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Abstract 

The influence of vibrations on the position of the target in the 
interaction chamber of the ELI-NP facility represents an important 
element in any experiment with gamma beam rays. Also, several 
detection systems are provided around the interaction chamber for 
tracking the nuclear reactions that occur inside the interaction 
chamber. They are fixed with very high precision in relation to the 
interaction chamber. In addition to tracking the gamma ray beam, it 
must to know with great precision the position of the sample holder 
and of these detectors placed in laboratory. The precision required for 
a gamma-ray experiment is determined by the size of the studied 
material. If there is enough target material, then the precision is not 
important, but if we have a very small amount of material, then 
precision becomes significant. For a common experiment, accuracy is 
considered satisfactory for a value of 2μm. The paper analyzes the 
influence of anthropogenic and natural vibrations on the position of the 
target, located at the end of a guide beam. 
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1. Introduction 

In the work, the beam that serves to guide the gamma beam used inside the Interaction Chamber (IC) at ELI-

NP (Extreme Light Infrastructure–Nuclear Physics) project is analyzed. All the equipment, including the interaction 

room in which this element studied in the paper is located, are placed on the inertial platform. All equipment, 
including this beam, are extremely sensitive and precise and an efficient anti-vibration system must be ensured, 

against the human (anthropic) and natural (earthquakes) factors. The ELI-NP project consists in the realization of an 

advanced source of 10 MeV Gamma rays. A high-intensity laser (up to 1024 W/cm2) will also be created. Details of 

this project can be found in [1, 2].  
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The expected gamma source that was realized in this project offers the support of some important experiments 

in nuclear resonance fluorescence (NRF), see [3, 4]. The precision and small size of the produced beam as well as 

the possibility to position it extremely precisely creates the prerequisites for obtaining spectacular results in the 

field. In this sense, the positioning system, which is part of and analyzed in this work, must be designed and made 

very precisely, which is why they are studied in this work. Obviously, in order to achieve extremely precise 

positioning, a special isolation is necessary against vibrations and which are produced by some anthropic activities 

or some natural phenomena (earthquakes). This can be achieved through a judicious design and realization of the 

platform on which the equipment stands, which is unique engineering achievement in the field. 

If are considered the high costs involved in the realization of this project and the high performance that it has 

to fulfill, in the design stage the best possible modeling is done to choose a solution that satisfies the purpose with 

the lowest costs. Common sources of vibration that occur are due to usual activities. They are varied and due to the 

daily activities, that take place (public or industrial transport around the building or other activities that are carried 
out continuously on a current basis). The main and most dangerous source of natural vibrations is earthquake. For 

the area where the institute is located, represents a rare phenomenon over a period of approximately 40-50 years 

when it manifests dramatically. That is why a calculation to vibrations of this sensitive beam is absolutely necessary. 

In the paper we will present a study on the dynamic response of the IC for the ELI-NP particle detector based 

on an excitation from the base. Taking into account the fact that the vibration of the system can significantly 

influence the direction of the very narrow gamma-ray beam that must reach a target subjected to analysis, a very 

good knowledge of the dynamic response of the element that directs the light beam of rays is necessary [5-7]. 

The interaction chamber (CI) of the ELIADE particle detector and the CCD (Charged Coupled Device) 

camera forms the so-called IC-NRF system in Figure 1(Internal Chamber – Nuclear Resonance Fluorescence) with 

the role of identifying the gamma beam, and the element that directs this beam must comply with the structural and 

functional requirements imposed by the specifications.  

 

         
 

a)                                                                        b) 
Fig.1:  IC-NRF system 

 

As functional requirements, the IC-NRF system must: 

✓ to hold a target of a solid, liquid or gaseous material. This target will be hit by gamma beams, 

✓ to be able to maintain vacuum conditions at a pressure of 10 -3 mbar, 

✓ can be integrated into the global ELIADE structure that holds a set of Ge detectors used in the NRF 

(Nuclear Resonance Fluorescence) experiments, 

✓ to be able to ensure the mechanical alignment of the gamma beam towards the target, 

✓ to ensure alignment of the target and its support before starting the experiments, 

✓ to be able to provide automatic mechanical alignment of the gamma beam based on remote control. 

The minimum performances required are: 
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✓ the accuracy of the target alignment system must not exceed 0.5 mm relative to the beam length, 

✓ the system must detect the gamma beam ray and align the IC-NRF, with the target, to a minimum 

resolution of 10μm, 

✓ gamma photons must be detected in the 2 to 20 MeV range by the gamma detector;  

✓ alignment system components should not be influenced by the gamma rays and should not 

accelerate aging in interaction with the gamma flux. 

The considered alignment system uses a gamma beam detection system providing information with a data 

acquisition or image capture device. The digital camera contains, in the front of camera, a visible phase gamma 

beam converter.  

In order to be able to ensure the precision of the alignment system, it is necessary to know the vibration 

response of the beam where the target is located (in this area the gamma beam act). 

 

2. Model and Method 

Mathematical modeling of vibrations using the finite element method offers a fast and convenient way to 

obtain approximate solutions for any type of engineering problems, taking into account the fact that the response of 

most systems to external actions is extremely difficult, if not impossible to interpret based on a classical 

mathematical algorithm. 

The process of a dynamic analysis represented in Fig. 2 involves a staged analysis of a structure. As can be 

seen, the input data to be established are the external loads, the geometry of the structure to be analyzed and then the 

definition of the finite element model. A next step consists in defining the types of dynamic analysis that should be 

performed according to the goal pursued. These types of dynamic analysis can be: eigenmode analysis, frequency 

response analysis, transient response analysis, spectral response analysis, random response analysis, etc. 

 
Fig.2: The process of dynamic analysis by numerical methods 

 

In the framework of the forced vibration analyzes carried out on the IC-NRF system described in the previous 

chapter, the determination of the structural response of the gamma wave guiding element was sought, under the 

action of a unitary harmonic excitation applied to the base. As shown in Fig. 2, the process of a dynamic analysis 

first involves the determination of the eigenmodes of vibration, eigenfrequencies and eigenvectors. Later, by 

knowing the behavior from the point of view of free vibrations, it will be possible to obtain forced response. The 

gamma-ray guide element shown in Figure 1 can be considered in the case of an analytical calculation equivalent to 

a cantilever variable cross-section bar of constant thickness along its entire length. For this equivalent system 

presented in Fig. 3, the equations underlying the determination of the eigenmodes of vibration, the eigenfrequencies 

are the Euler Bernoulli equations [8]. 
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Fig.3: Cantilever beam structure with variable cross-section 

 

Transverse vibrations of bar structures represent a problem in the field of vibrations of continuous systems. 

The beam in Fig. 3 has a variable cross-section along its axis, its thickness is constant, the bending stiffness modulus 

is variable along its length, and the material characterized by density  will have mass per unit length A. The 

displacement of a point of beam under displacement-type harmonic excitation is expressed in Eq. (1): 

( , ) ( , ) ( )y x t v x t y t= +   (1) 

where  ),( txv  represents the arrow of the bar under the action of its own weight, y(t) is the displacement of the 

exciting base, and ),( txy represents the total displacement of the beam. Considering a sinusoidal harmonic motion, 

it is possible to define it by the law: )sin()( 0 tYty = , where  is the circular frequency of the harmonic forced 

vibration, and Y0 represents the amplitude of the displacement. 

Figs. 3, d and 3, e show the forces and moments acting on an infinitesimal element detached from the bar. 

Equilibrium equations of forces and moments will be written as follows: 

- Moment equilibrium equation written on the element of length dx, from Figure 3, d: 
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from which a dependence relation between shear forces and bending moments will be obtained, relation (2): 
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- The forces balance equation written on the element of length dx, from Fig. 3, e: 

Based on the differential equation of the average deformed fiber we can express the bending moment as a 

function of stiffness [9]: 
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Finally, the general equation of transverse vibrations of a cantilever bar will be obtained: 

0
),(

)(

)(),(
2

2

4

4

=



+





t

txy

xEI

xA

x

txv 
  . (3) 

Taking into account (1), it will be obtained: 
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To obtain the eigenmodes of vibration, the homogeneous equation of equation (4) will have to be solved: 
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The solution of equation (5) is of the form [10] : 

( )tBtBxYtxv  cossin)(),( 21 +=  (6) 

- Y(x) is a function that defines the vibration mode. By inserting (6) into (5) and after performing the 2nd and 

4th order derivatives, we will obtain: 
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The coefficients C1 , C2 , C3 , C4  will be determined from the boundary conditions: 
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In matrix form, the equations obtained from the boundary conditions for x=L are: 
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The matrix system (8) has non-trivial solutions, if and only if its determinant is zero. Writing this condition 

will give the following transcendental equation: 

1)cosh()cos( −=LL   . 
(9) 

In Table 1 the first four solution are presented. They offer the first four eigenmodes of vibration. 

From (8) we obtain the dependence between the constants C2 and C4 . 

24
)sinh()sin(

)cosh()cos(
C

LL

LL
C





+

+
−=  . 

(10) 

The equation that gives the shape of the eigenmode is: 

   )sinh()sin(
)sinh()sin(

)cosh()cos(
)cosh()cos()( xx

LL

LL
xxxY ii

ii

ii
iii 




 −

+

+
−−=

 .

 
(11) 

Table 1: Calculation of parameters for the equation of the beam 

Solution no. i βiL 

1 1.8751 

2 4.6941 

3 7.8547 

4 10.9956 

 

 

Fig. 4: Shape of eigenmodes for a cantilever beam 

 

Based on the determined natural modes of vibration (Fig.4), the vibration response of the structure to the 

action of a disturbance such as a harmonic excitation applied to the base is to be determined. 

Eq.(4), which is the equation on the basis of which the forced response is obtained, can also be expressed as: 
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Taking into account the fact that the displacement-type base excitation is ( )tYy sin0= , the force function 

in the right-hand member becomes: 
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( )tYAyxf  sin),( 0
2=  (13) 

The dynamic system described for equation 12 is presented in Fig. 5. 

 

Fig.5: Cantilever beam with boundary conditions 

 

The relative transverse displacements of any point located on the beam, in relation to the base, is considered 

to be under the form: 
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where, )(xYi is the normalized eigenmodes function. Substituting (14) into (12), multiplying the resulting 

expression by )(xYj and integrating all the terms over the length of the bar, the relation will be obtained: 
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The eigenmode shapes are orthonormal, conditions expressed by the formulas [11]: 
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where ij  is the Delta Kronecker function shown in (17): 
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Substituting (16) into (15) yields: 
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with )(tQi : 
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The solution of equation (18) is [12]: 
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The third term in (20) represents the integral of the convolution [11], and the term h(tt) represents the 

response of an impulse unit given by the relation: 
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Substituting (21) and (18) into the convolution integral will result: 
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The coefficients ai and bi in  Eq.(20) are determined from the boundary conditions (initial conditions in our 

case): 
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So, the general form of Eq.(20) will be: 
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where, the terms 0iq  and 0iq are [13]:  
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The total displacement of the bar under harmonic excitation of the base will be: 
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In general, force response approaches are done in the frequency domain using Fourier transforms due to the 

much reduced volume of calculations. In the last decade, most forced response calculations are made based on 

information obtained from the free vibration calculation such as: modal participation factors, effective modal mass 

factors and cumulative mass. 

Finite Element Methods represents another way to obtain the motion equations and finaly the numerical 

response of the vibration behavior of a system [5, 14-21]. But this methods offer only numerical results and not a 

qualitative image of the system behavior. 

 Every structure tends to vibrate with a response that is the sum of a certain set of harmonic vibration with the 

natural frequencies (eigenfrequencis). For every eigenfrequency there is an eigenmode shape. The modal 

participation factor represents a measure of how much a particular mode contributes to the overall structure's 

response if there is an excitation in an arbitrary direction.  

In vibration analysis, there are two related topics that must be considered. These are the resonance and modal 

participation. In a resonant regime, the excitation amplifies the mode. Obviously, large displacements can appear. 

On the other hand, it is possible for the excitation frequency to match a natural frequency (ie a resonant condition) 
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but the participation factor of the mode is close to zero which means that little energy will enter with that mode and 

a response will be negligible dynamic. 

Modal participation factors are scalars that measure the interaction between the responses given by the 

eigenmodes of vibration and the direction of excitation in a defined reference frame. Higher values of these factors 

indicate a more significant contribution to the dynamic response. 

The cumulative mass for mode 'n' is the sum of the effective mass factors for modes 1 through 'n'. A common 

rule of thumb for linear dynamic analysis is to include enough modes so that the cumulative mass is at least 80% in 

the predominant direction of the excitation vibration. 

For a bar of length L and mass per unit length )(xA , the modal participation factors are calculated with the 

relation [22, 23]: 
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where )(xYi are the eigenvectors obtained by mass normalization, calculated with (11). 

The generalized modal mass and the effective modal mass on each mode are calculated with the following 

relations [22, 23]: 
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Since the normalization of the eigenvectors is done as a function of the mass, the generalized modal mass im̂  
has unit value. 

The determination of the forced response for a cantilever bar excited at the base according to a harmonic law 

of unit amplitude and taking into account the damping expressed by the fraction of the critical damping, is given in 

(30), (see  [14]) . 
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),( xY – the relative displacement of the beam with respect to the base according to the excitation pulse; 

)(y - excitation acceleration converted from time to frequency; 

i  - the modal participation factor specific to each mode; 

)(xYi – the eigenvectors normalized on the basis of the mass, specific to each eigenmode; 

– excitation pulsation; 

 – the natural pulsation of each mode; 

i  - the fraction of the critical damping. 

 

3. Results 

The finite element model, shown in Fig. 6 was discretized with SHELL finite elements with four corner 

nodes, a node having 6 nodal degrees of freedom. Since the field of use of the analyzed element requires a high 

precision, the frequency range for which the free vibrations were studied was considered between 0 and 1000 Hz. In 

the modal analysis, the eigenmodes specific to the movement of the guiding element in the direction of excitation 

were mainly followed. The main parameters monitored for each mode in the free vibration analysis were: natural 

frequency, modal participation factors, effective modal mass and eigenmode shape. 
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Fig.6: Finite element model of the gamma beam ray guide element 

The material from which the guide beam is made is a steel with the following properties: Young’s modulus E 

= 21,000 MPa, Poisson’ s ratio,  and density 860 kg/m3. The thickness of the beam is 2 mm, and its 

mass is 93.28 grams. 

Within the framework of finite element analyzes (FEA) it was aimed to determine how large the 

displacement of the target will be when the vibration amplitude in the base is unitary [24, 25]. 

In the frequency range established for free vibration analysis, 27 natural modes were obtained. In tables 2,3 

and 4 you can see normalized modal participation factors and the effective modal mass for the first 14 eigenmodes 

of vibration. 

 
Table 2: Normalized participation modal factors 

Eigenm

ode 

Freque

ncy Translation Rotation 

[Hz] X Y Z RX RY RZ 

Mode 1 19.254 1 0.0042 0.000 0.0000 0.0863 1 

Mode 2 85.658 0.6971 0.0101 0.001 0.0012 0.2283 0.3882 

Mode 3 121.42 0.0012 0.0134 0.8782 1 0.7324 0.000 

Mode 4 237.96 0.4309 0.0212 0.0020 0.0021 0.2671 0.2023 

Mode 5 448.12 0.0128 0.0638 1 0.7492 1 0.0081 

Mode 6 463.21 0.3011 0.0196 0.0481 0.0364 0.1512 0.1343 

Mode 7 770.93 0.2243 0.0391 0.0602 0.0364 0.1621 0.0944 

Mode 8 820.62 0.0212 0.0391 0.6797 0.3871 0.3929 0.0072 

Mode 9 1010.1 0.0071 0.0142 0.4864 0.2458 0.7633 0.0031 

Mode 10 1151.8 0.1808 0.0352 0.0062 0.0039 0.1143 0.0765 

Mode 11 1378.2 0.000 0.000 -0.0010 -0.1591 0.0011 0.0021 

Mode 12 1601.2 -0.001 0.000 0.0000 0.0021 -0.0061 0.1112 

Mode 13 1715.7 0.000 0.000 

-

0.0010 

-

0.0982 0.0183 

-

0.0021 

Mode 14 2101.4 -0.001 0.000 0.0000 

-

0.0081 

-

0.0071 0.1049 

 
Table 3: Effective modal mass 

Eigen 

mode 

Freque

ncy Translation Rotation 

[Hz] X Y Z RX RY RZ 



Journal of Computational Applied Mechanics 2024, 55(2): 275-288 285 

Mode 1 19.254 2.32x10-5 2.60x10-10 1.73x10-13 3.94x10-8 2.77x10-5 3.01 

Mode 2 85.658 1.13x10-5 2.07x10-9 1.41x10-11 2.57x10-6 1.94x10-4 4.53x10-1 

Mode 3 121.42 
4.73x10
-11 

3.63x10-9 
1.25x10-

5 
2.04 

2.00x10
-3 

4.01x10-7 

Mode 4 237.96 
4.30x10

-6 
8.53x10-9 

6.73x10-

11 

8.77x1

0-6 

2.66x10
-4 

1.22x10-1 

Mode 5 448.12 
3.75x10

-9 
8.14x10-8 

1.62x10-

5 
1.15 

3.73x10
-3 

1.89x10-4 

Mode 6 463.21 
2.11x10

-6 
8.03x10-9 

3.69x10-

8 

2.58x1

0-3 

8.46x10
-5 

5.37x10-2 

Mode 7 770.93 
1.16x10

-6 
2.96x10-8 

5.92x10-

8 

2.69x1

0-3 

9.77x10
-5 

2.65x10-2 

Mode 8 820.62 
9.84x10

-9 
3.04x10-8 

7.49x10-

6 

3.06x1

0-1 

5.76x10
-4 

1.66x10-4 

Mode 9 1010.1 
1.24x10

-9 
4.13x10-9 

3.82x10-

6 

1.23x1

0-1 

2.17x10
-3 

3.21x10-5 

Mode 10 1151.8 
7.60x10

-7 
2.43x10-8 

5.72x10-

10 

2.88x1

0-5 

4.88x10
-5 

1.79x10-2 

Mode 11 1378.2 
2.64x10
-10 

5.54x10-9 
1.19x10-

6 

2.52x1

0-2 

1.96x10
-6 

4.05x10-6 

Mode 12 1601.2 
5.84x10

-7 
1.26x10-7 

1.06x10-

13 

5.59x1

0-6 

4.22x10
-5 

1.23x10-2 

Mode 13 1715.7 
6.93x10
-10 

6.52x10
-11 

6.04x10-

7 

9.62x1

0-3 

3.27x10
-4 

2.36x10-6 

Mode 14 2101.4 
4.09x10

-5 

2.46x10
-8 

1.43x10-

9 

5.76x1

0-5 

4.43x10
-5 

1.10x10-2 

TOTAL 9.32x10-5 9.32x10-5 9.32x10-5 1.24x10 1.89x10+3 7.03 

 

    Table 4: Effective modal mass (percentage) 

Eigenm

ode 

Translation [%] Rotation [%] 

X Y Z RX RY RZ 

Mode 1 24.87 0.00 0.00 0.00 0.00 42.75 

Mode 2 12.07 0.00 0.00 0.00 0.00 6.44 

Mode 3 0.00 0.00 13.39 16.48 0.00 0.00 

Mode 4 4.61 0.01 0.00 0.00 0.00 1.74 

Mode 5 0.00 0.09 17.36 9.24 0.00 0.00 

Mode 6 2.26 0.01 0.04 0.02 0.00 0.76 

Mode 7 1.24 0.03 0.06 0.02 0.00 0.38 

Mode 8 0.01 0.03 8.02 2.47 0.00 0.00 

Mode 9 0.00 0.00 4.09 1.00 0.00 0.00 

Mode 10 0.81 0.03 0.00 0.00 0.00 0.25 

Mode 11 0.00 0.01 1.28 0.20 0.00 0.00 

Mode 12 0.63 0.14 0.00 0.00 0.00 0.18 

Mode 13 0.00 0.00 0.65 0.08 0.00 0.00 

Mode 14 0.44 0.03 0.00 0.00 0.00 0.16 

In Tab. 4, the percentage effective modal masses were highlighted for values greater than 2%. Since the 

applied excitation is oriented along the global axis X of the reference system which can be seen in Fig. 6, the 

eigenmodes of interest from the point of view of the force response study are 1, 2, 4, 6, specifically the first four 

bending modes with respect to the Z axis. 



286 Sorin Vlase et al. 

 

 
Mode 1: ω1 =19.25 Hz 

 
Mode 2: ω2 = 85.66 Hz 

  

 
Mode 4: ω4 =238.0 Hz 

 
Mode 6: ω6 = 463.2 Hz 

Fig. 7: Finite Element Model and eigenmodes of vibration  

Based on the percentage values of the effective modal masses obtained from the analysis, it can be concluded 

that the effective modal mass of mode 1 presents the highest values which means that a large part of the bending 

vibration energy is given by this mode. This is highlighted by both the high percentage of translation along the X 

axis (24.87%) and the high percentage obtained on rotation around the Z axis (42.75%). The same can be said for 

mode 2. 

Modes 3, 5, 8 and 9 are also bending eigenmodes but for an excitation acting in a direction perpendicular to 

the plane in which the bending vibration specific to these modes occurs and the forced response will not amplify the 

vibration. 

In Fig. 8 shows the variation of the forced displacement response for the free end of the gamma beam guide 

element. 

 

Fig. 9. Forced free-end response for the gamma guide element 
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4. Conclusions 

The free and forced vibration analysis performed for the gamma wave guide beam illustrates some 

important aspects that must be considered when designing the final solution of this guide element. 

Based on the graph obtained from the forced response analysis, it can be observed that the guiding 

element presents a rather high flexibility, and this is highlighted by the amplitude response obtained on the 

natural modes of vibration. As can be seen from the modal participation factors, respectively the effective 

modal mass, mode 1 can be considered the most influential for the response obtained. Depending on this way, 

proposals can be made to improve the constructive solution analyzed, which presuppose a redesign of the 

constructive form so that it leads to a maximum vibration amplitude as low as possible. 
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