تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,124,424 |
تعداد دریافت فایل اصل مقاله | 97,232,947 |
ارزیابی پاسخ ژنوتیپهای سویا به تنش کمآبی از نظر ویژگیهای زراعی و عملکرد دانه | ||
به زراعی کشاورزی | ||
مقاله 5، دوره 26، شماره 2، خرداد 1403، صفحه 293-313 اصل مقاله (1.22 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jci.2024.365265.2846 | ||
نویسندگان | ||
جهانفر دانشیان* ؛ فرناز شریعتی؛ نادیا صفوی فرد | ||
مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران. | ||
چکیده | ||
هدف: انتخاب ارقام سویا که در شرایط کم آبی از عملکرد دانه بالاتری برخوردار باشند، میزان خسارت به تولیدکنندگان سویا را کاهش می دهد. روش پژوهش: پاسخ ژنوتیپ های سویا به تنش کم آبی از نظر ویژگیهای زراعی و عملکرد دانه در کرج طی دو سال بررسی شد. آزمایش به صورت اسپلیت پلات در قالب طرح بلوک های کامل تصادفی در سه تکرار اجرا شد که آبیاری در سه سطح (مطلوب، تنش متوسط و شدید) به ترتیب براساس 50، 100 و 150 میلیمتر تبخیر از تشتک تبخیر کلاس A به عنوان عامل اصلی و 10 ژنوتیپ سویا به عنوان عامل فرعی بودند. یافته ها: نتایج نشان داد که تنش متوسط و شدید سبب کاهش تعداد گره و فاصله میان گره در مقایسه با آبیاری مطلوب شد. در آبیاری مطلوب، رقم زودرس صبا با بالاترین تعداد دانه در واحد سطح، بیشترین عملکرد دانه (2585 کیلوگرم در هکتار) را داشت. ژنوتیپ های زودرس در آبیاری مطلوب بالاترین عملکرد دانه را داشتند و با افزایش شدت تنش از عملکرد دانه آنها به طور قابل توجهی کاسته شد. عملکرد دانه رقم صبا در تنش متوسط و شدید به ترتیب 32 و 59 درصد در مقایسه با آبیاری مطلوب کاهش یافت. در شرایط تنش، ژنوتیپ های دیررس عملکرد دانه بیشتری داشتند و تنش کم آبی سبب کاهش جزئی عملکرد دانه آنها شد. در تنش متوسط و شدید لاین دیررس A3935×Williams بالاترین عملکرد دانه و عملکرد پروتئین دانه را داشت. نتیجه گیری: در آبیاری مطلوب، رقم صبا و در شرایط تنش (متوسط و شدید) لاین A3935×Williams در کرج و اقلیمهای مشابه (معتدل سرد) قابل توصیه است. | ||
کلیدواژهها | ||
اجزای عملکرد؛ شاخص برداشت؛ خشکی؛ طول دوره رشد؛ عملکرد پروتئین | ||
عنوان مقاله [English] | ||
Evaluation of Soybean Genotypes Response to Water Deficit Stress in Terms of Agronomic Characteristics and Grain Yield | ||
نویسندگان [English] | ||
Jahanfar Daneshian؛ farnaz shariati؛ NADIA SAFAVI FARD | ||
Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. | ||
چکیده [English] | ||
Objective: Selection of soybean cultivars that have a higher grain yield under water deficit conditions, reduces the damage to soybean producers. Methods: The response of soybean genotypes to water deficit stress was investigated in terms of agricultural characteristics and grain yield in Karaj (Iran), during two years. The experiment was carried out as a split plot based on randomized complete block design in three replications, with three irrigation levels (control, mild stress, and severe stress) based on 50, 100, and 150 mm evaporation from a Class A evaporation pan as the main plot and 10 soybean genotypes as the sub-plot. Results: The results showed that mild and severe stress caused the node number and inter-node to decrease in comparison with control irrigation. Under control irrigation, the highest grain yield (2585 kg/ha) was obtained from the early-maturing Saba cultivar, with the highest seed number per unit area. The early-maturing genotypes had the highest grain yield under control irrigation, and their grain yield decreased significantly with increasing stress intensity. The grain yield of the Saba cultivar reduced under mild and severe stress by 32 and 59% compared to control irrigation, respectively. Under stress conditions, the late-maturing genotypes had the highest grain yield and water deficit stress caused a slight decrease in their grain yield. Under mild and severe stress, the late-maturing Williams×A3935 line had the highest grain yield and protein yield, respectively. Conclusion: Under control irrigation, the Saba cultivar, and under stress conditions (mild and severe) the Williams×A3935 line is recommended in Karaj and similar climates (moderately cold region). | ||
کلیدواژهها [English] | ||
Drought, Growth period, Harvest index, Protein yield, Yield components | ||
مراجع | ||
منابعامینیفر، جاسم؛ بیگلویی، محمدحسن؛ محسنآبادی، غلامرضا و سمیعزاده، حبیباله (1391). اثرات کمآبیاری بر عملکرد کمی و کیفی رقمهای سویا در منطقه رشت. تولید گیاهان زراعی، 5 (2)، 109-93.
امینیفر، جاسم؛ محسنآبادی، غلامرضا؛ بیگلویی، محمدحسن و سمیعزاده، حبیباله (1392). تأثیر کمآبیاری بر عملکرد، اجزای عملکرد و بهرهوری آب رقم T.215 سویا. نشریه علمی پژوهشی مهندسی آبیاری و آب ایرانی، 3 (11)، 34-24.
دانشیان، جهانفر (1393). ارزیابی اثر تنش کمآبی بر ارقام و لاینهای سویا در اقلیم (مناطق) معتدل. گزارش نهایی. تهران: سازمان ترویج، آموزش و تحقیقات کشاورزی.
سرافزار اردکانی، محمدرضا (1398). اثر سیتوکینین و براسینواسترویید بر برخی خصوصیات فیزیولوژیکی و بیوشیمیایی ارقام گندم تحت تنش خشکی در مرحله زایشی. مجله علمی فیزیولوژی گیاهان زراعی، 43 (11)، 24-5.
شاهینرخسار، پریسا و رئیسی، سامیه (1390). بهینهکردن مصرف آب سویا در شرایط خشکسالی. نشریه دانش آب و خاک، 21(4)،64-53.
مقدم خمسه، علیرضا؛ دانشیان، جهانفر؛ امینیدهقی، مجید؛ جباری، حمید و مدرسثانوی، سیدعلیمحمد (1390). اثر تراکم بوته و تنش کم آبی بر خصوصیات رشدی، عملکرد و اجزای عملکرد سویا (Glycine max (L.) Merrill). مجله دانش زراعت، 3 (6)، 39-27.
ملکی، عباس؛ نادری، عباس؛ سیادت، سیدعطااله؛ طهماسبی، احمد و فاضل، شهره (1391). اثر تنش خشکی در مراحل مختلف فنولوژیک بر عملکرد و اجزای عملکرد سویا. پژوهش در علوم زراعی، 4 (15)، 82-71.
ReferencesAminifar, J., Mohsenabady, G. H., Bigluie, M. H., & Samizade, H. (2013). Effect of deficit irrigation on yield, yield components and water productivity of soybean T.215 cultivar. Journal of irrigation and water Engineering, 3(11), 24-34. (In Persian).
Aminifar, J., Biglouei, M. H., Mohsenabadi, GH. R., & Samiezadeh, H. (2012). Effect of deficit irrigation on quantitative and qualitative yield of soybean cultivars in Rasht region. Crop production, 5(2), 93-109. (In Persian).
Aslam, M., Nelson, M., Kailis, S., Bayliss, K., Speijers, J., & Cowling, W. (2009). Canola oil increases in polyunsaturated fatty acids and decreases in oleic acid in drought‐stressed Mediterranean type environments. Plant Breeding, 128(4), 348-355.
Bano, H., Athar, H. R., Zafar, Z., Kalaji, H. M., & Ashraf, M. (2021). Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean (Vigna radiata (L.) Wilczek). Physiologia Plantarum, 172, 1240-1250.
Buezo, J., Sanz-Saez, A., Jose, M. F., Soba, D., Aranjuelo, I., & Esteban, R. (2019). Drought tolerance response of high-yielding soybean varieties to mild drought: physiological and photochemical adjustments. Physiol Plant, 166(1), 88-104.
Carrera, C, Martinez, M. J, Dardanelli, J., & Balzarini. M. (2009). Water deficit effect on the relationship between temperature during the seed fill period and soybean seed oil and protein concentrations. Crop Science, 49, 990-998.
Cui, Y., Jiang, S., Jin, J., Ning, S., & Feng, P. (2019). Quantitative assessment of soybean drought loss sensitivity at different growth stages based on S-shaped damage curve. Agricultural Water Management, 213, 821-832.
Daneshian, J. (2014). Evluation the effect of water deficit stress on soybean lines and cultivars in temperate regions. Final Report. Tehran: Agricultural Research & Education Organization. (In Persian).
Dronne, Y. (2018). Agricultural raw materials for food and feed: the world. INRA Productions Animales, 31, 165-180.
EL Sabagh, A., Sorour, S., Omar, A. E., Islam, M. S., Ueda, A., Saneoka, H., & Barutçular, C. (2015, September). Soybean (Glycine max L.) growth enhancement under Water Stress Conditions. – International Conference on Chemical. Agricultural and Biological Sciences. Istanbul, Turkey.
Engels, C., Aparecida Rodrigues, F., de Oliveira Ferreira, A., Massao Inagaki, T., & Lima Nepomuceno, A. (2017). Drought Effects on Soybean Cultivation-A Review. Annual Research & Review in Biology, 16(1), 1-13.
Faostat. (2019). Crops and livestock products [Online]. Available at: http://www. fao.org/faostat/en/#data/QCL (Accessed 12, August 2021).
Foyer, C. H., Lam, H. M., Nguyen, H. T., Siddique, K. H. M., Varshney, R. K., Colmer, T. D., Colmer, T. D., Cowling, W., Bramley, H., Mori, T. A., Hodgson, J. M., Cooper, J. W., Miller, A. J., Kunert, J., Vorster, J., Cullis, C., Ozga, J. A., Wahlqvist, M. L., Liang, Y., Shou, H., Shi, K., Yu, J., Fodor, N., Kaiser, B. N., Wong, F. L., Valliyodan, B., & Considine, M. J. (2016). Neglecting legumes has compromised human health and sustainable food production. Nature. Plants, 2, 1-10.
Garcia y Garcia, A., Persson, T., Guerra, L. C., & Hoogenboom, G. (2010). Response of soybean genotypes to different irrigation regimes in a humid region of the southeastern USA. Agricultural Water Management, 97(7), 981-987.
Giordani, W., Azeredo Gonçalves, L. S., Cardoso Moraes, L. A. L., Ferreira, L. C., Neumaier, N., Bouças Farias, J. R., Nepomuceno, A. L., de Oliveira, M. C. N., & Mertz-Henning, L. M. (2019). Identification of agronomical and morphological traits contributing to drought stress tolerance in soybean. Australian Journal of Crop Science, 13(01), 35-44.
Ghassemi-Golezani, A., & Farshbaf-Jafari, S. (2012). Influence of water dificit on oil and protein accumulation in soybean grains. International Journal of Plant. Animal and Environmental Science, 2(3), 46-52.
Guo, S. J., Yang, K. M., Huo, J., Zhou, Y. H., Wang, Y. P., & Li, G. Q. (2015). Influence of drought on leaf photosynthetic capacity and root growth of soybeans at grain filling stage. The Journal of Applied Ecology, 26, 1419-1425. (In Chinese).
Gutierrez-Gonzalez, J. J., Guttikonda, S. K., Phan Tran, L. S., Aldrich, D. L., Zhong, R., Yu. O., Nguyen, H. T., & Sleper, D. A. (2010). Differential Expression of Isoflavone Biosynthetic Genes in Soybean During Water Deficits. Plant Cell Physiol. 51(6), 936-948.
He, J., Du, Y. L., Wang, T., Turner, N. C., Yang, R. P., Jin, Y., & Li, F. M. (2017). Conserved water use improves the yield performance of soybean (Glycine max (L.) Merr.) under drought. Agricultural Water Management, 179, 236-245.
Heidarzade, A., Esmaeili, M. A., Bahmanyar, M. A., & Abbasi, R. (2016). Response of soybean (Glycine max) to molybdenum and iron spray under well-watered and water deficit conditions. Journal of Experimental Biology and Agricultural Sciences, 4(1), 37-46.
Jabereldar, A. A., El Naim, A. M., Abdalla, A. A., & Dagash, Y. M. (2017). Effect of water stress on yield and water use efficiency of sorghum (Sorghum bicolor L. Moench) in semi-arid environment. International Journal of Agriculture and Forestry, 7, 1-6.
Jahan, M. A. H. S., Hossain, A., Teixeira da Silva, J. A., EL Sabagh, A., Rashid, M. H., & Barutçular, C. (2019). Effect of Naphthaleneacetic Acid on Root and Plant Growth and Yield of Ten Irrigated Wheat Genotypes. Pakistan Journal of Botany, 51(2), 451-459
Jarecki, W. (2020). Reaction of soybean (Glycine max (L.) Merr.) to seed inoculation with Bradyrhizobium japonicum bacteria. Plant, Soil and Environment, 66, 242-247.
Jha, P. K., Kumar, S. N., & Inesa, A. V. M. (2018). Responses of soybean to water stress and supplemental irrigation in upper indo-Gangetic plain: field experiment and modeling approach. Field Crop Research, 219(15), 76-86.
Jiang, H., Todorova, N., Roca, E., & Su, J. J. (2019). Agricultural commodity futures trading based on cross-country rolling quantile return signals. Quant Financ, 19, 1373-1390.
Kalantar Ahmadi, S. A., Ebadi, A., Jahanbakhsh, S., Daneshian, J., & Siadat, S. A. (2014). Effects of water stress and nitrogen on changes of some amino acids and pigments in canola. Bulletin of Environment, Pharmacology and Life Sciences, 3(9), 114-122.
Kobraee, S., Shamsi. K., & Rasekhi, B. (2011). Soybean production under water deficit conditions. Scholars Research Library, Annals of Biological Research, 2(2), 423-434.
Liu, S., Zhang, M., Feng, F., & Tian, Z. (2020). Toward a ‘Green Revolution’ for Soybean. Molecular Plant, 13, 688-697.
Maleki, A., Naderi, A., Siadat, A., Tahmasebi, A., & Fazel, Sh. (2012). The effect of drought stress during different phonological stages on seed yield and yield components of soybean cultivars. Journal Of Research In Crop Sciences, 4(15), 71-82 (In Persian).
Malheiro, R., Rodrigues, N., Manzke, G., Bento, A., Pereira, J. A., & Casal, S. (2013). The use of olive leaves and tea extracts as effective antioxidants against the oxidation of soybean oil under microwave heating. Industrial Crops and Products, 44, 37-43.
Medic, J, Atkinson, C., & Hurburgh, C. R. (2014). Current Knowledge in Soybean Composition. Journal of the American Oil Chemists' Society, 91, 363-384.
Moghaddam Khamseh, A., Daneshian, J., Amini Dehghi, M., Jabbari, H., & Modarres Sanavy, S.A.M. (2011). Effect of plant density and water deficit on the growth, yield and yield component of soybean (Glycine max L. Merrill). Journal of Agronomy Sciences, 4(6), 26-40. (In Persian).
Mohamed, H. I., & Latif, H. H. (2017). Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiology and Molecular Biology of Plants, 23, 545-556.
Masino, A., Rugeroni, P., Borrás, L., & Rotundo, L. (2018). Spatial and temporal plant-to-plant variability effects on soybean yield. European Journal of Agronomy, 98, 14-24.
Neupane., J., & Guo, W. (2019). Agronomic basis and strategies for precision water management: a review. Agronomy, 9(2), 87. https://doi.org/10.3390/a gronomy9020087.
Ratusz, K., Popis, E., Ciemniewska-Z ytkiewicz, H., & Wroniak, M. (2016). Oxidative stability of camelina (Camelina sativa L.) oil using pressure differential scanning calorimetry and Rancimat method. Journal of Thermal Analysis and Calorimetry, 126, 343-351.
Sarafraz Aradakani, M. R. (2019). Effect of cytokinin and brassinosteroid treatments on some biochemical and physiological of wheat cultivars under drought stress in generative phase. Crop Physiology Journal, 43(11), 5-24. (In Persian).
Siskani, A., Seghatoleslami, M., & Moosavi, G. (2015). Effect of deficit irrigation and nano fertilizers on yield and some morphological traits of cotton. Biological Forum, 7(1), 1710-1715.
Shahin rokhsar, P., & Raeisi, S. (2011). Optimization of Water Consumption of Soybean under Drought Conditions. Water and Soil Science, 21(4), 53-64 (In Persian).
Vogel, E., Donat, M. G., Alexander, L. V., Meinshausen, M., Ray, D. K., Karoly, D., Meinshausen, N., & Frieler, K. (2019). The effects of climate extremes on global agricultural yields. Environmental Research Letter, 14, 145-76.
Wang, Z., Liu, F., Kang, S., & Jensen, C. R. (2012). Alternate partial root-zone drying irrigation improves nitrogen nutri tion in maize (Zea mays L.) leaves. Environmental and Experimental Botany, 75, 36-40.
Wang, Y., & Frei, M. (2011). Stressed food–The impact of abiotic environmental stresses on crop quality. Agriculture, Ecosystems & Environment, 141, 271-272.
Watts, J. L. (2016). Using Caenorhabditis elegans to uncover conserved functions of omega-3 and omega-6 fatty acids. Journal of Clinical Medicine, 5(2), 19. https://doi.org/10.3390/jcm5020019
Wijewardana, C., Alsajri, F. A., Irby, T., Krutz, J., & Golden, B. (2018). Quantifying soil moisture deficit effects on soybean yield and yield component distribution patterns. Irrigation Sciences, 36, 241-55.
Wojtyla, L., Paluch-Lubawa, E., Sobieszczuk-Nowicka, E., & Garnczarska, M. (2020). Drought stress memory and subsequent drought stress tolerance in plants. In Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants. Massachusetts: Academic Press. https://doi.org/10. 1016/B978-0-12-817892-8.00007-6.
Younis, M. E., Gaber, A. M., & El-Nimr, M. (2001). Plant growth, metabolism and adaptation of Glycine max and Phaseolus vulgaris subjected to anaerobic conditions and drought. Egyptian Journal of Physiological Sciences, 23, 273-296 | ||
آمار تعداد مشاهده مقاله: 135 تعداد دریافت فایل اصل مقاله: 223 |