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Abstract

This comprehensive study investigates the behavior unctionally graded
(FG) nanoplates, providing insights into their characte and important
design considerations. By examining factors such as homogenization models
(Voigt Reuss, LRVE, and Tamura), volum jon laws (power-law model,
Viola-Tornabene four-parameter
aspect ratios, index material, a gth parameters, the study
evaluates their influence on the
supported nanoplates. A novel twisting lonisintroduced and its accuracy
in predicting natural frequencies in square nanoplates is rigorously
validated through numewi comparisons with existing literature. The

findings obtained flsom tl esedrch offer valuable guidance for optimizing
the design of FG n la significantly contribute to advancing our

understanding of their amics and practical applications.

Keywords: Fupctionally gradéd materials; small-scale length parameter; homogenization models;
volume fraction laws; nal behavior.

1. Introduction

Functionally ed materials (FGMs) have garnered significant attention due to their unique composition,
characterized by gr Ily varying volume fractions of constituents to create specific profiles. These materials offer
advant uch ase ive resistance against high temperatures and reduced thermal stresses [1]. The distribution
functio y a crucial role in determining volume fraction profiles and material gradation, enabling tailored
properti spegific applications. Nanotechnology has played a pivotal role in advancing FGMs by facilitating the
fabrication and manipulation of nano-systems, nano-devices, and nanostructures at the molecular level. Notable
contributigpsto this progress have been made by nano-materials like Carbon nanotubes (CNT), Graphene, Fullerene,
and Quantumdots [2]. The incorporation of these nanostructures into nano-composites has resulted in multifunctional
capabilities and applications in critical systems.
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The thermal and electrical properties of FG nanoplates have also found applications in energy storage devices,
including batteries and fuel cells, contributing to the advancement of sustainable energy solutions. Moreover, the
micro/nanoelectromechanical systems (MEMS/NEMS) industry has embraced FG nanoplates as essential components
in sensors, actuators, and resonators, leveraging their unique characteristics to push the boundaries of miniaturization
and performance [3-6].

Notably, FG nanoplates have emerged as promising candidates for thermal barrier coatings in high-temperature
environments, such as turbine blades and jet engines, where their ability to withstand extreme conditions is invaluable.
Furthermore, the biocompatibility and tailored mechanical properties of these nanoplates have opened doors to their
utilization in biomedical implants and prosthetics, offering solutions that seamlessly integrate with the human body.

The study of FG nanoplates has unveiled a realm of practical applications that span across diverse figlds, from
aerospace and automotive to biomedical and energy industries. These advanced nanostructures ique
advantages stemming from their meticulously tailored material properties, enabling efficient therpaal managgment,
enhanced structural integrity, and unparalleled mechanical performance.

The study of functional gradation in nano-material behavior is an intriguing area of materials anatysis JFGMs have
been extensively reviewed and applied in various structures and systems [7]. Researchersh lor e mechanics
of FG materials and structures [8-18] and investigated functional gradation in different Ranomaterial systems. For
instance, recent developments have focused on NL-SG media [19], vibration of FG pamnob counting for shear
deformation [20], linear free vibration of axially rotating FG microbear st-buckling behavior of FG
studies contribute to our

nanoscale materials. Strain Gradient Theory (SGT), established rahimi et al. [25], focuses on the gradient of
strain to describe material behavior. Additionally, t icity Theory (NET), studied by various
researchers [2, 26], takes into account nonlocal effect: f ending, buckling, and vibration of nanobeams

nanotubes. Other studies have explored different aspect ding linear and nonlinear free vibration of FG
nanobeams [29, 30], the combination of NET and MCST for afalyzing static stability and vibration of nanostructures
[31], and the analysis of porous FG nanobeams anoplates [32, 33]. These works provide valuable insights into the
response of micro- and nanostructures, contr, ng to the advancement of our understanding of these fascinating

systems.
This study aims to shed light on the beRawior 0FFG nanoplates and provide insights into various factors influencing
their natural frequency response. ors as homogenization models (including Voigt Reuss, LRVE and

elgenmode aspect ratlos‘lndex
contributions of this study i

ctlon of a novel twisting function, which was rigorously valldated through

literature. The accuracy of the twisting function in predicting natural frequencies
firmed, enhancing the reliability of the study. Through comparative analysis and
trates the precision and dependability of the conducted numerical analysis. The results
f factors such as thickness ratio, homogenization models, volume fraction laws, nonlocal

enriching the knowledge in the field of nanoplate vibrations and providing a foundation for further exploration and
optimization of FG nanoplate designs.

2. Nonlocal elasticity Eringen theory

Eringen proposed a concept stating that stress distribution within an elastic material is influenced not only by strain
ata specific point but also by strains at all other points within the body. The nonlocal stress field can be mathematically
stated as an integral involving the product of nonlocal modulus and classical macroscopic stress tensor, considering
the entire volume of the material [34-37].

Furthermore, Eringen demonstrated that the nonlocal constitutive equation can also be signified in an alternative
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differential form. This formulation involves Laplacian operator acting on stress tensor [38], where a material constant
T is associated with internal and external characteristic lengths

(1 —72L2V¥)o = t, (1)
¢ =h= (). @

where e, denotes a material constant and @ and L are internal and external characteristic lengths.

3. Problem definition geometry

The problem supposes that the domain has the geometry of a nanoplate, shown in Figure 1, with a thi ss of h,
a length of a, and a width of b.

In the case of FG structures, the pri i composition involves two phases with gradual variations in their
volume fractions. As a result, th lect f appropriate formulas to determine the distribution of material
constituents in these structures holds great importance. Presented below are some of the most applicable formulas for
achieving material gradatﬁn in FGIMs.

3.1. Power-law modelo,
1 z\P
h=(G+3) @)

where p is the mat index.
3.2. Tri i del
V, = sin? G+ %)p . 4
3.3. Viola-Tornabene four-parameter model
v=[t-a(-3) (1T ®

where a, b, and c are constants that state the material propagation in the FG plate.
4. Different micromechanics models
The micromechanics models preferred for comparison study are [39, 40]:
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4.1. Mixture law (Voigt model)
Mixture law - Voigt model - is a mathematical model that describes the behavior of a composite material [41]

P(z) = P.V(2) + P, (1 - V(2)). (6)

4.2. Reuss model

The Reuss model is a mathematical model used to calculate the effective properties of a composite material [42].
PcPm

PO = e %
4.3. Tamura model
The method of Tamura is represented as [43, 44]
P(2) = (1-V(2)) Pm(q—P)+V(2) P¢ ©

Pc(1=V(2))+PmV(2)(1-V(2) ) (q=P)+V(2) Pc(q=Pm)’
where g is the empirical term “stress-to-strain transfer” [45].

4.4. Mori-Tanaka model
The Mori-Tanaka method is represented by [46]

V(z) (Pc—Pm)

P(Z) = Pm + 1+(1—V(Z))(3P5_Pm )? (9)
3Pm+4
where P(z) denotes effective material property; B,, and P, represent properties 9f the metal and ceramic faces of the

plate.

4.5. Description by a representative volume element (LRVE)

The LRVE method is formulated under hypoth
deterministic micromechanical framework, the LRVE re
averages of descriptors of the microstructures.

cture of heterogeneous material is known. In
ut in the form of volume averages or ensemble

By employing LRVE method [43], the effective property’is expressed as follows
V(z)
(Zé(i;m—wm - (10)
“Pc
4.6. The displacement fie“

The theoretical change ji§, de ified according to three assumptions: the distribution in the plane and its
transformation into materjal beqeing and shear, the similarity of plane bending changes to the classical plate theory,
and the difference bet shearjstrain. It is caused by shear stress, it disappears at the top and bottom of the plate.
The resulting displagementfield is then given byovided

owg
ax’

— _ 0wy ows 11
v(x,y,2,t) =vy(x,y,t) — z % f(2) P (11)

a
u(x:J’:Z»t) = uo(x:y;t) —Z%—f(Z)

W(nyJ Z, t) = Wb(x' 3z t) + Ws(x.y. t),
where f(z)js the new formulation that has been used to express the warping function

fl2) = [ln (7'[ e%) - 11—0 (e™ + e‘”z)] z + %ln (n e%) — f—ocosh (g), (12)
with g(2) = = ().

4.7. The nonlocal constitutive relations
The 2D nonlocal constitutive formulae for elastic FG nanoplate are represented by
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Oy Oy Ci, C, O 0 0 Ex
Ty RN Ciz G 0 0 0 (f&
Tyz p — U (ﬁ + B_yz) Tyz ;=10 0 Cu O 0 Yyz ¢, (13)
Tz Tz 0 0 0 Cs 0 Vxz
Txy Txy 0 0 0 0 Ceed Vay

where (0y, 0y, Tyz, Taz Txy) AN (&, €y, Vyzr Vazs Yay) ar€ stress and strain components. The stiffness coefficients C;;
are represnted by

E(2)
2[1+v(2)]

E(z) _ VE(2)
1-v(z)2' 127 1-92)?’

€ =Cpp = Cas = Cs55 = (o6 =

(14)

4.8 Hamilton’s principle
Hamilton's principle is applied to derive the dymamic equations

0=, (6U-5K)dt, (15)
where §U and 6K denote variation of strain and kinetic energies.

5. Solution procedure

Following Navier solution procedure, one supposes the following for Uy, Vg, Wy, and w; that
satisfies the boundary conditions
U U, cos(ax) sin(By)
Vol _) Viun sin(ax) cos(By) giot, (16)

Wp Wymn sin(ax) si
Ws Wemn sinfax) si

(m, n)th eigenmode. The analytical solutions can be g

0 0 Upin
0 0 Von

11 Q2 Q13 Qg myq 0
Gz Gz Gpz Gpa| o 0 m _J0 17)
Q13 Q3 Azz Gzy 0 0 mz3 Mgy Womn oy’
Q14 Q4 0A3g 4 0 mg My, Wsmn 0
with
12 =

a;; = 1‘111052 +A66ﬁ2 Ay + Age), 13 = _a[Bnaz + (B;; + 2B66),82]a

%4 = —@[B,af + (B, + 2B&)B?], ay, = Agea® + Ay,
a3 = =P8, a®+ By, f?], ay, = —BI(Bf, + 2Bgs)a? + B3, ],
azz = Dy at (Dy 66)a2ﬂ2 + DyoB*, azy = Dija* +2(D7, + ZDge)azﬁz + D3, 8%, (18)

= Hija* + 2(H, + 2Hgs)a? B? + H3,B* + Assa® + A3,B7,
11 = Mgy = Iy, Mgz = Iy + L(a? + %), may =1y + J,(a® + f?),
My, = Iy + K, (a? + %), A =1+ pu(a®+p?),
. ]2, K;) are mass inertias defined as

Uo T )2 K2) = [11r, (1,22, 2f, f)p(2)dz, (19)

ij» €tc., are the plate stiffness, defined by

A11 Bll Dll Bfl Dfl Higl h/2
Ay, B, Dy Bi, Di, Hipp= f_h/z C11(1, 2, f*(2)){v}dz,
A66 B66 D66 Bg6 Dg6 Hg6

(A22! 822! D22, BigZ' ngz, HigZ) = (Alli Bll' Dll' Blsl' Digl' Higl)!

h/2
ALy = Ass = —h/2 Caag(2)]?dz.

(20)
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6. Results and discussions

In this section, a numerical analysis is conducted to compare and validate the natural frequencies of square
nanoplateswith a gradient index of p = 5. The main goal is to assess the accuracy of the numerical outcomes attained
here by comparing them with the findings presented in the literature by Natarajan et al. [22].

The nondimensionalized natural frequencies @ are reported for all cases as follows:

5= Pe
w—wh\/;, (21)

where p. and G, are mass density and shear modulus of the ceramic phase.
In their study, Natarajanet al. [22] employed the power law and Mori-Tanaka models. In our research xtended

their work by including additional homogenization models, such as Voigt, Reuss, LRVE, and Tamura, (@4 igate
the natural frequencies of FG square nanoplates with a gradient index of p = 5.
Table 1. Comparative results of natural frequencies for square nanoplates with gradient index
fi(@) : Viola-Tornabene four-parameter m )
Power-law model model ngM model
The nonlocal parameter The nonlocal parameter nonl@cal parameter
a/h schemes calp K L K ° P K
0 1 2 4 0 1 2 4 2 4
10 Mori-  0.0441 0.0403 0.0374 0.0330 00370 00344 00304
Tanaka [22]

Voigt 0.0442 0.0401 0.0376 0.0331

Reuss 0.0455 0.0418 0.0385 0.0339

LRVE 0.0467 0.0425 0.0397 0.0350

Tamura  0.0455 0.0418 0.0385 0.0339

20 Mori- 0.0113 0.0103 0.0096 0.0085

Tanaka [22]

Voigt 0.0113 0.0104 0.0096 0.0084

Reuss 0.0118 0.0107 0.0099 0.0087

LRVE 0.0120 0.0110 0.0102 0.0089

Tamura  0.0117 0.0107 0.0099 0.0087

0.0374 0.0349 0.0309
0.0381 0.0352 0.0312
0.0380 0.0352 0.0312
0.0391 0.0365 0.0320

0.0094 0.0087 0.0077

0.0096 0.0089 0.0078
0.0097 0.0090  0.008
. 0.0097 0.0090  0.008
0.0083 0.011 0.0101 0.0093 0.0082

Table 2. Validation of twisting function f,(z) for calculating natural frequencies in FG square nanoplates.

a/h schemes ﬁz) f(2)
Mode 1 ode 2 Mode 1 Mode 2 Mode 1 Mode 2
10 Mori-Tanaka [22] 0.0330 0.0609 0.0610 0.0332 0.0634 0.0958
Voigt 0 0 0.0888 0.0338 0.0646 0.0975
Reuss 0.033 .0627 0.0914 0.0349 0.0667 0.1008
LRVE 50 0.0653 0.0947 0.0360 0.0687 0.1037
Tamura ﬂw‘ 0.0627 0.0914 0.0349 0.0667 0.1008
0.0085 0.0161 0.0162 0.0083 0.0161 0.0249
0.0163 0.0246 0.0085 0.0164 0.0253
0087 0.0167 0.0254 0.0088 0.0170 0.0262
.0089 0.0173 0.0260 0.0090 0.0175 0.0270
0.0087 0.0167 0.0254 0.0088 0.0170 0.0262

ter, trigonometric), and the nonlocal parameter u, on the natural frequencies. The robustness of our
is confirmed, instilling confidence in the reliability of our results.

ally, Table 2 focuses on the assessment of the twisting f,(z) function, used to determine the natural
frequencies of FG square nanoplates. Through the comparison of outcomes for different thickness ratios and
homogenizationmodels, Table 2 verifies the accuracy and effectivenessof the f, (z) functionin calculatingthe natural
frequencies of the nanoplates. Together, the validation provided by Table 1 and the examination of the twisting
function in Table 2 reinforce the credibility of our numerical analysis and pave the way for future parametric studies
to explore the impacts of gradient index, side-to-thickness ratio, and nonlocal parameter.

6.1. Effect of nonlocal parameter (u) and eigenmode
Figure 2 illustrates the interdependence between natural frequency and eigenmode for an FG nanoplate. As the
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mode number increases, the surface plot reveals a concurrent rise in both natural frequency and eigenmode. This
positive correlation indicates larger vibration modes correspond to higher natural frequencies.

The synchronized increase implies the two variables are intrinsically linked for the nanoplate system. Their
codependent relationship emerges from the analytical solution used to model the dynamics. Proper formulation is
therefore critical to capture the correct eigenmode-frequency pairing.

Overall, the three-dimensional visualization in Figure 2 provides valuable insight into the coupled behavior of
eigenmode and natural frequency. It highlights the need to judiciously select an analytical approach to accurately
predict the modal frequencies of FG nanoplates across the spectrum of vibration modes.

Figure 3 presents the correlation between the nonlocal parameter and the natural frequency of an FG nanoplate.
The investigation focuses on various volume fraction models and employs the LRVE homogenization I with a
material index of p = 2.

The interplay between nonlocal interactions and material gradation unveils their coupled influenge on the patural
frequency behavior of nanoplates. As the nonlocal parameter increases, vibrational frequencieg uni decline
across all volume fraction models studied. This points to the critical role of long-range atomic forCesin g@verning the
stiffness and dynamic behavior of the nanoplates.

Natural frequency
0.1580

0.1433
0.1285
0.1138
0.09900
0.08425
0.06950
0.05475

0.04000

0.02525

0.01050

Figure 2: The impact of various modes on ural of an FG nanoplate through a three-dimensional plot (for the power-law
model).
@ 0 2 4 6 8 10
T M T
—m— Power-law model
S —@— Viola-Tornabene model[ | 99053
—A— Trigonometric model -
. p=2 LRVE model
o} 0,050
A
[ ]
& 0,045 0,045
% ! Ak\ ®. ] ’
5
= A ® -
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Figure 3: Effect of the nonlocal parameter () and volume fraction models on natural frequency.

With greater nonlocal forces, atomic-level interactions intensify, impeding oscillations and decreasing natural
frequencies. The stiffness elevates as atoms feel the effects of their neighbors more strongly. Among the distribution
models, the Power-law profile stands out with the highest frequencies, signifying greater stiffness from its graded
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configuration.

The four-parameter model follows closely behind, while the trigonometric gradation induces the least stiffening
and lowest natural frequencies. The results spotlight the subtle interplay between small-scale nonlocal atomic
interactions and the larger-scale material gradient. Both factors work in tandem to dictate the emergent dynamic
response of the nanoplates.

Figures 4-6 depict the relationship between natural frequencies of an FG nanoplate with a height-to-width ratio of
10 and the first three eigenmode values. The focus is on exploring the impact of different small-scale parameter values,
namely the power-law model, Viola-Tornabene four-parameter model, and trigonometric model, on the natural
frequencies.

An increase in the nonlocal parameter is observed to lead to a consistent decrease in natural frequenci ross all
models and modes. This decline indicates the significant influence of small-scale nonlocal forces in the
stiffness and dynamics of the nanoplate.

0,0030 0,00
\ —m— mode 1
—®— mode 2
—A— mode 3
0,0025 Power-law model
>
(&)
$ 0,0020 #
>
o
()
= A
= 0,0015
S b A
}B‘ \ \A\-
=z [ ] y
0,0010 - 0,0010
[
7
0,0005 {——— : . 0,0005
P —
0 1 2 3 4 5
nlocal parameter p
Figure 4: Effect of the nonlN and modes on natural frequency for the power-law model.
o 0 1 2 3 4 5
0 0,0030
—m—model
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€ 0,0020 0,0020
o} N
)
o
o
5 0,0015 \ 0,0015
7 \ \
©
< 00010 P— — 0,0010
, —— \
——
——
0,0005 0,0005
l\n¥\_“\|
0 1 2 3 4 5

Nonlocal parameter py

Figure 5: Effect of the nonlocal parameter (x) and modes on natural frequency for the Viola-Tornabene four-parameter model.

Enhanced nonlocal atomic interactions result in reduced stiffness, leading to impairment of oscillation capacity
and lower vibrational frequencies. However, there are notable distinctions between the distribution models. The
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power-law profile consistently exhibits the highest frequencies, showcasing its superior stiffening ability compared to
the four-parameter model, while the trigonometric model lags.

The uniformity across modes emphasizes that the models inherently produce varying stiffness levels regardless of
the vibration mode. These results offer a comprehensive understanding of how local atomic-scale forces and longer-
range material gradients collaborate to shape the macroscale dynamic characteristics of the nanoplates.

This interconnected perspective is crucial for comprehending and predicting the vibrational properties accurately,
achieved through meticulous adjustments of both nonlocal interactions and functional gradation.

6.2. Effect of the aspect ratios (a/h) for different volume fraction models

In Figure 7, the impact of dissimilar volume fraction models on the natural frequency of an FG nanoplatets shown
at various aspect ratios (a/h). The analysis is conducted using the LRVE homogenization model with a dex
of p = 2 and a nonlocal parameter value of u = 1.

0 1 2 3 4 5

!

0,0025 —=— model t 0,0025

—®— mode2

—A— mode3

Trigonometric model
0,0020

> D

o

5 N '

s L d
20,0015 1 0,0015
= T

= i i y

© a4/

Z 0,0010 — 0,0010

0,0005 0,0005

Nonlocal pgrameter p

Figure 6: Effect of the nonlocal param aniid modes on natural frequency for the trigopnometric model.
0.020 10 20 40 50 60 70 80 920 100
‘,018 ] —®— Viola-Tomnabene model ] 0,018
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0,046 p=2 p=1 LRVE model —| 0,016
;01 ] A 0,014
,012 \ 0,012
] \\ 0,010
::E 0,008 \ 0,008
0,006 0,006
0,004 0,004
0,002 —= —g 0,002
0,000 } T T T T 0,000
10 20 30 40 50 60 70 80 90 100

Aspect ratios (a/h)

Figure 7: Effect of the aspect ratios (a/h) for different models on the natural frequency

Natural frequency of FG nanoplate decreases as aspect ratio (a/h) decreases, indicating a decrease in stiffness. At
lower aspect ratios, the volume fraction models have varying effects on the natural frequency. The power-law model
exhibits the highest natural frequency values, followed by the Viola-Tornabene four-parameter model, while the
Trigonometric model has the lowest values. However, as the aspect ratio increases, the natural frequency becomes
more consistent and approaches a constant value, especially at higher aspect ratios. In summary, the relationship
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between the volume fraction models and the natural frequency depends on the aspect ratio. The power-law model
yields the highest natural frequencies at lower aspect ratios, while the Trigonometric model yields the lowest. At
higher aspect ratios, the natural frequency becomes relatively constant across the models.

6.3. Effect of the index material (p) and eigenmode on the natural frequency

Figure 8 illustrates impact of different volume fraction models on natural frequency of an FG nanoplate at varying
index material (p) values. The analysisis performed using the LRVE homogenization model with a nonlocal parameter
value of u = 1.

Figure 8 illustrateshow different volume fraction models affect the natural frequency of an FG nanoplate at various

index material (p) values. The decrease in frequency is attributed to the reduced stiffness of the nanoplateZIfcreasing
index material (p) values lead to a decrease in natural frequency. The power-law model exhibits the h tural
frequency, followed by the Viola-Tornabene four-parameter model, while the trigonometric mo, west
values. However, as the index material (p) further increases, the natural frequency becomes the the Viola-

Tornabene four-parameter and trigonometric models. It is important to note that Power-law

—®— power-law model | ] 0,090
—®— Viola-Tornabene model|— 0,085
—#&— Trigonometric model | | 0,080

LRVE model - p=1 L] 0,075

>

Natural freq

Index material p
&gure 8: Effect of the index material (p) on the natural frequency

ive study investigated the behavior of functionally graded (FG) nanoplates, providing insights
tics and important design considerations. By examining factors such as homogenization models
s, LRVE, and Tamura), volume fraction laws (power-law model, Viola-Tornabene four-parameter model,
iemodel), eigenmode, aspect ratios, index material, and small-scale length parameters, the study evaluated
their influénce on the natural frequency response of simply supported nanoplates. A novel twisting function was
introduced, and its accuracy in predicting natural frequencies in FG square nanoplates was rigorously validated
through numerical comparisons with existing literature.

The findings obtained from this research offer valuable guidance for optimizing the design of FG nanoplates. The
results affirmed the influence of factors such as thickness ratio, homogenization models, volume fraction laws,
nonlocal parameter, eigenmode, aspect ratios, and index material on the natural frequency of the nanoplates. By
considering the appropriate homogenization model, volume fraction law, and other identified factors, engineers and
researchers can make informed decisions to enhance the natural frequency response of FG nanoplates. Overall, this
research significantly contributes to advancing our understanding of FG nanoplate dynamics and their practical

7. Conclusions
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applications in various fields, including aerospace, automotive, biomedical, and energy industries.
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