+PO4 1.8 (g/L) Na ₂ HPO4 1.2 (g/L) MgSO4.7H ₂ O 0.1 (g/L) (NH4) ₂ SO4 0.1 (g/L) CaCl ₂ ,2H ₂ O 0.03 (g/L) Na ₂ SO ₂ O ₃ 5H ₂ O 15 (g/L) FeCl ₃ .6H ₂ O 0.02 (g/L) MnSO ₄ 0.02 (g/L) MnSO ₄ 0.02 (g/L) NaHCO3 0.5 (g/L) EDTA 0.0005 (g/L) ZnSO ₄ .7H ₂ O 0.0001 (g/L) CuCl ₂ .2H ₃ O 0.00003 (g/L) CoCl ₂ .6H ₃ O 0.0002 (g/L) Ma2MO+O24.2H ₂ O 0.00003 (g/L) FeSO ₄ .7H ₂ O 0.00003 (g/L) FeSO ₄ .7H ₂ O 0.00003 (g/L) NiCl ₂ .6H ₂ O 0.00003 (g/L)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	KH ₂ PO ₄ 1.8 (g/L) Na ₂ HPO ₄ 1.2 (g/L) MgSO ₄ , 7H ₂ O 0.1 (g/L) (NH ₄) ₂ SO ₄ 0.1 (g/L) CaCl ₂ , 2H ₂ O 0.03 (g/L) Na ₂ S ₂ O ₃ , 5H ₂ O 15 (g/L) FeCl ₃ , 6H ₂ O 0.02 (g/L) MnSO ₄ 0.02 (g/L) MnSO ₄ 0.02 (g/L) NaHCO ₃ 5 (g/L) EDTA 0.00005 (g/L) ZnSO ₄ , 7H ₂ O 0.00001 (g/L) MnCl ₂ , 2H ₂ O 0.00003 (g/L) CuCl ₂ , 2H ₂ O 0.00003 (g/L) CoCl ₂ , 2H ₂ O 0.00003 (g/L) CoCl ₂ , 2H ₂ O 0.00003 (g/L) FeSO ₄ , 7H ₂ O 0.00003 (g/L) H ₃ BO ₃ 0.00003 (g/L) NiCl ₂ , 6H ₂ O 0.00002 (g/L)	KH2PO4 1.8 (g/L) Na3PPO4 1.2 (g/L) MgSO4.7H2O 0.1 (g/L) (NH4)>SO4 0.1 (g/L) CaCl_2.2H2O 0.03 (g/L) NasSQ.5H2O 15 (g/L) FeCl_3.6H2O 0.02 (g/L) MaSO4 0.02 (g/L) MaSO4 0.02 (g/L) MaSO4 0.02 (g/L) KN03 5 (g/L) EDTA 0.00005 (g/L) ZnSO4.7H2O 0.00003 (g/L) CoCl_2.6H2O 0.0003 (g/L) CoCl_2.6H2O 0.00003 (g/L) MacD3 0.00003 (g/L) KN03 5 (g/L) ZnSO4.7H2O 0.00003 (g/L) CoCl_2.6H2O 0.00003 (g/L) Na2MO+O24.2H2O 0.00003 (g/L) FeSO4.7H2O 0.00003 (g/L) NiCl_2.6H2O 0.00003 (g/L) NiCl_2.6H2O 0.00002 (g/L) NiCl_2.6H2O 0.00002 (g/L) NiCl_2.6H2O 0.00002 (g/L)	Chemical Formula	Amount
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Na2HPO4 1.2 (g/L) MgSO4.7H2O 0.1 (g/L) (NH4)3SO4 0.1 (g/L) CaCl2.2H2O 0.03 (g/L) Na2S2O3.5H2O 15 (g/L) FeCl3.6H2O 0.02 (g/L) MnSO4 0.02 (g/L) Na4HCO3 0.5 (g/L) EDTA 0.0005 (g/L) ZnSO4.7H2O 0.00001 (g/L) CaCl2.2H2O 0.00003 (g/L) CoCl2.6H2O 0.00003 (g/L) Na2MO-O24.2H2O 0.00003 (g/L) Na2MO-O24.2H2O 0.00003 (g/L) NiCl2.6H2O 0.00003 (g/L) NiCl2.6H2O 0.00002 (g/L) NiCl2.6H2O 0.00002 (g/L)	Na ₂ HPO ₄ 1.2 (g/L) MgSO ₄ .7H ₂ O 0.1 (g/L) (NH ₄) ₂ SO ₄ 0.1 (g/L) (CaCl ₂ .2H ₂ O 0.03 (g/L) Na ₂ S ₂ O ₃ .5H ₂ O 15 (g/L) FeCl ₃ .6H ₂ O 0.002 (g/L) MnSO ₄ 0.02 (g/L) KNO ₃ 5 (g/L) EDTA 0.00005 (g/L) CuCl ₂ .2H ₂ O 0.00003 (g/L) CuCl ₂ .2H ₂ O 0.00003 (g/L) MnCl ₂ .4H ₂ O 0.00003 (g/L) FeSO ₄ .7H ₂ O 0.00003 (g/L) H ₂ BO ₃ 0.0003 (g/L) NiCl ₂ .6H ₂ O 0.00002 (g/L)	KH ₂ PO ₄	1.8 (g/L)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MgSO4.7H2O 0.1 (g/L) (NH4)2SO4 0.1 (g/L) CaCl2.2H2O 0.03 (g/L) Na2S2O3.5H2O 15 (g/L) FeCl3.6H2O 0.02 (g/L) MnSO4 0.02 (g/L) NaHCO3 0.5 (g/L) EDTA 0.00005 (g/L) ZnSO4.7H2O 0.00001 (g/L) MnCl2.4H2O 0.00003 (g/L) Na2MOrO24.2H2O 0.00003 (g/L) FeSO4.7H2O 0.00003 (g/L) NiCl2.6H2O 0.00002 (g/L) H3BO3 0.00003 (g/L) NiCl2.6H2O 0.00002 (g/L)	MgSO ₄ .7H ₂ O (NH ₄) ₂ SO ₄ CaCl ₂ .2H ₂ O CaCl ₂ .2H ₂ O NaS ₂ O ₅ .5H ₂ O FeCl ₃ .6H ₂ O NaSO ₄ 0.02 (g/L) MnSO ₄ 0.0005 (g/L) EDTA 0.00001 (g/L) CuCl ₂ .2H ₂ O 0.00001 (g/L) CuCl ₂ .2H ₂ O 0.00002 (g/L) Na ₂ MO ₇ O ₂₄ .2H ₂ O 0.00002 (g/L) Na ₂ MO ₇ O ₂₄ .2H ₂ O 0.00002 (g/L) NiCl ₂ .6H ₂ O 0.00002 (g/L)	Na ₂ HPO ₄	1.2 (g/L)
$(H_{4})_{2}SO_{4} 0.1 (g/L) CaCl_{2}2H_{2}O 0.03 (g/L) Na_{2}S_{2}O_{3}.5H_{2}O 15 (g/L) FeCl_{3}.6H_{2}O 0.02 (g/L) NaHCO_{3} 0.5 (g/L) KNO_{3} 5 (g/L) EDTA 0.0005 (g/L) ZnSO_{4}.7H_{2}O 0.0001 (g/L) CuCl_{2}.2H_{2}O 0.00003 (g/L) Na_{2}MO_{7}O_{24}.2H_{2}O 0.00003 (g/L) FeSO_{4}.7H_{2}O 0.00003 (g/L) NiCl_{2}.6H_{2}O 0.00002 (g/L) NiCl_{2}.6H_{2}O 0.00002 (g/L) (g/L) NiCl_{2}.6H_{2}O 0.00002 (g/L) (g/L) NiCl_{2}.6H_{2}O 0.00002 (g/L) (g/L) NiCl_{2}.6H_{2}O 0.00002 (g/L) ($	(NH ₄) ₂ SO ₄ 0.1 (g/L) CaCl ₂ .2H ₂ O 0.03 (g/L) Na ₂ S ₂ O ₅ .5H ₂ O 15 (g/L) FeCl ₃ .6H ₂ O 0.02 (g/L) MnSO ₄ 0.02 (g/L) NaHCO ₃ 0.5 (g/L) EDTA 0.0005 (g/L) CuCl ₂ .2H ₂ O 0.00001 (g/L) MnCl ₂ .4H ₂ O 0.00003 (g/L) CoCl ₂ .6H ₂ O 0.00003 (g/L) FeSO ₄ .7H ₂ O 0.00003 (g/L) Na ₂ MO ₇ O ₂₄ .2H ₂ O 0.00003 (g/L) NiCl ₂ .6H ₂ O 0.00002 (g/L)	(NH ₄) ₂ SO ₄ 0.1 (g/L) CaCl ₂ :2H ₂ O 0.03 (g/L) Na ₃ S ₂ O ₃ :5H ₂ O 15 (g/L) FeCl ₃ :6H ₂ O 0.02 (g/L) MmSO ₄ 0.02 (g/L) NaHCO ₃ 0.5 (g/L) EDTA 0.0005 (g/L) ZnSO ₄ :7H ₂ O 0.00001 (g/L) MnCl ₂ :4H ₂ O 0.00003 (g/L) CoCl ₂ :6H ₂ O 0.00003 (g/L) FeSO ₄ :7H ₂ O 0.00003 (g/L) Na ₂ MO-O ₂₄ :2H ₂ O 0.00003 (g/L) NiCl ₂ :6H ₂ O 0.00003 (g/L) NiCl ₂ :6H ₂ O 0.00002 (g/L)	MgSO ₄ .7H ₂ O	0.1 (g/L)
CaCl ₂ 2H ₂ O 0.03 (g/L) Na ₂ S ₂ O ₃ .5H ₂ O 15 (g/L) FeCl ₃ .6H ₂ O 0.02 (g/L) MnSO ₄ 0.02 (g/L) NaHCO ₃ 0.5 (g/L) EDTA 0.0005 (g/L) ZnSO ₄ .7H ₂ O 0.0001 (g/L) CuCl ₂ .2H ₂ O 0.00003 (g/L) CoCl ₂ .6H ₂ O 0.00003 (g/L) FeSO ₄ .7H ₂ O 0.00003 (g/L) Na ₂ MO ₇ O ₂ A.2H ₂ O 0.00003 (g/L) NiCl ₂ .6H ₂ O 0.00003 (g/L) NiCl ₂ .6H ₂ O 0.00002 (g/L)	CaCl ₂ ,2H ₂ O 0.03 (g/L) Na ₂ S ₂ O ₃ ,5H ₂ O 15 (g/L) FeCl ₃ ,6H ₂ O 0.02 (g/L) MnSO ₄ 0.02 (g/L) NaHCO ₃ 0.5 (g/L) EDTA 0.0005 (g/L) ZnSO ₄ ,7H ₂ O 0.00001 (g/L) MnCl ₂ ,2H ₂ O 0.00003 (g/L) CoCl ₂ ,6H ₂ O 0.00002 (g/L) Na ₂ MO ₇ O ₂₄ ,2H ₂ O 0.00003 (g/L) FeSO ₄ ,7H ₂ O 0.00003 (g/L) NiCl ₂ ,6H ₂ O 0.00002 (g/L) H ₃ BO ₃ 0.0003 (g/L) NiCl ₂ ,6H ₂ O 0.00002 (g/L)	CaCl ₂ ,2H ₂ O 0.03 (g/L) Na ₂ S ₂ O ₃ ,5H ₂ O 15 (g/L) FeCl ₃ ,6H ₂ O 0.02 (g/L) MnSO ₄ 0.02 (g/L) NaHCO ₃ 0.5 (g/L) EDTA 0.00005 (g/L) ZnSO ₄ ,7H ₂ O 0.00001 (g/L) CuCl ₂ ,2H ₂ O 0.00003 (g/L) CoCl ₂ ,6H ₂ O 0.00002 (g/L) Na ₂ MO ₇ O ₂₄ ,2H ₂ O 0.00003 (g/L) FeSO ₄ ,7H ₂ O 0.00003 (g/L) Na ₂ MO ₇ O ₂₄ ,2H ₂ O 0.00002 (g/L) Na ₂ MO ₇ O ₂₄ ,2H ₂ O 0.00002 (g/L) Na ₂ MO ₇ O ₂₄ ,2H ₂ O 0.00002 (g/L) Na ₂ MO ₇ O ₂₄ ,2H ₂ O 0.00002 (g/L) KaBO ₃ 0.0003 (g/L) FeSO ₄ ,7H ₂ O 0.00002 (g/L) Na ₂ CoCl ₂ ,6H ₂ O 0.00002 (g/L)	$(NH_4)_2SO_4$	0.1 (g/L)
Na ₂ S ₂ O ₃ 5H ₂ O 15 (g/L) FeCl _{3.6} H ₂ O 0.02 (g/L) MnSO ₄ 0.02 (g/L) NaHCO ₃ 0.5 (g/L) EDTA 0.0001 (g/L) CuCl _{2.2} H ₂ O 0.00001 (g/L) CuCl _{2.2} H ₂ O 0.00003 (g/L) FeSO _{4.7} H ₂ O 0.00003 (g/L) Na ₂ MO ₇ O _{24.2} H ₂ O 0.00003 (g/L) FeSO _{4.7} H ₂ O 0.00003 (g/L) NiCl _{2.6} H ₂ O 0.00002 (g/L)	Na ₃ S20.5H ₂ O 15 (gL) FeCl ₃ .6H ₂ O 0.02 (gL) MaSO ₄ 0.02 (gL) NaHCO ₃ 5 (gL) EDTA 0.0005 (gL) ZnSO ₄ .7H ₂ O 0.00001 (gL) CuCl ₂ .2H ₂ O 0.00003 (gL) CoCl ₂ .6H ₂ O 0.00002 (gL) Na ₂ MO ₇ O ₂₄ .2H ₂ O 0.00003 (gL) FeSO ₄ .7H ₂ O 0.00003 (gL) NiCl ₂ .6H ₂ O 0.00002 (gL)	Na ₂ S ₂ O ₃ .5H ₂ O 15 (g/L) FeCl ₃ .6H ₂ O 0.02 (g/L) MnSO ₄ 0.02 (g/L) NaHCO ₃ 0.5 (g/L) EDTA 0.0005 (g/L) ZnSO ₄ .7H ₂ O 0.00001 (g/L) CuCl ₂ .2H ₂ O 0.00003 (g/L) CoCl ₂ .6H ₂ O 0.00003 (g/L) CoCl ₂ .6H ₂ O 0.00003 (g/L) FeSO ₄ .7H ₂ O 0.00003 (g/L) H ₃ BO ₃ 0.0003 (g/L) NiCl ₂ .6H ₂ O 0.00002 (g/L) H ₃ BO ₃ 0.00003 (g/L)	CaCl ₂ .2H ₂ O	0.03 (g/L)
FeCl _{3.6} H ₂ O 0.02 (g/L) MnSO ₄ 0.02 (g/L) NaHCO ₃ 0.5 (g/L) EDTA 0.0005 (g/L) ZnSO _{4.7} H ₂ O 0.0001 (g/L) MnCl _{2.2} H ₂ O 0.00003 (g/L) CoCl _{2.6} H ₂ O 0.0002 (g/L) Na ₂ MO ₇ O _{24.2} H ₂ O 0.00003 (g/L) FeSO _{4.7} H ₂ O 0.00003 (g/L) NiCl _{2.6} H ₂ O 0.00002 (g/L)	FeCl ₃ .6H ₂ O 0.02 (g/L) MnSO ₄ 0.02 (g/L) NaHCO ₃ 0.5 (g/L) EDTA 0.0005 (g/L) ZnSO ₄ .7H ₂ O 0.0001 (g/L) MnCl ₂ .2H ₂ O 0.00003 (g/L) CoCl ₂ .6H ₂ O 0.00003 (g/L) Na ₂ MO ₇ O ₂₄ .2H ₂ O 0.00003 (g/L) FeSO ₄ .7H ₂ O 0.00002 (g/L) H ₃ BO ₃ 0.0003 (g/L) NiCl ₂ .6H ₂ O 0.00002 (g/L)	Field: 6H20 0.02 (g/L) MnSQ 0.02 (g/L) NaHCO3 0.5 (g/L) EDTA 0.0005 (g/L) ZnSO4.7H20 0.00001 (g/L) CuCl2.2H20 0.00003 (g/L) CoCl2.6H20 0.00002 (g/L) Ma2MOrO24.2H20 0.00002 (g/L) FeSO4.7H20 0.00003 (g/L) NiCl2.6H20 0.00003 (g/L) NiCl2.6H20 0.00002 (g/L) H3BO3 0.0003 (g/L) NiCl2.6H20 0.00002 (g/L)	Na ₂ S ₂ O ₃ .5H ₂ O	15 (g/L)
MnSO ₄ 0.02 (g/L) NaHCO ₃ 0.5 (g/L) EDTA 0.0005 (g/L) ZnSO ₄ .7H ₂ O 0.0001 (g/L) CuCl ₂ .2H ₂ O 0.00003 (g/L) CoCl ₂ .6H ₂ O 0.00002 (g/L) Na ₂ MO ₇ O _{24.2} H ₂ O 0.00003 (g/L) H ₃ BO ₃ 0.0003 (g/L) NiCl ₂ .6H ₂ O 0.00002 (g/L)	MnSO ₄ 0.02 (g/L) NaHCO ₃ 0.5 (g/L) EDTA 0.0005 (g/L) ZnSO _{4.7} H ₂ O 0.0001 (g/L) CuCl _{2.2} H ₂ O 0.00003 (g/L) CoCl _{2.6} H ₂ O 0.00003 (g/L) Na ₂ MO ₇ O _{24.2} H ₂ O 0.00003 (g/L) FeSO _{4.7} H ₂ O 0.00003 (g/L) NiCl _{2.6} H ₂ O 0.00002 (g/L) NiCl _{2.6} H ₂ O 0.00002 (g/L)	MnSQ MaHCO ₃ EDTA EDTA EDTA Solo (g/L) EDTA CuCl ₂ .2H ₂ O CuCl ₂ .2H ₂ O MnCl ₂ .4H ₂ O CoCl ₂ .6H ₂ O CoCl ₂ .6H ₂ O Na ₂ MO ₇ O ₂₄ .2H ₂ O 0.00002 (g/L) H ₃ BO ₃ NiCl ₂ .6H ₂ O 0.00003 (gA) NiCl ₂ .6H ₂ O 0.00002 (g/L)	FeCl ₃ 6H ₂ O	0.02.(g/L)
NaHCO3 0.5 (g/L) KNO3 5 (g/L) EDTA 0.0005 (g/L) ZnSO4.7H2O 0.0001 (g/L) CuCl2.2H2O 0.00003 (g/L) CoCl2.6H2O 0.00003 (g/L) CoCl2.6H2O 0.00003 (g/L) FeSO4.7H2O 0.00003 (g/L) H3BO3 0.0003 (g/L) NiCl2.6H2O 0.00002 (g/L)	NaHCO ₃ 0.5 (g/L) KNO ₃ 5 (g/L) EDTA 0.0005 (g/L) ZnSO ₄ .7H ₂ O 0.0001 (g/L) CuCl ₂ .2H ₂ O 0.00003 (g/L) CoCl ₂ .6H ₂ O 0.00003 (g/L) FeSO ₄ .7H ₂ O 0.00003 (g/L) FeSO ₄ .7H ₂ O 0.00002 (g/L) H ₃ BO ₃ 0.0003 (g/L) NiCl ₂ .6H ₂ O 0.00002 (g/L)	NaHCO3 0.50 (gL) KNO3 5 (gL) EDTA 0.0005 (gL) ZnSO4,7H2O 0.0001 (gL) CuCl2.2H2O 0.00003 (gL) CoCl2.6H2O 0.00003 (gL) Na2MO7O24.2H2O 0.00003 (gL) FeSO4,7H2O 0.00003 (gL) FeSO4,7H2O 0.00003 (gL) FeSO4,7H2O 0.00003 (gL) NiCl2.6H2O 0.00002 (gL) NiCl2.6H2O 0.00002 (gL)	MnSO ₄	0.02 (g/L)
KNO3 5 (g/L) EDTA 0.0005 (g/L) ZnSO4.7H2O 0.00001 (g/L) CuCl ₂ .2H2O 0.00003 (g/L) CoCl ₂ .6H2O 0.00003 (g/L) Na2MO7O24.2H2O 0.00003 (g/L) FeSO4.7H2O 0.00002 (g/L) H3BO3 0.0003 (g/L) NiCl ₂ .6H2O 0.00002 (g/L)	KNO3 5 (g/L) EDTA 0.0005 (g/L) ZnSO4.7H2O 0.0001 (g/L) CuCl2.2H2O 0.00003 (g/L) CoCl2.6H2O 0.0002 (g/L) Na2MO7O24.2H2O 0.00002 (g/L) H3BO3 0.0003 (g/A) NiCl2.6H2O 0.00002 (g/L)	KNO3 5 (g/L) EDTA 0.0005 (g/L) ZnSO4.7H2O 0.0001 (g/L) CuCl2.2H2O 0.00003 (g/L) CoCl2.6H2O 0.0002 (g/L) Na2MO7O24.2H2O 0.00003 (g/L) FeSO4.7H2O 0.00003 (g/L) NiCl2.6H2O 0.00003 (g/L) NiCl2.6H2O 0.00002 (g/L)	NaHCO ₂	0.52(g/L)
EDTA 0.0005 (g/L) ZnSO4,7H2O 0.0001 (g/L) CuCl ₂ .2H ₂ O 0.00003 (g/L) CoCl ₂ .6H ₂ O 0.00003 (g/L) Na ₂ MO ₇ O ₂₄ .2H ₂ O 0.00003 (g/L) FeSO4.7H ₂ O 0.00002 (g/L) NiCl ₂ .6H ₂ O 0.00002 (g/L)	EDTA 0,0005 (g/L) ZnSO4,7H2O 0,0001 (g/L) CuCl2,2H2O 0,00003 (g/L) CoCl2,6H2O 0,00003 (g/L) FeSO4,7H2O 0,00003 (g/L) H3BO3 0,0003 (g/L) NiCl2,6H2O 0,00002 (g/L) H3BO4 0,00002 (g/L)	EDTA 0,0005 (g/L) ZNSO4.7H2O 0,00001 (g/L) CuCl ₂ .2H ₂ O 0,00003 (g/L) CoCl ₂ .6H ₂ O 0,00003 (g/L) ReSO4.7H2O 0,00003 (g/L) FeSO4.7H2O 0,00003 (g/L) H ₃ BO ₃ 0,00003 (g/L) NiCl ₂ .6H ₂ O 0,00002 (g/L)	KNO ₂	5(g/L)
ZnSO ₄ .7H ₂ O CuCl ₂ .2H ₂ O MnCl ₂ .4H ₂ O CoCl ₂ .6H ₂ O Na ₂ MO ₇ O ₂₄ .2H ₂ O H ₃ BO ₃ NiCl ₂ .6H ₂ O 0.00002 (g/L) NiCl ₂ .6H ₂ O 0.00002 (g/L) NiCl ₂ .6H ₂ O 0.00002 (g/L)	ZnSO ₄ .7H ₂ O 0.0001 (g/L) CuCl ₂ .2H ₂ O 0.00003 (g/L) CoCl ₂ .6H ₂ O 0.00003 (g/L) Na ₂ MO ₇ O ₂₄ .2H ₂ O 0.00003 (g/L) FeSO ₄ .7H ₂ O 0.0003 (g/L) NiCl ₂ .6H ₂ O 0.00002 (g/L)	ZnSQ ₄ ,7H ₂ O CuCl ₂ ,2H ₂ O O,00001 (g/L) CuCl ₂ ,4H ₂ O CoCl ₂ ,6H ₂ O Na ₂ MO ₇ O ₂₄ ,2H ₂ O Na ₂ MO ₇ O ₂₄ ,2H ₂ O 0,00003 (g/L) FeSO ₄ ,7H ₂ O 0,00003 (g/L) H ₃ BO ₃ 0,0003 (g/L) NiCl ₂ ,6H ₂ O 0,00002 (g/L)	FDTA	0.0005 (g/L)
Zhisoa, 7120 0.0001 (g/L) CuCl_2.2H2O 0.00003 (g/L) MnCl_2.4H2O 0.00003 (g/L) CoCl_2.6H2O 0.00003 (g/L) Na2MO7O24.2H2O 0.00003 (g/L) FeSO4.7H2O 0.00003 (g/L) H3BO3 0.00003 (g/L) NiCl_2.6H2O 0.00002 (g/L) NiCl_2.6H2O 0.00002 (g/L)	CuCl ₂ .2H ₂ O 0.00001 (g/L) MnCl ₂ .4H ₂ O 0.00003 (g/L) CoCl ₂ .6H ₂ O 0.00003 (g/L) FeSO ₄ .7H ₂ O 0.00003 (g/L) H ₃ BO ₃ 0.0003 (g/L) NiCl ₂ .6H ₂ O 0.00002 (g/L)	Zhiou, Higo 0.0001 (g/L) CuCl2,2H2O 0.00003 (g/L) CoCl2,6H2O 0.00003 (g/L) CoCl2,6H2O 0.00003 (g/L) Na2MO7O24,2H2O 0.00003 (g/L) FeSO4,7H2O 0.00003 (g/L) H3BO3 0.00003 (g/L) NiCl2,6H2O 0.00002 (g/L) H3BO3 0.00002 (g/L)	$7nSO$, $7H_{2}O$	0.0003 (g/L)
CuCl ₂ .2H ₂ O 0.00003 (g/L) CoCl ₂ .6H ₂ O 0.0002 (g/L) Na ₂ MO ₇ O ₂₄ .2H ₂ O 0.00003 (g/L) FeSO ₄ .7H ₂ O 0.0002 (g/L) H ₃ BO ₃ 0.0003 (g/L) NiCl ₂ .6H ₂ O 0.00002 (g/L)	Cuch2.2H2O 0.00001 (g/L) MnCl2.4H2O 0.00003 (g/L) CoCl2.6H2O 0.00003 (g/L) FeSO4.7H2O 0.00003 (g/L) H3BO3 0.0003 (g/L) NiCl2.6H2O 0.00002 (g/L)	Cucl2.2H2O 0.00001 (g/L) MnCl2.4H2O 0.00003 (g/L) CoCl2.6H2O 0.00003 (g/L) Na2MO7O24.2H2O 0.00003 (g/L) FeSO4.7H2O 0.00003 (g/L) H3BO3 0.00003 (g/L) NiCl2.6H2O 0.00002 (g/L)	$C_{11}C_{12}C_{1$	0.0001 (g/L)
MilC12.4H2O 0.00003 (g/L) CoCl2.6H2O 0.00003 (g/L) FeSO4.7H2O 0.00003 (g/L) H3BO3 0.0003 (g/L) NiCl2.6H2O 0.00002 (g/L) NiCl2.6H2O 0.00002 (g/L)	MIRC12.4H2O 0.00003 (g/L) CoCl2.6H2O 0.00003 (g/L) Na2MOrO24.2H2O 0.00003 (g/L) FeSO4.7H2O 0.00003 (g/L) H3BO3 0.00003 (g/L) NiCl2.6H2O 0.00002 (g/L)	MIRC12.4H2O 0.00003 (g/L) Na2MO7O24.2H2O 0.00003 (g/L) FeSO4.7H2O 0.0003 (g/L) H3BO3 0.0003 (g/L) NiCl2.6H2O 0.00002 (g/L)	$UU_{12}.2\Pi_{2}U$ $M_{P}C_{12}.4\Pi_{2}O$	0.00001 (g/L)
COC12.0H2O 0.00002 (g/L) Na2MO7O24.2H2O 0.00002 (g/L) FeSO4.7H2O 0.00002 (g/L) H3BO3 0.0003 (g/L) NiCl2.6H2O 0.00002 (g/L)	COC12.0F12O 0.00002 (g/L) Na2MO7O24.2H2O 0.00003 (g/L) FeSO4.7H2O 0.00003 (g/L) NiCl2.6H2O 0.00002 (g/L)	Cocl ₂ .on ₂ O Na ₂ MO ₇ O ₂₄ .2H ₂ O FeSO ₄ .7H ₂ O NiCl ₂ .6H ₂ O NiCl ₂ .6H ₂ O O.00002 (g/L) NiCl ₂ .6H ₂ O O.00002 (g/L)	$C_{0}C_{1} \leftarrow C_{1} \leftarrow$	0.00003 (g/L)
Na2MO7024.2H2O 0.00005 (g/L) FeSO4.7H2O 0.0002 (g/L) H3BO3 0.0003 (g/L) NiCl2.6H2O 0.00002 (g/L)	Na2MO7O24.2H2O 0.00003 (g/L) FeSO4.7H2O 0.0002 (g/L) H3BO3 0.00003 (g/L) NiCl2.6H2O 0.00002 (g/L)	Na2MO7O24,2H2O 0.00003 (g/L) FeSO4.7H2O 0.00003 (g/L) H3BO3 0.00002 (g/L) NiCl2.6H2O 0.000022 (g/L)	$UU_2.0H_2U$	0.0002 (g/L)
PeSO ₄ ./H ₂ O 0.0002 (g/L) H ₃ BO ₃ 0.0003 (g/L) NiCl ₂ .6H ₂ O 0.00002 (g/L)	PesO ₄ ,/H ₂ O 0.0002 (g/L) H ₃ BO ₃ 0.0003 (g/L) NiCl ₂ .6H ₂ O 0.00002 (g/L)	PesO ₄ ,/H ₂ O 0.0002 (g/L) H ₃ BO ₃ 0.0003 (g/L) NiCl _{2.6} H ₂ O 0.00002 (g/L)	$INa_2IMO_7O_24.2H_2O$	0.00003 (g/L)
H ₃ BO ₃ 0.0003 (g/L) NiCl ₂ .6H ₂ O 0.00002 (g/L)	H ₃ BO ₃ 0.0003 (g/L) NiCl _{2.6} H ₂ O 0.00002 (g/L)	H ₃ BO ₃ 0.0003 (g/L) NiCl _{2.6} H ₂ O 0.00002 (g/L)	$reSO_4./H_2O$	0.0002 (g/L)
<u>NiCl₂.6H₂O</u> 0.00002 (g/L)			H_3BU_3	0.0003 (g/L)
			IN1Cl ₂ .6H ₂ O	0.00002 (g/L)
			sed f	

٤.٩

$\begin{array}{c} 500 \\ 500 \\ 500 \\ 500 \\ 50 \\ 50 \\ 20 \\ 80 \\ 00 \\ 50 \\ 20 \\ 45-61 \\ 80 \\ 00 \\ 50 \\ 20 \\ 50 \\ 20 \\ 50 \\ 20 \\ 50 \\ 20 \\ 50 \\ 20 \\ 80 \\ 50 \\ 20 \\ 80 \\ 50 \\ 20 \\ 80 \\ 50 \\ 20 \\ 86-98 \\ 80 \\ 500 \\ 50 \\ 20 \\ 86-98 \\ 80 \\ 500 \\ 50 \\ 20 \\ 86-98 \\ 80 \\ 500 \\ 50 \\ 20 \\ 86-98 \\ 80 \\ 500 \\ 50 \\ 20 \\ 86-98 \\ 80 \\ 500 \\ 50 \\ 20 \\ 86-98 \\ 80 \\ 500 \\ 50 \\ 20 \\ 86-98 \\ 80 \\ 500 \\ 50 \\ 20 \\ 86-98 \\ 80 \\ 500 \\ 50 \\ 20 \\ 86-98 \\ 80 \\ 500 \\ 50 \\ 20 \\ 86-98 \\ 80 \\ 500 \\ 50 \\ 20 \\ 86-98 \\ 80 \\ 500 \\ 50 \\ 80 \\ 50 \\ 50 \\ 80 \\ 50 \\ 80 \\ 50 \\ 80 \\ 50 \\ 80 \\ 50 \\ 80 \\ 50 \\ 80 \\ 50 \\ 80 \\ 50 \\ 80 \\ 50 \\ 80 \\ 50 \\ 80 \\ 50 \\ 80 \\ 50 \\ 80 \\ 50 \\ 80 \\ 50 \\ 80 \\ 50 \\ 80 \\ 50 \\ 80 \\ 50 \\ 80 \\ 50 \\ 80 \\ 50 \\ 80 \\ 8$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
50 7-30 00 31-44 80 31-44 80 45-61 80 45-61 80 62-75 80 62-75 80 76-85 80 76-85 80 86-98 80 86-98
50 7-30 00 50 31-44 80 31-44 80 45-61 80 45-61 80 62-75 80 76-85 80 50 20 86-98 80 500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
50 31-44 80 00 50 45-61 80 00 50 62-75 80 00 50 76-85 80 00 50 20 50 76-85 80 00 50 20 80 86-98 80 500
$\begin{array}{c} 20 \\ 80 \\ 00 \\ 50 \\ 20 \\ 80 \\ \hline \\ \\ \\ 80 \\ \hline \\ \\ 80 \\ \hline \\ \\ \\ 80 \\ \hline \\ \\ \\ \\ 80 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
$ \begin{array}{r} 80 \\ 00 \\ 50 \\ 20 \\ 45-61 \\ 80 \\ 00 \\ 50 \\ 20 \\ 62-75 \\ 80 \\ 00 \\ 50 \\ 20 \\ 76-85 \\ 80 \\ 00 \\ 50 \\ 20 \\ 86-98 \\ 80 \\ 500 \\ 50 $
$\begin{array}{c} 00\\ 50\\ 20\\ 00\\ 50\\ 20\\ 50\\ 20\\ 80\\ \hline \\ 00\\ 50\\ 20\\ 80\\ \hline \\ 00\\ 50\\ 20\\ 80\\ \hline \\ 80\\ 500\\ \hline \\ 80\\ \hline \\ 500\\ \hline \\ 80\\ \hline \\ 80\\ \hline \\ 500\\ \hline \\ 80\\ \hline \\ 80\\ \hline \\ 500\\ \hline \\ 80\\ \hline \\ 80\\ \hline \\ 500\\ \hline \\ 80\\ \hline \\ 80\\ \hline \\ \\ 80\\ \hline \\ \\ 500\\ \hline \\ \\ 80\\ \hline \\ \\ \\ 80\\ \hline \\ \\ \\ 80\\ \hline \\ \\ \\ \\ 80\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
50 20 45-61 80 00 50 20 62-75 80 00 50 20 76-85 80 00 50 20 80 00 50 20 80 00 50 20 80 80 80 80 80 80 80 80 80 8
20 62-75 80 50 62-75 80 00 50 76-85 80 00 50 20 86-98 80 500
80 00 50 20 62-75 80 00 50 76-85 80 00 50 20 86-98 80 500
00 50 20 62-75 80 00 50 76-85 80 00 50 20 86-98 80 500
50 62-75 80 00 50 76-85 80 00 50 20 86-98 80 500
20 80 00 50 20 76-85 80 00 50 20 86-98 80 500
50 50 20 76-85 80 00 50 20 86-98 80 500
50 76-85 20 76-85 80 00 50 20 86-98 80 500
30 76-85 20 80 00 .50 20 86-98 80 .500
80 00 50 20 86-98 80 500
00 50 20 86-98 80 500
50 20 86-98 80 500
20 86-98 80 500
80 500
500
500
500
.00
50 99-11
20
80
20 80

Table 4. components of SW for different nitrate ion concentrations (in mg/L)

Nitrate Input Concentration Chemical Formula							
(mg/L)	KNO3	NaHCO ₃	K ₂ HPO ₄	NH ₄ Cl	MgCl.6H ₂ O	FeSO ₄	Na ₂ S ₂ O ₃ .5H ₂ O
80	130	250	20	12	2	1	10
120	250	350	50	12	2	1	160
250	434	750	50	12	2	1	350
400	652	1200	50	12	2	1	550
550	901	1700	50	12	2	1	750
1500	2440	4000	50	12	2	1	2000

Table 5. Parameters used in CFD simulations

Parameter	Symbol	Value	Unit
Fluid residence time	T _{av}	3	h
Nitrate molecular weight	Mw	62.0049	g/mol
Concentration of nitrate at inlet	\mathbf{S}_0	400-80	mg/L

			Ĉ	
		•		
P	*			

Lating Lating <thlating< th=""> <thlating< th=""> <thlating< th="" th<=""><th>Floment</th><th>Line</th><th>Int</th><th>Free</th><th>V</th><th>Kr</th><th>X70/</th><th>A 0/</th><th>7.4 5</th></thlating<></thlating<></thlating<>	Floment	Line	Int	Free	V	K r	X 70/	A 0/	7.4 5
N Ka 5.5 3.462 0.012 0.012 0.012 0.012 0.013 0.013 0.013 0.013 0.013 0.019 50.41 58.08 0.378 0.039 0.058 0.47 0.011 0.013 0.064 0.039 0.030 0.059 0.030 0.059 0.030 0.059 0.030 0.059 0.030 0.059 0.030 0.030 0.059 0.030 0.059 0.030 0.059 0.030 0.059 0.030 0.050 0.030 0.050 0.030 0.050 0.030 0.0454 0.030 0.050 0.030 0.030 0.0454 0.030 0.0454<	<u>C</u>	K ₂		2 /065	0.0250	0.0132	8 40	A 70	0.1574
0 Ka BOUL 3.5192 0.3740 0.1907 S0.41 58.88 0.378 Na Ka 15 3.6881 0.0059 0.0030 0.58 0.47 0.511 Mz Ka 15 3.7444 0.0005 0.0030 0.58 0.47 0.511 Ka LS 3.7444 0.0005 0.0039 5.31 5.63 0.752 Si Ka 1270.0 3.8570 0.4540 0.2315 28.95 19.00 0.799 K Ka 58.7 0.4875 0.0365 0.0186 2.23 1.08 0.860 Fe Ka 3.4 0.2561 0.0007 0.0015 0.17 0.08 0.860 Fe Ka 3.4 0.2561 0.0005 0.0029 0.37 0.12 0.793 Locot No No No No No No No Locot No No No No No	N N	Ka Ka	5.5	3.4629	0.0162	0.0083	3.53	4.65	0.2343
Na Ka 15.5 3.6881 0.0035 0.0030 0.58 0.47 0.511 Mg Ka 1.5 3.7444 0.0005 0.0030 0.04 0.03 0.64 AI Ka 1270.0 3.8570 0.4540 0.2315 28.95 19.00 0.799 K Ka 1270.0 3.8570 0.4540 0.2315 28.95 19.00 0.799 K Ka 1270.0 3.8570 0.04540 0.2315 28.95 19.00 0.799 K Ka 88.7 0.4875 0.0355 0.0186 2.23 105 0.880 Ca Ka 4.2 0.2561 0.00057 0.029 0.312 0.799 K Ka 3.4 0.2561 0.000 0.5099 100.00 NO.00 V L L L L L L L L L L L L L L L <		Ka	360.1	3.5192	0.3740	0.1907	50.41	58.08	0.3782
Mg Ka L5 8.7444 0.0005 0.0003 0.04 0.03 0.664 A1 Ka D220.0 3.8007 0.0783 0.0399 5.31 5.63 0.752 K Ka D270.0 3.8570 0.4540 0.2315 28.95 19.00 0.799 K Ka 5.87 0.4875 0.0355 0.0186 2.23 1.05 0.835 Ca Ka 4.2 0.4941 0.029 0.0015 0.17 0.08 0.860 Fe Ka 3.4 0.2561 0.0057 0.0029 0.37 0.12 0.793 L L D0000 0.5099 D00.00 House D0000 D0007 D0000 D0000 D0000 <	Na	Ka	<mark>15.5</mark>	3.6881	0.0059	0.0030	0.58	0.47	0.5112
Al Ka 229.0 3.8007 0.0783 0.0399 5.31 8.63 0.752 Si Ka 1270.0 3.8570 0.4540 0.2315 28.95 19.00 0.799 K Ka 58.7 0.4941 0.0029 0.0015 0.17 0.08 0.860 Fe Ka 3.4 0.2561 0.0057 0.0029 0.37 0.12 0.793 L 0.000 0.5099 100.00 100.00 CONTRACTOR AND A CONTRACTOR AND	Mg	<mark>Ka</mark>	<mark>1.5</mark>	<mark>3.7444</mark>	0.0005	0.0003	<mark>0.04</mark>	<mark>0.03</mark>	0.6644
Si Ka 1270.0 3.8570 0.4540 0.2315 28.95 19.00 0.793 Ka Ka 58.7 0.4875 0.0035 0.0186 2.23 1.05 0.833 Ca Ka 3.4 0.2561 0.0029 0.0129 0.37 0.12 0.793 Fe Ka 3.4 0.2561 0.000 0.5099 100.00 100.00 Fe Ka 3.4 0.2561 0.002 0.0159 100.00 100.00 Fe Ka 3.4 0.2561 0.000 0.5099 100.00 100.00 Fe Ka 5.0 7.0 7.0 7.0 7.0 7.0 Fe Ka 5.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Fe Ka 3.4 0.2561 7.0 7.0 7.0 7.0 7.0 7.0 Fe Ka 7.0 7.0 7.0 7.0 <	Al	<mark>Ka</mark>	<mark>229.0</mark>	<mark>3.8007</mark>	<mark>0.0783</mark>	<mark>0.0399</mark>	<mark>5.31</mark>	<mark>3.63</mark>	0.7523
k ka 58.7 0.4875 0.0365 0.0186 2.23 1.05 0.836 ka 4.2 0.4941 0.0029 0.0015 0.17 0.08 0.086 Fe ka 3.4 0.2561 0.000 0.5099 100.06 100.00 	<mark>Si</mark>	Ka	1270.0	3.8570	0.4540	0.2315	28.95	<u>19.00</u>	0.7997
		Ka Ka	58.7	0.4875	0.0365	0.0186	2.23	1.05	0.8330
	Ca Fo	Ka Ka	4.2	0.4941	0.0029	0.0015	0.17 0.37	0.08	0.8005
e certe and and a contraction of the contraction of	L.C.	IXa	<mark></mark>	0.2301	1 0000	0.5099	100.00	100.00	0.1234
							Y		
		S	Ś	ec					
				e					
			Ś	e					
			Ś	e					

557			Table 7.	Results of H	EDX analysi	<mark>s on modifi</mark>	ed zeolite			
	Eelement	Line	Int	Error	K	Kr	W%	<mark>A%</mark>	ZAF	
	C	<mark>Ka</mark>	<mark>13.1</mark>	<mark>3.4396</mark>	0.0227	<mark>0.0118</mark>	<mark>7.38</mark>	<mark>11.17</mark>	<mark>0.1596</mark>	
	N	<mark>Ka</mark>	<mark>7.3</mark>	<mark>3.4964</mark>	<mark>0.0176</mark>	<mark>0.0092</mark>	<mark>3.59</mark>	<mark>4.66</mark>	<mark>0.2551</mark>	
	0	<mark>Ka</mark>	<mark>500.9</mark>	<mark>3.5533</mark>	<mark>0.4240</mark>	0.2201	<mark>54.65</mark>	<mark>62.10</mark>	<mark>0.4029</mark>	
	Na	Ka	0.0	0.0000	0.0000	0.0000	0.00	0.00	0.4998	
	Mg	Ka	1.1	3.7807	0.0003	0.0002	0.02	0.02	0.6578	
		Ka Ka	133.7	3.8375	0.0373	0.0194	2.59	1.74	0.7477	
		Ka Ka	1635.5 27.4	3.8944	0.4766	0.2474	30.43	<u>19.70</u>	0.8133	Y
		Ka Ka	<u> </u>	0.2083	0.0189	0.0098	0.05	0.33	0.8505	
		Ka Ka	1.3 1.3	0.1572	0.0007	0.0004	0.03	0.02	0.8000	
		IX4	1.5	0.1372	1.0000	0.5192	100.00	100.00	0.7504	
٤٤٣					1.0000	0.5172	100.00	100.00		I
							Ċ			
222								7		
220										
227							Y			
źźV										
221						Y				
٤٤٩										
6.0					y					
201										
201				0						
608			K	\mathbf{O}						
201										
204										
6.2.6		0								
202										
200			-							
607	C									
201										
507										
6.2.1	X /									
201	Y									
209										
2 (*										
571										
2 4 9										
211										

٤٦٣			
575	Table 8. Constants of	Monod equation	
	$\boldsymbol{\mu}_{\mathbf{m}} (\mathrm{mg} \mathrm{NO}_{3^{-}} \mathrm{gh}^{-1})$	12.7	
270	K _S (mg NO ₃ ⁻ . L ⁻¹)	0.47	
٤٦٦			×
			\mathbf{N}
			Y Y

0.7

0.7

(a) HRT= 25 & 32 Hours

(d) HRT=12 Hours

(g) HRT= 3 Hours

Fig. 8. Nitrate concentration and removal efficiency of the bioreactor for various HRTs, (a) set-up and growth: 25 &

32 hours, feeding: (b) feeding: 25 hours, (c) 15 hours, (d) 12 hours, (e) 10 hours, (f) 6 hours, (g) 3 hours

(a) HRT= 25 Hours

