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Abstract 

The purpose of this research is to investigate deflection, buckling and 

vibration for a five-layer sandwich nanocomposite beam, with reinforcements 

of graphene platelets (GPLs) and shape memory alloys (SMAs), and a foam 

core. To predict the behavior of the beam, theoretical formulations are 

derived based on the third order shear deformation beam theory (TSDBT). In 

order to check the validity and accuracy of the present work, the obtained 

results are compared with the results of other works and there is a good 

compatibility between them. It is concluded from this research that by using 

foam as the core, the weight of the structure is reduced, and also, the use of 

GPLs and SMAs as a reinforcement in the beam structure increases the 

stiffness and the equivalent elasticity modulus, so the ratio of strength to the 

weight of the structure increases. As a result of which the deflection decreases, 

the critical buckling load and the natural vibration frequencies of the beam 

increase.  For example, it can be seen in the results that by increasing the 

volume fraction of GPL from 0 to 0.03, the deflection of the beam decreases 

by 44% and the first natural frequency of vibration and the critical buckling 

load increase by 31% and 79%, respectively. 

Keywords: Sandwich nanocomposite structure; Foam core; GPL; SMA; Deflection, vibration and 

buckling. 

 

1. Introduction 

  Nowadays, in the field of engineering, one of the main problems is the heavy weight of the structures, that's why 

sandwich composite structures have attracted a lot of attention among engineers and researchers due to their light 

weight and high hardness and strength. In compared to other materials, these structures have relative advantages in 

terms of better stability and corrosion resistance, longer fatigue life and higher strength-to-weight ratio. A sandwich 

composite structure generally consists of a light thick core and two stiff thin composite layers. These structures are 

used in various applications that require excellent mechanical properties with low weight, such as aerospace industries, 
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satellites, automotive industries, marine transportation, civil, containers, tanks, body parts, rail cars, and wind energy 

systems [1-23]. 

 In this field, some researches have been done to employ different materials as the core of sandwich and 

reinforcements for composite face sheets including carbon nanotubes (CNTs), graphene platelets and smart materials 

like shape memory alloys. 

 

1.1. Employment of foam core  

 In the core of structures, materials with light weight such as polymer and metal foams are used, but its high 

thickness provides the structure with high flexural stiffness and low overall density. Kazemi [24] investigated the 

bending for a sandwich beam with aluminum face sheets and functionally graded (FG) polyurethane foam core. 

Alavinia and Kazemi [25] studied the ballistic resistance for a sandwich structures with aluminum face sheets and FG 

polyurethane foam core. Their analysis stated that with the increase in thickness and density of the foam, the ballistic 

limit and energy absorption increase. Qin and Wang [26] analyzed the large deflections for a thin sandwich beam with 

a metal foam core under lateral loading. Their study inspected that the structural response of sandwich beams depends 

on core strength, boundary conditions and punch size. Zhang et al. [27] checked the dynamic response and compressive 

strengths of sinusoidal sandwich plates without foam and filled with foam. Their investigation displayed that the use 

of foam-filled cores enhances the compressive strength, but does not have much effect on the dynamic response. 

Nasirzadeh and Sabet [28] inquired the influence of different densities for polyurethane foam core in a composite 

sandwich panel under impact loading. Their results demonstrated that foam with a density of 49 kg/m3 has the best 

performance in terms of energy absorption. 

 

1.2. Employment of graphene platelets  

 The effect of graphene platelets on strengthening the structure is such that the addition of a small amount of 

graphene can significantly improve the properties of the equivalent nanocomposite. This has prompted many 

researchers to study the behavior of graphene-reinforced nanocomposites and its derivatives. Feng et al. [29] 

considered the nonlinear vibration for a polymeric nanocomposite beam reinforced by GPLs. Their examination 

illustrated that the small use of GPLs in the polymer matrix has a significant reinforcing effect and can greatly increase 

frequencies of the beam. Wang et al. [30] regarded the nonlinear bending and vibration of GPLs reinforced composite 

beam with dielectric permittivity. Their analysis indicated that the thickness of the beam, the aspect ratio of the GPL 

and the electric voltage are very effective on bending and vibration of structure. Mohammadi et al [31] investigated 

the free vibration behavior of circular graphene face sheet and the effects of boundary conditions, mode number, small 

scale and preload on its natural frequencies. Their results showed that the effects of preloading are significant for the 

circular nanoplate with a smaller radius. Reddy et al. [32] depicted the free vibration of GPLs-reinforced multilayer 

composite plates, where the effect of parameters such as GPL distribution patterns, GPL weight fraction, edge 

boundary conditions, and GPL geometry on natural frequency are examined. Wu et al. [33] evaluated the dynamic 

instability of FG nanocomposite beams reinforced with GPLs. Numerical study presented that the natural frequency 

increases with more GPL distribution near the upper and lower surfaces, and GPL with a width-to-thickness ratio 

greater than 103 have a negligible effect. Kayani and Mirzaei [34] surveyed post-buckling and thermal buckling for 

composite beam reinforced with GPLs. According to their analysis, the critical buckling temperature increases 

significantly with FG distribution of GPL in the matrix. Mohammadi et al [35] studied the buckling of orthotropic 

monolayer graphene face sheets in thermal environment. They investigated the effects of temperature change, 

surrounding elastic environment and boundary conditions on the critical buckling load. It is determined that the small 

scale coefficient is highly effective on the critical buckling shear load of single-layer graphene face sheets. Song et al. 

[36] studied the vibration of randomly oriented GPL reinforced composite beams. They investigated the linear and 

nonlinear vibration of beams under the influence of different volume fractions and distribution patterns of GPL, GPL 

geometry and size, crack length and temperature changes. Feng et al. [37] checked nonlinear bending for a 

nanocomposite beam reinforced by non-uniformly distributed GPL. Yang et al. [38] analyzed post-buckling for a 

nanocomposite beams reinforced with low amount of GPLs. Their examination displayed that the post-buckling and 

buckling resistance of composite beams can be significantly increased by using GPLs. Wang et al. [39] researched the 
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vibration of a uniformly distributed GPL reinforced composite beam under two consecutive moving masses. Their 

analysis illustrated that adding a small amount of GPLs greatly increases beam stiffness and resistance to dynamic 

loads. Mohammadi et al. [40] analyzed the effect of temperature change, different boundary conditions, material 

properties and Winkler and Pasternak foundations on the vibration frequency of single-layer graphene face sheets, 

and it is concluded that increasing the temperature can reduce the non-dimensional frequency. Song et al. [41] 

presented bending and buckling studies of composite plate with FG-GPL. Their study showed that by adding a small 

amount of GPLs, the bending deflections decrease and the critical buckling load increases. Yang et al. [42] evaluated 

the nonlinear dynamic response of FG-GPL reinforced composite beams. They concluded that the GPL distribution 

is more effective when it is more at the top and bottom layers, and with this, dynamic deformation can be significantly 

reduced. Majidi et al. [43] surveyed the vibration of a composite sandwich plate surrounded by piezoelectric layers 

reinforced with GPLs. Their investigation indicated that the stiffness of the plate increases with the addition of a small 

amount of GPLs. Furthermore, the most effective reinforcement occurs by distributing more GPLs of larger size in 

the lower and upper surfaces of the plate. Mohammadi et al. [44] investigated the vibration behavior of annular and 

circular graphene face sheets. Their research findings showed that temperature change, boundary conditions and non-

local parameters have significant effects on the vibration response. 

 

1.3. Employment of shape memory alloys  

 SMAs constitute a group of metallic materials that have the ability to recover a predetermined length or shape 

when subjected to a thermodynamic process. The generated force and the change in the modulus of elasticity and 

density of the SMA modify the equivalent stiffness of the structure. As a result, SMA actuators can be used to control 

the displacement, vibration and buckling of composite structures. Li and Choi  [45] regarded thermal buckling for a 

composite beam with SMA wires. Their analytical results inspected that thermal expansion is reduced by the recovery 

force, which increases the critical buckling temperature. Barzegari et al. [46] considered frequency and mode shape 

with SMA wires. According to their study, the frequency for the beam decreased with an increase in the number of 

SMA wires, at a temperature lower than the final temperature of martensite. Shiau et al. [47] examined the effect of 

SMA on the vibration of cross and angled layers under buckling by changing the spacing of SMA fibers. Their 

numerical examination stated that the stiffness of composite sheets increases with increasing of volume fraction of 

SMA fibers. In addition, the natural frequencies of the plate are modified. Park et al. [48] investigated the vibration of 

composite plate with SMA fibers. Their numerical study demonstrated that with the increase in the volume fraction 

and initial strain of SMA fiber, the stiffness of the plate increases.  Kamarian et al [49] compared the performance of 

two advanced materials SMAs and CNTs in thermal buckling of composite beams. Their results expressed that the 

critical buckling temperature increases significantly by using both of these materials, but in some situations, the use 

of only one of SMAs or CNTs does not have much effect.  Mahabadi et al. [50] presented the vibration response of 

SMAs reinforced composite plate. Asadi et al. [51] analyzed the vibration of composite hybrid beams with SMAHC 

in pre-buckling and post-buckling thermal domains. In the other work, they [52] studied the forced vibrations of a 

composite beam reinforced with SMA fibers (Nitinol). They concluded that the critical buckling temperature increases 

with the incorporation of SMA fibers and the recovery stress increases with the increase of SMA volume fraction. 

 

1.4. Present work 

 The novelty of this research is the investigation of deflection, frequency and buckling simultaneously for a five-

layer sandwich nanocomposite beam based on Reddy beam theory. Also, two types of nanoparticles, one from the 

family of smart materials (SMA) and the other with strengthening properties (GPL) are used in the beam structure 
along with other materials and their effects are obtained. The core is made of foam, the core face sheets are composed 

of a five-layer nanocomposite of carbon fibers and epoxy resin with graphene nanoplatelets reinforcements and the 

upper and lower layers of the beam are consists of epoxy resin with shape memory alloys.  The results of this research 

show that by using reinforcements in the polymer matrix, high stiffness and modulus of elasticity can be achieved for 

the structure. It is also determined that the use of light cores such as foam reduces the weight of the structure, thus 

providing a high strength-to-weight ratio for the structure. 
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2. Material properties 

 The view of a five-layer sandwich nanocomposite beam with foam core, reinforced with GPLs and SMAs, is 

shown schematically in Fig 1. The displacement components of a sandwich nanocomposite beam are considered using 

the Cartesian coordinate system (x,y,z). Also, HC, HGPL and HSMA are mentioned as the core thickness, the thickness 

of the nanocomposite face sheets with GPLs and the thickness of the layers with SMAs mixed in the resin, respectively. 

 
Fig 1. The schematic view of a five-layer sandwich nanocomposite beam with foam core, reinforced with GPLs and SMAs 

 Equivalent mechanical properties including modulus of elasticity, shear modulus, Poisson's ratio and density for 

nanocomposite layers that consist of carbon fibers, epoxy resin and graphene nanoplatelets are obtained based on the 

extended mixture rule. For this purpose, the equivalent properties of matrix are determined along with GPL 

reinforcements [53, 54]. 
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In which the values of γ coefficients are calculated as follows [55]: 
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 In Eq. (1), E11_Gpl, E22_Gpl, G12_Gpl, ρGPL, and υ12_GPL are the modulus of elasticity, shear modulus, density and 

Poisson's ratio of GPL, respectively. The values of hGPL, lGPL, and wGPL are related to the thickness, length, and width 

of GPL, respectively. The volume fraction of GPL and matrix are denoted by VGPL and Vm, respectively. Also, the 

efficiency parameters indicated by η1, η2 and η3, which depended on the volume fraction of GPL are obtained from 

Table 1 [56]. 

Table 1. The efficiency parameters (η1, η2 and η3) according to volume fraction of GPL 

VGPL η1 η2 η3 

0.03 2.929  2.855 11.842 

0.07 3.013  2.966 23.575 

0.11 2.311  2.260 32.125 

 

Then, the total equivalent properties along with fibers are determined as follows [56]: 
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 In Eq. (2), E11_f, E22_f, G12_f, υf and ρf are the modulus of elasticity, shear modulus, Poisson's ratio and density of 

fibers, respectively. The volume fraction of fibers is displayed by Vf . VmGPL is the sum of the volume fraction of 

matrix and GPL and is related to the volume fraction of fibers through the equation VmGPL=1-Vf . 

Equivalent mechanical properties of layers with SMAs are obtained using rules of mixture from the Eq. (3). 
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 The used mechanical properties in the beam structure are including foam, carbon fibers, epoxy resin, graphene 

platelets and shape memory alloys that are determined in Table 2 [56, 57]. 
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Table 2. The values of mechanical properties of foam, carbon fibers, epoxy resin, graphene platelet and shape memory alloy (Nitinol)  

Mechanical properties Materials 

E = 0.1036 GPa 

G = 0.05 GPa 

υ = 0.32 

ρ = 130 kg/m3 

 

Foam 

E11_f = 233.05 GPa  ,  E22_f = 23.1 GPa 

G12_f = 8.96 GPa 

υ f = 0.2 

ρf = 1750 kg/m3 

 

Carbon fibers 

 

Em = 15.47 GPa 

Gm = 5.931 GPa 

 υ m =0.34 

ρm = 1100 kg/m3 

 

Epoxy resin 

 

E11_Gpl = 1812 GPa  ,  E22_Gpl = 1807 GPa 

G12_Gpl = 683 GPa 

υ12_GPL = 0.177 

ρGPL = 4118 kg/m3 

lGPL=14.76 nm , hGPL=0.188 nm , wGPL=14.77 nm 

 

 

Graphene platelet 

 

EA = 67 GPa  ,  EM = 26.3 GPa 

GM = 9.8872 GPa 

υ = 0.33 

ρ = 6450 kg/m3 

 

Shape memory alloy 

(Nitinol) 

 

 

 The working temperature of the problem is assumed ambient temperature and only the martensite phase of SMAs 

is considered, that is: ESMA=EM=26.3 GPa. 

 
3. Theoretical formulation 

 

The displacement fields based on the third order shear deformation beam theory (TSDBT) for the sandwich 

nanocomposite beam are written as follows [58, 59]: 
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(4) 

 where W, U, V are the transverse and axial displacements, and also w, u, v are the transverse and axial 

displacements at the middle plane [60], ψ is the rotation of the cross section of the beam. Also, the strain components 

are obtained using equations of strain-displacement and Eq. (4) as follows: 
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(5) 

 

 In Eq. (5), normal and shear strains in different directions are represented by ϵ and γ, respectively. The governing 

equations of a sandwich beam is obtained by the following equation [61, 62]: 

2
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t

ext

t
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(6) 

 

 where T, U and Wext are kinetic energy, strain energy and energy caused by external forces acting on the beam, 

respectively. The strain energy variation for the sandwich nanocomposite beam and using Eq. (5) is written as follows 

[63]: 
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where [64, 65]: 
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 The variation of the external work for the sandwich nanocomposite beam is obtained as follows: 
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 The kinetic energy variation for the sandwich nanocomposite beam using Eq. (4) is obtained as follows: 
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 Based on the Eqs. (7), (9) and (10), the equations of motion for the sandwich nanocomposite beam are written as 

follows [66, 67]: 
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) 

 

where: 

( ) ( )

( ) ( )

   ,   0,1,2,3,4,6

   ,   0,2,4

i i

i i

i

i

A Ez dz

B Gz dz

=

=

=

=




 

 

(2) 

 

 Considering the simple supported boundary conditions for a sandwich beam, Navier's solution method is used to 

find the stiffness and mass matrix [68], where the forces and displacements are estimated as the following functions: 
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L

m x
u x t u e

L

m x
w x t w e

L

m x
x t e

L








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


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=

=

=

=











 

 

 

(14) 

 

 Using equations of motion and Navier's solution method, three equations are obtained in terms of um, wm, and ψm, 

and the matrix [R] is formed as follows: 

F

F

0

R =

m

m

m

m

m

u

w

H

q


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 










          



    
  






 =

→ 

=

 

 

 

(15) 

 

Now, each of the flexural stiffness, geometric stiffness and mass matrices are separated from the total matrix. 

Flexural stiffness matrix: 
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Geometric stiffness matrix: 
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Mass matrix: 



302 Mohammad Arabzadeh-Ziari et al. 

(0)
11

(3)

12 2

(3)
(1)

13 2

(3)

21 2

(6)
(0) 2

22 4

(4) (6)

23 2 4

(3)
(1)

31 2

11 12 13

21 22 23

31 32 33

( )

4
( )( )

3

4
( ) ( )

3

4
( )( )

3

16
( ) ( )( )

9

4 16
( )( ) ( )( )

3 9

4
( ) ( )

3

M I

I m
M

H L

I
M I

H

I m
M

H L

I m
M I

H L

I m I m
M

H L H L

I
M I

H

M M M

M M M M

M M M







 

 
 

    
 
 

=

= −

= −

= −

= +

= − +

= −

=

(4) (6)

32 2 4

(4) (6)
(2)

33 2 4

4 16
( )( ) ( )( )

3 9

8 16
( ) ( ) ( );

3 9

I m I m
M

H L H L

I I
M I

H H

 
= − +

= − +

 

 

(18) 

 

 The deflection of the sandwich nanocomposite beam is calculated using the [K] and [F] matrices from the 

following equation: 

1
= F   F

m m

m m

m m

K

u u

w w K

 

−

  




   

     
      

         → =  

 

(19) 

 

 The natural frequencies of the beam are obtained using the [K] and [M] matrices from the following equation [69, 

70]: 

( )2det 0K M      − =  
(20) 

 

 The critical buckling load of the beam is obtained by using the [K] and [KP] matrices and the determinants of the 

sum of these two matrices: 
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( )det 0PK K      + =  
(21) 

4. Validation 

 In this section, the validation and verification of the accuracy of the solution method for this research is 

investigated. For this purpose, the obtained dimensionless fundamental natural frequency and the dimensionless 

critical buckling load from the present study are compared with the results of other studies and the results state a 

satisfactory agreement between them. The dimensionless frequency is compared to the results of Santos and Reddy 

[71] in Table 3 and Koochaki [72], Akhavan Alavi et al. [58] in Table 4 and the error percentage is determined.  

It is noted that to validate Table 4, Eq. (13) must be modified as follows: 

2

( ) ( )

( ) ( )

   ,   0,1, 2,3, 4,6
1

   ,   0, 2, 4

i i

i i

E
i

i

A z dz

B Gz dz


=

−

=

=

=




 

 

(22) 

Also, the dimensionless parameter of frequency should be defined as follows: 

2

( ( ) )c

c

L

H E


 =  

 

(23) 

 so, with these corrections in the code, the maximum error percentage was 0.12. 

 In Table 3, it is shown that with increasing aspect ratio (L/H), the error percentage decreases, because it trends to 

the slender beam. Also, in Table 4, with an increase in H/L, the error percentage enhances. 
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Table 3. The nondimensional fundamental natural frequency of a sandwich nanocomposite beam 

(0)
2( )

I
L

EI
 =

 

L/H Santos and Reddy [71] present study Error % 

5 9.3990 9.2745 1.34 

10 9.7454 9.7075 0.39 

20 9.8381 9.8281 0.10 

 

Table 4. The dimensionless fundamental natural frequency of a functionally graded beam(k=0) 

2

( ( ) )c

c

L

H E


 =  

H/L Koochaki  [72] AkhavanAlavi 

et al. [58] 

present study Error1 % Error2% 

0.01 2.9861380 2.9861344 2.9861723 0.00115 0.00127 

0.0125 2.9858280 2.9858287 2.9858879 0.00201 0.00198 

0.025 2.9832858 2.9832858 2.9835218 0.00791 0.00791 

0.05 2.9731941 2.9731942 2.9741273 0.03138 0.03137 

0.1 2.9340570 2.9340576 2.9376272 0.12153 0.12151 

 

 The dimensionless critical buckling load is compared to the results of Simsek and Reddy [73] in Table 5 and the 

error percentage is determined. 

Table 5. The nondimensional critical buckling load of a sandwich nanocomposite beam  

2

( )cr cr

L
P P

EI
=

 

L/H Simsek and Reddy [73] 

(TSDBT) 

present study Error % 

20 9.8059 9.8066 0.007 

 

5. Results and discussion 

 

 In this article, the behavior of deflection, buckling and vibration of a five-layer sandwich nanocomposite beam 

with foam core reinforced with GPLs and SMAs, is expressed for various parameters such as modes, aspect ratio, 

thickness ratio, layer arrangement and fibers angles. Also, the effect of adding GPLs, SMAs and their different volume 

fractions is investigated on the behavior of the beam. The parameters including mode, geometry of beam, applied 

forces, fibers angles and volume fraction of the materials are shown in Table 6. 
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Table 6. Values of mode, geometry of beam, applied forces, fibers angles and volume fraction of GPLs, SMAs and resin in GPLs-

containing face sheets 

m 1=  

H 6 cm=  

CH 3 cm=
 

(m)H 0 N=
 

(m) 2

N
q 10000 

m
= −

 

fibers angles = [0  30  45  60  90 ]
 

1 2 3

According to table 1 

0.03  2.929  2.855  11.842GPLV   = = = =→
 

GPL(in  layers) 0.5mV =
 

0.01SMAV =
 

 

 As it is shown in Fig 2-a, with the increase of L/H value due to the increase of the [K]-1 matrix and according to 

the Eq. (19), the deflection of the beam increases. These changes are more intense for higher HC/H ratio and as the 

core thickness increases due to the low modulus of elasticity, the equivalent stiffness of the beam decreases and as a 

result, the beam becomes more flexible. 

In Fig 2-b, as the value of L/H increases, the two matrices [K] and [M] decrease, but due to the further decrease 

of the matrix [K] and according to the Eq. (20), the first natural frequency of beam vibration decreases. Also, as the 

thickness of the core increases, the first natural frequency value of the beam decreases due to the reduction of the 

equivalent stiffness of the beam. 

In Fig 2-c, the critical buckling load is higher at lower ratio of HC/H due to the smaller thickness of the core and 

having a higher equivalent stiffness. Also, by increasing the value of L/H due to the reduction of [K] and [KP] matrices 

and according to the Eq. (21), the critical buckling load also decreases and buckling occurs earlier. 



306 Mohammad Arabzadeh-Ziari et al. 

 
(a) 

 
(b) 
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(c) 

Fig 2. The effect of length-to-thickness ratio and core thickness-to-beam thickness ratio on (a) deflection, (b) first natural frequency 

and (c) critical buckling load of the beam 

 It is obvious in Fig. 3 that the behavior of the reinforced beam with GPLs improves in compared to the non-

reinforced beam. It is also evident that increasing the volume fraction of GPL reinforcements increases the equivalent 

modulus and consequently the equivalent stiffness of the beam due to its high elasticity modulus. Therefore, the 

deflection decreases and frequency and the buckling load of the beam increases. 

 
(a) 
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(b) 

 
(c)  

Fig 3. The effect of volume fraction of GPL on (a) deflection, (b) frequency and (c) buckling load 

 As shown in Fig. 4, the effect of adding SMAs in the beam is a little effect due to the lack of temperature changes 

in the problem and considering only the martensite phase of SMAs, which has a low elastic modulus. Therefore, 

different volume fractions of SMAs do not cause significant changes in deflection and buckling load of the beam. It 

also has a negative effect on frequency of the beam, and with the increase in the volume fraction of SMAs due to high 

density, the [M] matrix increases and according to equation (20), frequency of the beam decreases slightly. 
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(a) 

 
(b) 
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(c) 

Fig 4. The effect of volume fraction of SMA on (a) deflection, (b) first natural frequency and (c) critical buckling load of the beam 

 In Tables 7 and 8, the analytical results of deflection, first natural frequency and critical buckling load of a 

sandwich nanocomposite beam determine according to the ratio of length to thickness of the beam, arrangement of 

layers and different fibers angles. 

Table 7. Values of deflection, first natural frequency and critical buckling load of sandwich nanocomposite beam according to  

different fiber arrangement and angles 
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fibers angles (degree) L/H Deflection 

(m) 

first natural 

frequency 

(Hz) 

critical buckling load 

(N) 

[0 30 45 60 90] 2 7.7079e-08 1.8594e+05 1.8929e+08 

 3 2.5199e-07 1.2396e+05 1.3027e+08 

 4 6.4220e-07 9.2969e+04 9.0876e+07 

 5 1.3930e-06 7.4375e+04 6.5460e+07 

[90 60 45 30 0] 2 6.8403e-08 1.8594e+05 2.1330e+08 

 3 2.1664e-07 1.2396e+05 1.5153e+08 

 4 5.4038e-07 9.2969e+04 1.0800e+08 

 5 1.1558e-06 7.4375e+04 7.8895e+07 

[0 45 0 45 0] 2 7.0647e-08 2.1898e+05 2.0652e+08 

 3 2.1072e-07 1.4599e+05 1.5579e+08 

 4 5.0170e-07 1.0949e+05 1.1633e+08 

 5 1.0385e-06 8.7593e+04 8.7812e+07 

[45 0 45 0 45] 2 6.4320e-08 2.0580e+05 2.2684e+08 

 3 2.0269e-07 1.3720e+05 1.6196e+08 

 4 5.0361e-07 1.0290e+05 1.1588e+08 

 5 1.0743e-06 8.2319e+04 8.4885e+07 

[0 30 90 30 0] 2 7.7224e-08 2.1073e+05 1.8893e+08 

 3 2.2940e-07 1.4049e+05 1.4310e+08 

 4 5.4422e-07 1.0536e+05 1.0724e+08 

 5 1.1235e-06 8.4291e+04 8.1169e+07 

[90 30 0 30 90] 2 8.2760e-08 1.8958e+05 1.7630e+08 

 3 2.5433e-07 1.2639e+05 1.2908e+08 

 4 6.2012e-07 9.4792e+04 9.4112e+07 

 5 1.3057e-06 7.5833e+04 9.4112e+07 
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[30 60 0 60 30] 2 6.6014e-08 1.9524e+05 2.2102e+08 

 3 2.1228e-07 1.3016e+05 1.5464e+08 

 4 5.3504e-07 9.7622e+04 1.0908e+08 

 5 1.1523e-06 7.8098e+04 7.9139e+07 

[60 45 90 45 60] 2 7.3123e-08 1.5729e+05 1.9953e+08 

 3 2.5911e-07 1.0486e+05 1.2669e+08 

 4 6.9540e-07 7.8644e+04 8.3924e+07 

 5 1.5579e-06 6.2915e+04 5.8534e+07 

[60 90 0 90 60] 2 8.7877e-08 1.6576e+05 1.6603e+08 

 3 2.8443e-07 1.1051e+05 1.1542e+08 

 4 7.2008e-07 8.2882e+04 8.1048e+07 

 5 1.5553e-06 6.6306e+04 5.8632e+07 

[30 45 60 45 30] 2 6.0631e-08 1.8518e+05 2.4064e+08 

 3 2.0634e-07 1.2346e+05 1.5910e+08 

 4 5.4015e-07 9.2592e+04 1.0805e+08 

 5 1.1919e-06 7.4073e+04 7.6507e+07 

 

 

Table 8. The effect of specific angle of laminate in face sheet layers  
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fibers angles (degree) L/H Deflection 

(m) 

first natural 

frequency 

(Hz) 

critical buckling load 

(N) 

[0 0 0 0 0] 2 1.0161e-07 2.4322e+05 1.4359e+08 

 3 2.7308e-07 1.6215e+05 1.2021e+08 

 4 5.9101e-07 1.2161e+05 9.8747e+07 

 5 1.1332e-06 9.7288e+04 8.0469e+07 

[45 45 45 45 45] 2 5.9766e-08 1.7649e+05 2.4412e+08 

 3 2.1104e-07 1.1766e+05 1.5555e+08 

 4 5.6525e-07 8.8247e+04 1.0325e+08 

 5 1.2648e-06 7.0597e+04 7.2097e+07 

[90 90 90 90 90] 2 1.2990e-07 1.2975e+05 1.1232e+08 

 3 4.2607e-07 8.6500e+04 7.7049e+07 

 4 1.0880e-06 6.4875e+04 5.3640e+07 

 5 2.3630e-06 5.1900e+04 3.8590e+07 

 

 In Fig. 5 and Table 9, the results of buckling load and frequency for a sandwich nanocomposite beam define 

according to the first three modes and length to thickness ratio of the beam. It is concluded that in higher modes, the 

buckling and frequency increase. 

 
(a) 
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(b) 

Fig 5. The effect of mode on (a) frequency and (b) buckling load  

Table 9. Values of deflection, frequency and buckling load of sandwich nanocomposite beam according to different modes  

mode L/H first natural frequency 

(Hz) 

critical buckling load 

(N) 

1 2 1.859e+05 1.893e+08 

 3 1.24e+05 1.303e+08 

 4 9.297e+04 9.088e+07 

 5 7.438e+04 6.546e+07 

2 2 3.719e+05 2.668e+08 

 3 2.479e+05 2.261e+08 

 4 1.859e+05 1.893e+08 

 5 1.488e+05 1.571e+08 

3 2 5.578e+05 3.018e+08 

 3 3.719e+05 2.668e+08 

 4 2.789e+05 2.392e+08 

 5 2.231e+05 2.134e+08 
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 Fig. 6 shows that the employing fibers in the face sheets of the core increases the stiffness and equivalent modulus 

of elasticity of the structure, so the deflection decreases and the first natural frequency and critical buckling load of 

the beam increase. 

 

 
(a) 

 
(b) 
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(c) 

Fig 6. The effect of employing fiber on (a) deflection, (b) first natural frequency and (c) critical buckling load for the sandwich beam 

6. Conclusion 

 In the present study, the governing equations of motion for the five-layer nanocomposite sandwich beam with 

foam core, reinforced with GPLs and SMAs, are derived based on TSDBT. The analytical results for deflection, 

critical buckling load and natural frequencies of beam are obtained. Also, the equivalent mechanical properties of the 

layers are extracted from the extended mixture rule. The analytical results are mentioned based on different parameters 

which stated as follows: 

• By increasing aspect ratio (L/H) ratio, the deflection of the beam increases and the natural frequencies and the 

critical buckling load decrease. 

• Using a light core like foam in the beam structure reduces the overall weight and density of the structure, and 

its high thickness increases the flexural stiffness. As a result, it provides a high strength-to-weight ratio for the 

beam. 

• As mentioned before, with the increase of the HC/H ratio, due to the low Young's modulus of the core, the 

equivalent modulus of the structure decreases, so the deflection of the beam increases and the natural 

frequencies and critical buckling load decrease. 

• The effect of adding reinforcements to the matrix is very impressive and practical due to their high Young's 

modulus. As mentioned, mixing a small amount of GPLs in the polymer matrix provides a high equivalent 

stiffness for the structure. By adding only 0.03 volume fraction of GPL, the deflection of the beam decrease 

by 44% and the  critical buckling load and first natural frequency increases by 79% and 31%, respectively. 

• The influence of SMAs is significant when their thermal performance is considered. In this study, due to the 

lack of temperature changes, the addition of SMAs in the polymer matrix does not change the equivalent 

stiffness of the beam greatly, so it does not have a large effect on the deflection, the critical buckling load of 

the beam. Also, due to the high density of SMAs, it has the opposite effect on the natural frequencies and 

causes them to decrease. 

• The effect of employing fibers in face sheet layers for the sandwich structure leads to decrease the deflection 

and increase the natural frequency and the critical buckling load. It is concluded that the used fibers as well as 

GPL reinforcements increases the stiffness and equivalent modulus of elasticity of the structure. 
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Nomenclature: 

E modulus of elasticity 

G shear modulus 

υ poisson's ratio 

ρ density 

m mod 

L length 

H height 

l Length of GPL 

h thickness of GPL 

w width of GPL 

η efficiency parameter 

V volume fraction 

U(x,y,z,t) axial displacements  

u(x,t) axial displacements at the middle plane 

V(x,y,z,t) axial displacements 

W(x,y,z,t) transverse displacements 

w(x,t) transverse displacements at the middle plane 

ψ rotation of the cross section 

U strain energy 

Wext external energy 

T kinetic energy 

H(x) longitudinal load 

q(x) transverse load 

Pcr critical buckling load 
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