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Abstract

In this paper a quasi-three-dimensional (3D) refine ing a novel higher-
order shear deformation theory is developed to examinejthe static bending
with two different type porosity distribution of pofous for advanced
composite plates such as functionall es. In this present theory,
s is reduced, takes into
erse displacement, bending
and shear, using a new shape func The used plate theory approach
satisfies the zero traction boundary congitions on the surfaces of the plate
without using shear correctien factor and the transverse shear strain and
shear stress have a parab istribution across the thickness of the plates.
incipledis to obtain the equilibrium equations. An

e Navier solution is employed to obtain the
f simply supported FGM plates. The proposed
reement for static bending of FGM plates with other
literatufe res been instituted of advanced composite plates.
Numeric es are presented to show the effect of the material
tion, ower-law FG plates, the geometrical parameters and the
n the deflections and stresses of FG plates.

analytical approach
solution for stati
theory shows

: Higher-order shear deformation theory; FG plate; P-FGM; E-FGM; Bending; Porosity; The
rinciple; Navier solution.

Recent attention has been paid to a new category of composite materials called materials (FGM).
Following the lightest advantageous features with high strength/weight and rigidity/weight ratios
have been used successfully in the aeronautical industry, civil engineering, nuclear engineering
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and other engineering applications and to be used in high temperature condition, contrary with
traditional composite material. In general, FGM is created from a mixture of metal and ceramic.
Many researchers have devoted their time to understanding the mechanical behaviour and
mechanism of FGMs to provide an optimum profile for designers, where they have been
captivated to investigate the bending behaviors, buckling, free vibration and dynamic and
behaviors of FGM beams, plates, and shells.

Therefore, because of the exotic properties of FGM, many researchers were captivated of
bending behaviours for different solicitations, static, free vibrations and buckling behaviors of
FGM beams, plates, and shells [1, 2]. According to the literature, FGM plate anabysis can
be studied using various theories such as classical plate theory (CPT) [s, 4], the first-
deformation theory (FSDT) [s, 6], higher-order shear deformation theory (HSD[28s the
quasi-3D theory and Carrera unified formulation (CUF) [7, s]. To determine the variation
of material properties in functionally graduated materials and structures, m@t' aws such

as exponential law [9], sigmoid law [10] and power law [11] are used.
According to the literature, some work using arefined shear defognfiatio theory RSDT to
er t al. [12] studied of the
neutral surface position for static analysis of FGM plate 4 a triggAiometric RSDT shear
; by dividing the transverse
deflection into bending and shear components to see their contdiButions to the total transverse
displacement. Benachour et al. [14] investigated a four variable” refined plate theory for free
vibrations of functionally graded plates with arbitr radient. Do et al. [15] examined the

of FGM structures based on RSDT which inv nly four unknown functions for flexion
response, buckling response, thermo-mechanical bgnding and free vibration of simply supported

FGM sandwich plate [16-21].

In the open literature, some stugdies at@ effect of porosity in the FGM structures have been
published. Merdaci et al. [22] stOdied ending behaviour of FG plates with porosities that
allow the plate to be perfectly poro homogenous or to have a form of perfect homogeneity
shape depending over the values 1of the density fraction of voids (porosity) or graded factors.
the influence of thickness stretching needs to be considered

Sidda Reddya et al. [fs] stabhi
to analyze the bendin vior of FG porous plates, using a novel higher order Quasi-3D theory
to the bending re% GPs with different forms of porosities considering the transverse
extensibility al th ckness direction. Khorshidvand et al. [23] studied static bending and
mechanical buCkling analyses of FGP plates based on a refined plate theory and the set of the
governiig equations”are derived using minimum potential energy. Rad et al. [24] presented the
static porous and multidirectional heterogenous structures based on developed
astic foundations. Additional researchers are restricted their attention to vibration and
-29] or the buckling [1, 30-32] of many porous structures. Al-Furjan et al. [41] examined
how waves move through a unique micro-sandwich beam with three distinct layers: an auxetic
honeycomb core, a piezoelectric top layer, and a bottom layer that gradually changes its
properties in two directions. The study analyzed how several factors, including material
properties, geometric features, and specific characteristics of the bottom layer, influence the
wave behavior. The findings indicated that a modified theory significantly increases the
predicted wave speed compared to the traditional approach. Additionally, larger elements in the
auxetic honeycomb core lead to faster wave propagation. Al-Furjan et al. [42] explored how
waves move through the wings of tiny flying machines (micro air vehicles) using a novel
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approach based on mathematical modeling. The study introduces a new design concept that
utilizes special materials in the wings to improve their rigidity and control how waves propagate
within them. Various factors affecting wave behavior, like the size of the MAV, specific
materials used, and the presence of a magnetic field have been considered. Advanced
mathematical techniques have been used to analyze and predict important wave characteristics in
these unique wings. The results showed that applying a magnetic field significantly increases the
wave speed within the wings.

The objective of this article is to present the bending behavior of FG plates having porosities.
The plate may be either perfectly porous homogeneous or has a perfect homogeneity shape

depending on the values of the volume fraction of voids (porosity) or of the graded fi The
plate is assumed isotropic at any point within the plate, with its Young’s modulus4%ary1 ross
its thickness in accord with a power law in terms of the volume fractions of the stituents

ditions at
1er solution is used
ant aspects, i.e.
volume fraction, which

while the Poisson’s ratio remains constant. The present theory satisfies equild
the plate’s top and bottom faces without using shear correction factors. A
to obtain closed-form solutions for simply supported FG plates. Sev;

aspect ratios, thickness ratios, exponent graded factor as well
affect deflections and stresses, are investigated.

2. Material Properties of FGM Plates with different porosityg@istributions

Material composition is varying along z direction with the FG index k. The pnechanical properties of the FG plate
such as Young’s modulus ‘E’, Poisson’s ratio ‘v’, shear modulu change as the material composition change. In
this study, FGM plates with the power-law function (P-EGM) tial function (E-FGM) as shown in Figure
1 were considered.

For a P-FGM plate, the volume of ceramic is obtaine

V(2) :(E+E]k (@)
2 h
in which k is the power-law indewe ickness of the plate. The material properties of a P-FGM can be
determined as:
P()=P,+(R-F) z)o @
The material prope@ﬂ can be determined as:

. 1 (E
P(z)=Pe ith B==In| =
@-F ol £

ing theyfollowing formula:

©)

sity is considered to be of two different types: even (type-1) and uneven (type-I1) distribution of pores.
olume fraction, which defines the density of the pores, is B (f<< 1). The modified rule of mixture for
-1) and uneven (type-11) is proposed as Shafiei et al. [13], Simsek. [14], Wattanasakulpong, and
Chaikittiratana. [15]. For even porosity (type-I):

P@2)=P,+(R-PNV -2(R+P)
2 @

For uneven (type-11):
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2IZI
P(Z)=P2+(Pl_P2)V (P+P)
©)
Where P is the effective material property. P1 and P2 are the properties of the upper and lower faces of plate
respectively.
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Fig 1: Young’s modulus variation for different power laws

3. Kinematics



Journal of Computational Applied Mechanics 2024, 55(-): pp-pp 5

The FGM plate studied is of uniform thickness, length (a), width (b) and thickness (h). The upper and lower
surfaces of the plate are at z =h/2 and z=-h/2, and the edges of the plate are parallel to the x and y axes.

evenly distributed porosities  unevenly distributed porosities

Fig 2 : Geometry and coordinates of the FG porous plate.

A quasi-3D refined HSDT assumptions are used and simplified to reduce the number of unk

current displacement fields takes into account the thickness stretching effect into transverse.di
written as follows:

iables. The
acement, can be

4. Constitutive relations

For elastic and isotropic FGMs, the constitutive relationships can be expressed as follows:

oW, oW,
uix,y,2)=u,(x,y)—z—2+ f(2) —
(X, y,2) =Up (X, Y) = ()6x
V(X,Y,2) =V, (X, y)—z%+ f(2) W, (6)
W(X, Y, Z) =W, (X, ¥) + 9(2)w, (X, y)
In the present study, the new shape function f(z) is proposgtlias fo
5 52
M0=4""3 (7)
_ 4@ _2
g(z)=r ™ and r—15
Where uo(X,Y), Vo(X,Y), Wp(X,y) and ) e four unknown displacement functions of the middle surface of
the plate. The kinematic relations cagge o as follows:
k; y }/0 7/0
k; ¢ &, =0'(2e, { yz}=f'(2){ ﬁz}+g(2){ (y;} ®)
ks }/XZ }/XZ yXZ
Xy
_O'w, o°w,
ox* K ox? . oW,
_w, kxs o*w, 7/3(/)2 _J o L&l =w,  (9)
ay2 y 8y2 }/XZ avvs
R s o*w ox
-2 b 2 :
OXoy OXoy
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Oy C, C, C; O 0 0 .
Oy C, Cp Cp O 0 0 y
o, Cs Gy G O 0 0 &, (10)
[ lo o o0 c, Ve
- 0 0 0 C. V2
Ty | 0 0 0 Ces | |7y

Where (ox , Oy , 6z, Txy » Tyz, Txz ) and (&, & , €2, Yxy » Yyz » Yxz ) are the components of the stress set defgrmations,
respectively. The coefficients (Cij) are given by:

_ _ _ E@)A-v)

Cu=Ca=Ca =15, ) 1) )
_ _ _ vE(2)

=G =Ca =1 50) 140)
- .~ _ E®

C44 _CSS _CGG - 2(1+V)

5. Equilibrium equations

Considering the static version of the principle of virtual work, the varia of strain energy of the plate is
calculated by:

| dz—jqé‘wdA:O (12)

.[.[[O-X55X +0,08, + 0,08, +7T,,0),, +7T,
A A

Where A is the surface in the top surface; q is the distributed

Substituting Eqgs. (8) and (10) into Eq. (12) intggrating through the thickness of the plate, we can obtain:
[IN, 820 + M5k + M :5ks + W52y F M PSkD + M Sks + N, 3! + N, 55, + M2 5k, 13
A
+M3, k5, + Q;ﬁg;t +S{Syo, 4QLSyY + S350 1dA— [qsw dA =0
A

The stress resultan@and S are defined by:

1

h/2 h/2
b= [ 00y n) | 2 pdz N, = [ 0, g@)dz
v f(2) e (14)
h/2 h/2
(85,80 = [ (o) 9@ dz, Q5. Q) = [ (7,,,7,) /() dz
~h/2 ~h/2

The governing equations of equilibrium can be derived from eq. (13) by integrating the displacement gradients by
parts and setting the coefficients where oU,, OV, OW,, OW, zero. Thus, one can obtain the equilibrium equations
associated with the present shear deformation theory.
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ON
U, Ny Mo
ox oy
ON ON
S5v, Ny Ny g (15)
OX oy
2 b aZMb ZMb
SW, a'le+2 xy+a —=+q=0
ox oxey oy
20 S 2pnA S azMS s o s oSs
ow, —NZ—a Nzlx—a NZIX—Z v Q| Q. + 5 ¥ +qg9(z) =0
oX oy oxoy oX oy ox oy
The resulting constraints M, N, S, and Q can be written in matrix form as follows: %
A B B° £ L 0 Es xsT[,0
D D° |4k p+| g {s}:{xs AsHyl} (16)
S DS HS kS R 7

=R%) +L(e +&0) + L (kD +kp) + R(kS +k?)

N={N,N, N}, M ={M} M), M? |, M®={M;,M; M,
s={s;.s;}, Q={Q.Q;} )

P ={revnt ¥ ={re 7}

e={e), e, 65}, K" =k} kp k|, ke ={ks ks, ke
Al.l A12 0 Bll Bl2
= A, Ay 0|, B=|B, By
0 0 A, 0 0 (18)
B, B, 0
B°=|B, B, O
0 0 B
L
La h/2 (19)
_ I CIJ
R —h/2
R? g'(z
Wherelthe coefficients are determined by:
All Bll Dll B:le Dlsl Hlsl h/2 Cll (20)
A, B, D, B, Dy Hi=[[L z 2% f(2) #(@), f*@]iCy
A66 BGG D66 BGSG Dgﬁ H GSG e CGG
(21)

FS:|:F4S4 05:|,AS=|:A:4 05:|,XS:|:X:4 OS:|
0 F55 0 A55 O X55
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h/2
s s E(z . :
(Fiy X0 A) = (F X5 AD) = | o [£72(2), T 1(2)(2), 97(2)]) iz (22)
“hre 2QA+V)
The governing equations of the theory used can be expressed in terms of displacements as follows
o%u, o, o*w, o*w,
ou, : 0 4 04—~ 0 _B,—2-B,—=
0 An A12 ay Ase [ ayz axayj 11 8X3 11 6X3 (23&)
3
_(Blz"‘ZBae)Lsz W, 11+ZBGSG oW, =0
oxoy ox Oxoy?
o%u o*w, s 0w,
5\/0 : Azz 8y Aee (Azz ) 6;)/ - P22 ayab +Bzz 8y3 (23b)
o*w, s o®w, ow,
—(Blz+2866) 8by+(Blz+2866) Zay+L oy =0
Sw,: B %+(B 428y D, OV
b - 11 aX 12 66 aXayz aXzay (23 )
c
o*w, o'w, s
—(2D,, +4Dg) 6X26;2 —D,, ay4b + D
s oy O'w
+(D12 +2D66 W—Fq =0
s &u . s, 0% s 0%
6Ws . - Bll 6X30 _(BlZ +2866 6X8;2 - 25, Bzz 6}/:
ou ov s O'w, . O'w,
—La—XD—LEO+DH axb Dss b+2( o+ 66)a 8y (23d)
2 2 4 4
+ La aa)\(AZIb + La aayV\ZIb - 2 12 + HGG) a \gly H252 aayvlls
S S S S S S aZW
+(2Fg + X + A (2F; + X5+ A, —2R) ay; +0g9(z)=0
[
6. Solution approach
The boundary condi along'the edges of the simply supported plate can be obtained as:
oW,
= S at x=0,a
(24)

S
N, = M7} =V=W, =W, =

S aWS
=M =u=w, =w, = ~ at y=0,b

Using ier's solution, solutions that meet the above boundary conditions can be written in the following form
u U cos(ax)sin(8y)
v V sin(ax) cos(Sy) . .

= ,q=(sin sin
W, W, sin(ax)sin(gy) 4= o sin(@x)sin(4y)
W, W, sin(ax)sin(£y)

(26)

Where qois constant, o = n/a, f§ = n/b.
By substituting Eqgs. (25) into Egs. (24), the following equation are obtained:
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[K]{A}=1Q} (26)
Where {A} ={U,V,W,,W,}'and {Q} ={0,0,—q,,g(h/2)q,} is the symmetric matrix given by:
a, a, a; a,
[K] — a‘lZ a22 a‘23 a'24
a13 a23 a33 a'34
a, a YRR
(27)

In which:
a, = (Aua” + A )
a,=-ap (Aiz"‘Ase)
a,, = a(Bya® + (B, +2Bg) 5%) @
a, =—a’By, — (B, +2Bg)af;
8y, =—(a" A + B°A;)
8,5 = (B, 8° — (By, +2Bg)
a,, =—F°B5, — (B, + 2B )’ BF LS
+ 4Dy, ) f° ) Dy, 5
B (D5, +2Dg) — L, (B* +a®)
a, =—a'Hy —2a? % (Hy, + 2H) — B2 (F + X.,)
0) = B (KXo + AL —a® (X5 + A)
“+a’)R-R?

(
(28)
7. Numerical results and discussio

In the present section, ge effegt of migromechanical models on bending analysis of FG plates using a new quasi-
3D shear deformation theoryais p for investigation. In order to verify the accuracy of the present analysis,
é %ri

Ay, =—a’ (Dlla2 +

'az(F4S4 +

fied by comparing them with the various existing plate theories. The material
are:

the results of this stu r
properties used in the nt st
e Ceramic (Pc: ina, Al203): Ec=380 GPa; vc=0.3.

e Metal (Pm: Alumi , Al) : Em =70 GPa; vm=0.3.

dimensional parameters used in the present analysis are given below:

ab h ab h ab h b
22) 5.0 = 227],6,@= 22z] 5.0= 0,2,
W(z 2) Tu(2) qoaax[z 2 Zj Zw(2) qoaay[z 2 Zj 7 (2) qoaT“( 2 Zj

Numerical results for the power-law FG plates k are presented in tables 1-2 using the present theory were
compared with those of the classical plate theory [1] given by Timoshenko, the Navier-type three-dimensionally (3-
D) exact solution given by Werner [33], the generalized shear deformation theory by Zenkour [20], and refined
HSDT theory by Nguyen [34]. The present solution is appreciated for a quadratic plate, with the following fixed
data:a=1,b=1,E=1,q0=1, v= 0.3 and three cases for the plate thickness: h = 0.01, h =0.03, and h = 0.1.
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It can be seen that is an excellent agreement between the obtained results in this paper and those reported in [1,
20, 34]. It can be observed that in the mid-plane for the case of the isotropic plate the axial stress equaled zero.
Therefore, the neutral surface was identical to mid-plane for the isotropic plate.

Table 1: Comparison of center deflections of the isotropic homogeneous plates.

h Classical [1] 3-D[1] SSDT [20] Nguyen et al [1] Present
0.01 44360.9 44384.7 44383.84 44385.41 44379.49
0.03 1643.00 1650.94 1650.646 1651.169 1649.247
0.1 44.3609 46.7443 46.65481 46.81271 46.29049

Table 2 : Comparison of distribution of stress across the depth of isotropic homogeneous plates. / N

O Z-><y

h zh
3D[]  SSDT[20] Ng“y[el’]‘ tal precent 3D[1]  SSDT[20] Ng;y[&m

0.5 28733 2873.39 287351 2873.74 1949.6 1949.36 61 ‘/1947.86
0.4 2298.6 2298.57 2298.86 2298.78 1559.2 1559.04 1556.68
0.3 1723.9 1723.84 1724.22 1725.70 1169.1 1168. 1168.26
oot 0.2 1149.2 1149.18 1149.58 1149.26 779.3 1 779.33 778.35
0.1 574.6 57458 574.93 574.61 389 9.55 389.56 389.13
0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 319.40 319.445 319.279 319.825 217.11 156 216.512 216.046
0.4 255.41 255.415 255.429 255.658 73.26 173.282 173.205 172.378
0.3 191.49 191.472 191.580 191.817 5 129.682 129.897 129.129
008 0.2 127.63 127.603 127.731 7.69 86 86.313 86.592 85.852
0.1 63.80 63.788 63.881 3.18 43112 43.285 42.946
0.0 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00
0.5 28.890 28.9307 29.2565 19.920 20.0476 19.4861 19.5282
0.4 22.998 23.0055 23.2120 15.606 15.6459 15.5885 15.2717
0.3 17.182 17.1660 17.3135 11558 11.4859 11.6909 11.2408
o1 0.2 11.423 11.3994 11.4769 7.642 7.5315 7.7933 7.4055
0.1 5.702 5.7223 3.803 3.7265 3.8957 3.6631
0.0 000 @ 0.00 0.00 0.00 0.00 0.00
Materials propertie by using the power-law distribution. The results obtained are compared with
those obtained by Ze ng the sinusoidal shear deformation plate theory SSDT and the higher order shear
deformation plate by Nguyen [35] with different value of power law index k and aspect ratio a/h = 10.
From tables 3 it can be seen that is an excellent agreement between the obtained results in this paper and

: Non-dimensional displacements and stress of an FGM square plate under uniform load (a/h = 10).

k Y Theory w O Oy T, T, T,
Present 0.46288 2.9254 1.9253 0.48704 0.54794 1.2563
0 SSDT [20] 0.4665 2.8932 1.9103 0.4429 0.5114 1.2850
Nguyen et al [35] 0.4681 2.8732 1.9155 0.4665 0.5386 1.2993
Present 0.89688 4.4879 2.1292 0.5990 0.5481 1.0167
1 SSDT [20] 0.9287 4.4745 2.1692 0.5446 0.5114 1.1143
Nguyen et al [35] 0.9262 4.4408 2.1768 0.5010 0.4705 11221
Present 1.1301 5.2170 1.9677 0.56342 0.44998 0.89686
2 SSDT [20] 1.1940 5.2296 2.0338 0.5734 0.4700 0.9907

Nguyen et al [35] 1.1863 5.1853 2.0442 0.4757 0.3899 1.0000
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Present 13733 6.0480 15353 0.40911 0.33095 0.96196
5 SSDT [20] 1.4356 6.1504 1.6104 05031 0.4177 1.0451
Nguyen et al [35] 1.4211 6.0858 1.6253 0.4014 0.3333 1.0593

Present 15402 7.2262 1.2323 0.34027 0.35724 1.0053

10 SSDT [20] 15876 7.3689 1.2820 0.4227 0.4552 1.0694
Nguyen et al [35] 15841 7.2965 1.2954 0.3900 0.4200 1.0855

Present 25131 2.9254 1.9255 0.48710 054819 1.2578

o SSDT [20] 25327 2.8932 1.9103 0.4429 05114 1.2850
Nguyen et al [35] 25413 2.8732 1.9155 0.4665 05386 /&93

™)

Table 4 : Non-dimensional displacements and stress of an FGM square plate under sinusoidal load (a/h

K Theory w Oy o, V
Present 0.2935 2.0211 1.3240
0 SSDT [20] 0.2960 1.9955 1.3121
Nguyen et al [35] 0.2971 1.9758 1.3172
Present 0.5684 3.1022 1.4648 0.5618
1 SSDT [20] 0.5889 3.0870 1.4894 .2462 0.6110
Nguyen et al [35] 0.5872 3.0537 1.4969 0.2224 0.6125
Present 0.7223 3.6031 1.3507 0.2202 0.4943
2 SSDT [20] 0.7573 3.6094 1.3954 0.2265 0.5441
Nguyen et al [35] 0.7520 3.5657 1.4 0.2249 0.1843 0.5459
Present 0.8721 0.1940 0.1569 0.5291
5 SSDT [20] 0.9118 0.2429 0.2017 0.5755
Nguyen et al [35] 0.9018 0.1898 0.1576 0.5783
Present 0.9785 0.1610 0.1689 0.5537
10 SSDT [20] 1.0089 0 0.8775 0.2041 0.2198 0.5894
Nguyen et al [35] 1.0065 017 0.8908 0.1844 0.1986 0.5926
Present 1. 1.3240 0.2428 0.2731 0.6933
© SSDT [20] 1.6070 1.9955 1.3172 0.2132 0.2462 0.7065

FGM rectangular platesydith v power law index k for different value of the aspect ratio a/h. The acquired are
Delasticity solution [36], quasi-3D theories [36, 37].

s is shown by the comparison of the results with the results for medium thick plates.
eflections obtained of the proposed theory were a little larger than those of literature results
ates (a/h = 2), because the effect of stretching did not take for the present theory.

Nguyen et al [35] 6129 1.9758 1.3121 0.2205 0.2546 0.7092
@
Table 5 displays the effew’S etrical ratio a/b on the dimensionless centre deflection of exponential model
It is observed th

for the thick FG

able 5 : Dimensionless center deflection ( V_V) of exponential model FGM rectangular plates.

a’h Theory K
0.1 0.3 0.5 0.7 1 15
3D [36] 0.5769 0.5247 0.4766 0.4324 0.3727 0.2890
Quasi-3D [36] 0.5731 0.5181 0.4679 0.4222 0.3612 0.2771
! Quasi-3D [37] 0.5776 0.5222 0.4716 0.4255 0.3640 0.2792
2 Present 0.5524 0.5420 0.4890 0.4411 0.3767 0.2879
3D [36] 1.1944 1.0859 0.9864 0.8952 0.7727 0.6017
2 Quasi-3D [36] 1.1880 1.0740 0.9701 0.8755 0.7494 0.5758

Quasi-3D [37] 1.1938 1.0790 0.9748 0.8797 0.7530 0.5785
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Present 1.1665 1.0993 0.9927 0.8955 0.7658 0.5872
3D [36] 1.4430 1.3116 1.1913 1.0812 0.9334 0.7275
Quasi-3D [36] 1.4354 1.2977 1.1722 1.0580 0.9057 0.6962
3 Quasi-3D [37] 1.4419 1.3035 1.1774 1.0626 0.9096 0.6991
Present 1.4147 1.3234 1.1952 1.0783 0.92250 0.7078
3D [36] 0.3490 0.3168 0.2875 0.2608 0.2253 0.1805
L Quasi-3D [36] 0.3475 0.3142 0.2839 0.2563 0.2196 0.1692
Quasi-3D [37] 0.3486 0.3152 0.2848 0.2571 0.2203 0.1697
Present 0.3456 0.3159 0.2854 0.2577 0.2209 2702
3D [36] 0.8153 0.7395 0.6708 0.6085 0.5257 ?
. ) Quasi-3D [36] 0.8120 0.7343 0.6635 0.5992 0.51 2
Quasi-3D [37] 0.8145 0.7365 0.6655 0.6009 0.51 0.3973
Present 0.8098 0.73578 0.66500 0.6007 51 0.3976
3D [36] 1.0134 0.9190 0.8335 0.756 0.6 0.5121
Quasi-3D [36] 1.0094 0.9127 0.8248 0.7, .6385 0.4927
3 Quasi-3D [37] 1.0124 0.9155 0.6404 0.4941
Present 1.0071 0.9142 0.6402 0.4943

exponential material law for various values of a/h. The results sent theory are compared with the Arani and
Zamani [38], the quasi-3D solutions of Mantari and Soares [
[40]. The numerical results indicate good agreement wi

Table 6 : Dimensionless stress ( O, ) I model FGM square plates.

a/h Theory 07 II 5
0.3123 0.3477 0.4035
) 0) 0.3572 0.4045 0.4830
0.3675 0.4085 0.4851
0.3232 0.3574 0.4220
HSBT [9] (sh =0) 0.2649 0.2927 0.3451
. g’a i and iffis8] (¢, 2 0) 0.2822 0.3252 0.3722
i-3D [40] (&, #0) 0.2870 0.3171 0.3739
P ent (g, #0) 0.2712 0.2987 0.3506
SDT[9] (¢, =0) 0.2515 0.2774 0.3264
Arani and Zamani [38] (g, = 0) 0.2636 0.2902 0.3451

Quasi-3D [40] (&, # 0) 0.2671 0.2944 0.3460
Present (g, = 0) 0.2529 0.2781 0.3267
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Fig 4 : Variation of the non-dimensional centre deflection according to the parameter’s a/h, b/a, x, beta in the case of E-FGM plates.
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A comparison study of the center deflection and stress oxx are reported in figures 3-6 for P-FGM and E-FGM FG
plates with various porous models. Figures 3a-6a indicate the effect of the side-to-thickness ratio a/h and the
porosity models on the center deflections w (Figs. 3a-4a) and the dimensionless stress oxx (Figs. 5a-6a) of FG
square plates with volume fraction k=1 and porosity coefficient B is chosen as 0.1 and 0.2. It is noted that the
difference between perfect and imperfect porous models of P-FGM and E-FGM plates witch the center deflections
w and the dimensionless stress oxx decreases with increasing of side-to-thickness ratio this is because of the
porosity coefficient's effect on the plate's stiffness.
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. It's seen in Figures 3b-6b the effect the aspect ratio b/a and the porosity models on the center deflections w
(Figs. 3b-6b) and the dimensionless stress oxx (Figs. 5b-6b) of FG plates with volume fraction k=1, the side-to-
thickness ratio a/h=10 and porosity coefficient § is chosen as 0.1 and 0,2. It is observed for both models of P-FGM
and E-FGM plates that for perfect and imperfect porous, the deflection and stress increase rapidly with increasing of
aspect ratio. It is clear that the central deflections w and the dimensionless stress oxx for FG plate with even
porosity distribution model ($=0.2) are higher than for the other distribution models of P-FGM and E-FGM plates,
because even porosity implies a uniform distribution of pores throughout the plate. This creates a more
homogeneous material structure, meaning the material behaves similarly across different regions. This homogeneity
leads to more efficient load transfer and reduced stress concentrations, resulting in higher stiffness and resistance to
deformation.

Figures 3c and 4c demonstrate the center deflections w of P-FGM and E-FGM plates plots, usin fect and
imperfect porous models. It can be seen that the center deflections w has maximum values at the cent late
(x = a/2) significant differences between the results obtained by the porosity distribution mode here the”even
porosity distribution model (=0.2) is higher than that for the other models.

Variation of porosity coefficient on the central deflection and stress for different volume fracti of/P-FGM and
E-FGM nplate are illustrated in figures 3d and 5d, respectively. The porosity coefficient an important effect on
the deflectlons and stress mainly for all dlstrlbutlon models where the increasing of poLasi ficient increases the

highest positive normal stress oxx value is obtained f rosity distribution with B =0.1, whereas the
smallest is obtained for non-uniform porosity repartitiongith - The other values of normal stress oxx for the
different cases are in this interval. It should also be note values obtained in the case of P-FGM plates are
inferior by a value almost equal to 50% of those obtaine the case of E-FGM, because the steeper stiffness

z/h and aspect ratio a/h It's obvious th
behaviour. The shear stresses txz imu

unctionally graded porous and nonporous plates have the same
ue given by the figures 7a-7b and 8a-8b are those obtained by the

also noted that the stress
uneven distribution, it mea neven porosity distribution creates variations in material density across the
plate's thickness. Thi e stress distribution and potentially lead to higher shear stresses in specific
regions compared t ogosity. The transverse shear stresses are affected by the variation of a/h ratio, the
increase of this rati

stabilize from a rati 30
Afte : e various results and interpretation of the different curves of the deflection, normal and shear
stresses blished during this analysis, it can be concluded that the plates with the model P-FGM and E-

FGM presgnt the same behaviour and this even after introduction of the porosity effect. Nevertheless, the values of
deflection,wormal and shear stresses reached for E-FGM plates are greater than those of P-FGM plates.

8. Conclusions

This investigation explores the influence of porosity model distribution on the behavior of
functionally graded plates using an innovative quasi-3D refined higher-order shear deformation
theory. Unlike other quasi-3D theories with five or more unknowns, this work employs a
displacement field limited to four unknowns. Additionally, it reduces the number of equilibrium
equations, seamlessly integrating thickness-stretching effects into transverse displacement,
bending, and shear. The study includes a comparison between two functionally graded material
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models, namely P-FGM and E-FGM. The governing equations are derived from the static
version of the principle of virtual work, and analytical solutions for simply supported P-FGM, E-
FGM porous, and perfect plates are obtained. Multiple validation examples are presented and the
current quasi-30 theory's numerical results accurately predict the bending response different FG
plates. The same comportment is observed for plates with and without porosity, however an
increase is observed in the values of deflection, normal and shear stresses in the case where the
porosity is taken into account. In addition, the results obtained in terms of values of deflection,
normal and shear stresses are higher in the case of E-FGM compared to P-FGM.[41, 42]
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