
Journal of Computational Applied Mechanics 2024, 55(3): 381-400 

DOI: 10.22059/JCAMECH.2024.375018.1040 

 

          RESEARCH PAPER   

 

Static stability analysis of FG thick plate supported by three 

parameters foundation under general boundary conditions 
 

Abdeljalil Meksi a , Rabbab Bachir Bouiadjra b,c, Samir Benyoucef b, Abdelhakim Bouhadra b, d *, 
Mohamed Bourada b, Mofareh Hassan Ghazwani e, Abdelouahed Tounsi b, f 

a Department of Civil Engineering, Faculty of Architecture and Civil Engineering, University of Sciences and 

Technology Mohamed Boudiaf, Oran 31000, Algeria 
b Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, Djillali 

Liabes University, Sidi Bel Abbes 22000, Algeria 
c Department of Civil Engineering, University Mustapha Stambouli of Mascara 29000, Algeria 

d Department of Mechanical Engineering, Faculty of Science and Technology, Abbes Laghrour University, 

Khenchela 40000, Algeria 
e Department of Mechanical Engineering, Faculty of Engineering, Jazan University, P.O Box 45124, Jazan, 

Kingdom of Saudia Arabia 
f Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, 31261 

Dhahran, Eastern Province, Saudi Arabia 
 

Abstract 

In this paper, an analytical solution for exploring the buckling characteristics of 

functionally graded (FG) plate is presented based on a quasi-3D shear deformation 

theory. It is considered that the plate is subjected to different types of in-plane 

compressive load. The FG plate is placed on three-parameter foundation Winkler-

Pasternak-Kerr. The overall material properties of FG plate are assumed to be 

varied across the thickness and are estimated through the Voigt micromechanical 

model. The governing equations are obtained on the base of the quasi-3D 

deformation theory that contain undetermined integral forms and involves only 

four unknowns to derive. Equations of motion are derived from the principal of 

virtual work and the analytical solution is used to determine the critical buckling 

loads. By the discussion of numerical examples and the comparison with those of 

the reports in the literature, the convergence and the reliability of the present 

approach are validated. Finally, the parametric investigations of the in-plane 

buckling are carried out, including the influence of boundary conditions, elastic 

foundation, plate geometric parameters and power law index. The results reveal 

that the critical buckling loads are strongly influenced by several parameters such 

as boundary conditions, elastic foundation parameters and geometric shape of the 

plate. 
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1. Introduction 

Functionally graded materials (FGM) are inhomogeneous advanced composite materials that have been 

introduced into industry in recent years. They are made of a mixture of two or more distinct material phases 

generally ceramic and metal. The mechanical properties of these materials changes gradually in one (or more) 

direction(s) according to a specific function. Since these materials exhibit many desirable properties, they can be 

used as effective compositions for beams, plates and shells [1]. In the open literature, investigation of mechanical 

behavior of structures made from FGM have been widely reported and therefore many solutions and models were 

proposed [2-7]. Plates are important components in many engineering applications. They are used in several practical 

situations such ship buildings and automotive industry where these plates can be submitted to in-plane loads of 

different types that can cause buckling, a phenomenon which is highly undesirable. Therefore, knowledge of the 

stability characteristics of FG plates is of great practical importance for the design of plates. Consequently, several 
researchers have been interested in this research axis and several works have been published. 

Sari et al. [8] used the classical plate theory (CPT) and the Eringen’s nonlocal elasticity theory to study the 

buckling of FG thin nanoplate subjected to biaxial linearly varying mechanical loads and various temperature 

distributions through the thickness. Taczała et al. [9] studied the nonlinear stability of stiffened FG plates subjected 

to thermo-mechanical loading using the First Shear Deformation Theory (FSDT) in conjunction with finite element 

method (FE). Using the same theory, Thang et al. [10] obtained an approximate solution to study the elastic buckling 

and free vibration of porous-cellular plates. Chen et al. [11] proposed a new distribution of porosity to study the 

buckling of FG porous plates. They used the FSDT to determine the governing equations and then used the 

Chebyshev polynomials-based Ritz method to obtain the buckling loads. By the mean of the Third order Shear 

Deformable Theory (TSDT), Abdelrahman [12] analyzed the effect of transverse variation of material properties on 

the buckling of simply supported FG plates. In the same framework and in a conjunction with the nonlocal elasticity 

Eringen’s model, Cutolo et al. [13] presented an analytical solution for the buckling and free vibrations analysis of 
thick FG nanoplates resting on Pasternak foundation. Van Do et al. [14] used the higher-order shear deformation 

theory (HSDT) and the mesh-free approximation based on the radial point interpolation method (RPIM) to predict 

the nonlinear post-buckling behavior of FG plates. Thinh et al. [15] analyzed the dynamic and the buckling behavior 

of FG plate using a higher order displacement field with twelve-unknown functions. Yi et al. [16] presented a closed-

form solution based on a special higher-order shear and normal deformable plate theory for the static, dynamic and 

buckling analysis of a simply supported FG plates. Kar and Panda [17] examined analytically the post-buckling 

behaviour of FG curved shell panels with different geometries subjected to uniaxial and the biaxial edge 

compression. The authors used the HSDT in conjunction with Green-Lagrange geometrical nonlinear strains. Singh 

et al. [18] developed a semi-analytical solution based on HSDT with consideration of the von-Karman geometric 

nonlinearity to study dynamic buckling, dynamic response and shock spectrum of imperfect plate under various 

types of in-plane pulse forces. Kolakowski and Czechowski [19] studied linear and non-linear stability of a square 
in-plane FG plate made of a step-variable gradation material. Cong et al. [20] investigated the nonlinear buckling and 

post-buckling behavior of FG imperfect plates resting on Pasternak foundation exposed to mechanical, thermal and 

thermo-mechanical loads. They used the Reddy's higher-order shear deformation plate theory to formulate the 

problem and the Galerkin method to determine the buckling loads. Tamrabet et al. [21] developed a powerful method 

to analyze how porous metal plates with gradually changing properties buckle under pressure. This method 

considers how the material properties change throughout the plate's thickness and the influence of the holes within 

the porous material. Slimani et al. [22] studied how bending affects plates made from materials that gradually change 

throughout their thickness (functionally graded plates) and contain tiny holes (porosity). The amount of these holes 

can vary across the plate, creating two main scenarios: either the holes are spread evenly throughout (perfectly 

homogeneous) or they are concentrated in specific areas (perfect homogeneity shape). Refrafi et al. [23] investigated 

the vibrations of plates made from materials with gradually changing properties (FG plates) that are supported on all 

sides (simply supported edges). To achieve this, they employed a sophisticated method that considers the way the 
plate bends and stretches, along with the variations in material properties throughout its thickness. Messaoudi et al. 

[24] developed a new approach to analyze the vibrations of plates using a simpler method compared to existing 

techniques. This method requires solving for fewer unknowns, making it more efficient. Unlike traditional 2D 

methods, it also considers the effect of the plate stretching in the thickness direction. However, this approach has 

limitations compared to computer simulations, especially when dealing with complex boundary conditions. 

Shahsavari et al. [25] presented a study focused on the fourfold coupled (axial–shear–bending–stretching) size-

dependent shear buckling force of FG porous nanoplates exposed to hygrothermal environment and lying on Kerr 

elastic foundation. Bodaghi and Saidi [26] employed the CPT based on exact position of neutral surface to analyze 

buckling of thin FG plate resting on Pasternak foundation and subjected to non-uniformly distributed in-plane 

https://www.sciencedirect.com/topics/engineering/thermal-loads
https://www.sciencedirect.com/topics/engineering/thermal-loads
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loading. Singh and Harsha [27] proposed a 2D HSDT solution to investigate the buckling of FG plates exposed to 

uniform and non-uniformly applied in-plane and transverse load. 

Mohammadi et al.[28], study the dynamic behavior of rectangular nanoplates with single-layered graphene sheets 

laying on an elastic medium subjected to shear in-plane load, based on differential quadrature method. The dynamic 

behavior of annular and circular graphene sheet surrounding Winkler-Pasternak elastic supports and subjected to 

thermal and in-plane load, using the nonlocal elasticity theory, have been study by Mohammadi et al. [29]. 

Mohammadi et al. [30] have studied the effect of the thermal load on the free vibration of mono-layer graphene sheet 

laying on an elastic foundation. Using the nonlocal elasticity theory to obtain the governing equations and based on 

Levy and Navier solutions technics, the naturel frequency are obtained for three cases of boundary conditions. 

Considering the effect of viscosity, the dynamic behavior of nanobeam embedded in the visco-Pasternak foundation 

subjected to hygro-thermo-mechanical loading have been study by Mohammadi et al. [31]. Chu et al. [32] examine 

the stability and dynamic response of circular sandwich plates with a special foam core and reinforced faces with 
graphene platelets in thermal environment. The Chebyshev collocation technic is applied to attain the discrete form 

of equilibrium and dynamic equations. Based on the novel theory of two-phase local/nonlocal elasticity, wave 

propagation and vibration of a nano super capacitor based on Kerr viscoelastic foundation including two springs, 

two dampers, and one shear element are studied by Al-Furjan et al. [33] using refined zigzag theory (RZT). Wan et 

al. [34]  investigate the effects of reinforcing a hybrid nanocomposite viscoelastic rhombic plate with Carbon Nano-

Tubes (CNTs) and Carbon Fibers (CFs) laying on a viscoelastic torsional fractional substrate on the post-stability 

response, naturel and excited vibration . The distribution of CNTs and the structural damping is analyzed using the 

Halpin-Tsai theory and Kelvin-Voigt method respectively. In addition, the first-order shear deformation theory is 

used to create the structure model. Al-Furjan et al. [35] study Wave propagation of imperfect functionally graded 

materials (FGM) and magneto strictive nanocomposite layers. Based on refined zigzag theory (RZT) and the Halpin-

Tsai model for the effective material characteristic, the governing equations are gained using Hamilton's principle 
and solved by exact solutions. Shan et al. [36] exposed a review of the impact of nano-additives in improving the 

mechanical characteristics and optimization methods in nanocomposite materials. Chu et al. [37] presents the energy 

absorption, free and forced vibrations of sandwich non-rectangular nanoplates made from alumina reinforced by 

graphene platelets (GPLs) with a single sinusoidal edge laying on a viscoelastic foundation. Micromechanical 

Halpin–Tsai distribution and Kelvin–Voigt models are considering to obtain the effective material characteristics 

and structural damping, correspondingly. Refined zigzag theory (RZT) and Hamilton’s principle are used to derive 

the coupled electro-magneto-mechanical equations of motion and analyzed by Galerkin’s and Newmark’s 

procedures. Theoretical evaluation of the impacts of moving load and the use of a piezoelectric patch on the 

dynamic behavior of a Nano Conical Panel (NCP) laying on viscoelastic foundation via the First-order Shear 

Deformation Theory (FSDT) has been study by Chu et al. [38]. Boron nitride nanotubes (BNNTs) are used to 

reinforce the piezoelectric patch. Integral Quadrature (IQ), Differential Quadrature (DQ), and Newmark methods 

were coupled to solve the equations of motions. Wan et al. [39] examine the nonlinear flutter response and reliability 
of trapezoidal plates made of hybrid composite core layer reinforced by carbon nanotubes (CNTs) and carbon fibers 

and subjected to yawed flow using advanced differential Quadrature hierarchical finite element method (DQHFEM). 

The complexities of the hybrid nanocomposite properties are determined by using the Halpin-Tsai model. Kolahchi 

et al. [40] optimizes the design of conical shells made from advanced materials for better performance under 

challenging conditions involving magnets, moisture, and heat. Using Hamilton's principle, the researchers derived 

the equations governing the motion of the system. These equations were then solved with two techniques: the 

differential quadrature method and Bolotin's method. This allowed them to determine the range of conditions 

(dynamic stability region) where the system remains stable.To further improve the system's performance and find 

the optimal dynamic conditions, the authors proposed a new hybrid optimization method. This method combines 

particle swarm optimization (PSO) and harmony search algorithms (HS). recently the researcher and his team have 

several works on static and dynamic behavior solicited on different types of structures [41-50]. 
Survey of the literature shows that a few studies address the buckling of FG plates subjected to uniform and non-

uniformly applied in-plane. In this regard, this paper aims to propose a theoretical formulation based on a quasi-3D 

solution that includes the stretching effect to study the buckling of FG plate subjected to compressive uniform, 

linear, and non-linear in-plane loads. Stretching effect plays a very important role in determining the response of 

thick structures. In addition, several types of foundations will be used such as Winkler, Pasternak and Kerr with 

various types of boundary conditions. To the best of the authors' knowledge this problem has not been treated 

before. The proposed model contains undetermined integral terms and involves only four unknown functions. In 

addition, several boundary conditions will be considered and their effects on the critical buckling load will be 

determined. The overall material properties of the plates are considered to be varying across the thickness according 

to a power law. Analytical solution will be used to determine the critical buckling loads. Comparisons studies are 

carried out in order to validate the efficiency of the present model. Then, parametric studies are conducted allowing 

https://www.sciencedirect.com/topics/mathematics/chebyshev
https://www.sciencedirect.com/topics/computer-science/forced-vibration
https://www.sciencedirect.com/topics/engineering/nitride
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/nanotube
https://www.sciencedirect.com/topics/engineering/finite-element-method
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studying and analyzing the effects of power law index, geometry of plate, elastic foundation parameters and 

boundary conditions on critical buckling load of FG plate resting on elastic foundation. 

2. Problem formulation 

The geometry and dimensions of the plate resting on elastic foundations are represented in Figure 1. Rectangular 

Cartesian coordinates (x, y, z) are used to describe infinitesimal deformations FG elastic plate occupying the region 

 0,a x  0,b x  / 2, / 2h h− in the unstressed reference configuration. The top and bottom faces of the plate are 

at / 2z h=  , and the edges of the plate are parallel to axes x and y. The volume and the area surface are indicated 

with V and A, respectively. 

The effective material properties, like Young’s modulus E  can be expressed by the rule of mixture as: 

 

( ) ( )( )  P z P P P V zm c m= + −
 

1

2

k
z

V(z)=
h

 
+ 

 

 

The subscripts m and c refer to metal and ceramic. k  is the volume fraction index ( 0 k  + ), which indicates 

the material variation profile through the thickness. 

 

 

 

Fig 1: coordinate system and geometry for rectangular FG plates on elastic foundation 

The plate is assumed to be subjected to different type of in-plane compressive loading as shown in Fig.2 (Singh 

and Harsha [27]). 

 
Fig2: schematic representation of different type of in-plane compressive loads (a) uniformly varying load, (b) trapezoidal, (c) triangular, 

(d-e) exponential varying load, (f) sinusoidal load 

(1) 

(2) 
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2.1. Kinematic  

The displacement field satisfying the conditions of transverse shear stresses (and hence strains) vanishing at (x, 

y, ±h/2) on the outer (top) and inner (bottom) surfaces of the plate, is given as follows [51]:   
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0 2
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Some simplifications are used here to get: 
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In the present study, the new shape function ( )f z  is given as follow: 
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Based on the small-strain elasticity theory, the linear strain expressions derived from the displacement field are 

given as follow: 
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The stress–strain relationships for the FG plate are as follows: 
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The terms Cij are given by: 
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2.2. Governing equations   

By employing the principle of virtual displacement for which the external work is equal to the internal one, the 

governing equations of equilibrium for the FG plate are developed as follow:
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The stress, moment and additional moment resultants N, M, P and Q of the FG plate are expressed by: 

/2 /2

/2/2

,

xx xx xx xx
h h

yy yy yy yy
hh

xy xyxy xy

N M

N d z M z d z

N M

z












−−

= 

      
      

=        
       
      

 

( )
/2 /2

/2 /2
( ) , ( )

nxx xx
h hxz xz

yy yy
h hyz yz

xy xy

P
Q

P f z d z g z d z
Q

P








− −

= = 

  
          

       
         

   

 

   

( )
/2 /2 ( )

/2 /2

( )
, ( ) ,

n
h h nxz xz

zz zz
h hyz yz

S f z
d z N g z d z

S z




− −


= = 



      
   
        

Substituting Eq. (5) into Eq. (7) and the subsequent results into Eq. (12), the stress resultants of the FG plate can 

be related to the total strains by: 
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







=

    
    
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          

Where: Aij, Bij, Csij …etc. are the plate stiffness’s, defined as follow: 

1111 11 11 11 11 11 /2
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   
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The variation of work done by in-plane loads is given by: 

( ( ) )
0

A A

V N wdA N w g z dA   = − = − + 
 

With: 
2 2 2

0 0 0

2 2x xy y

w w w
N N N N

x yx y

   
= + 

     

The variation of strain energy of foundation is expressed as: 

0( ( ) )f e e
A A

U f wdA f w g z dA   = = + 

 
Where fe is the density of reaction force of foundation. For the Pasternak foundation model: 

2

,  

e

w g

f Kw G w

K k G k

= − 

= =  

The Kerr model foundation is a three-parameter elastic model that consists of a shear layer (with stiffness) 

independent upper (with stiffness) and lower (with stiffness) elastic layers (modeled by distributed springs). The 

distributed reaction of Kerr foundation model is defined as: 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 
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2

,  

e

l u s u

l u l u

f Kw G w

k k k k
K G

k k k k

= − 

= =
+ +

 

Substituting equations (10) and (11) into the equation (16), given equation is combined with equations (26) and 

(28), the governing equations of stability can be expressed as follows: 

0
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Substituting equations (10), (11), (20) and (21) into equation (31), the governing equations of stability of the FG 

plate are defined by: 
3 32 2 2

0 0 0

0 11 66 12 66 11 12 662 2 3 2

3 3

11 1 12 2 66 1 2 133 2

0 0: ( ) ( 2 )

( ( )) 0

w wu u v
u A A A A B B B

x yx y x x y

Cs K A Cs K B Cs K A K B X
xx x y



  

   
+ + + − − +

     

  
+ + + + + =

  

 

2 2 2 3 3

0 0 0 0 0

0 12 66 22 66 22 12 662 2 3 2

3 3

22 2 12 1 66 1 2 233 2

: ( ) ( 2 )

( ( )) 0

u v v w w
v A A A A B B B

x y y x y x y

Cs K B Cs K A Cs K A K B X
yy x y



  

    
+ + + − − +

      

  
+ + + + + =

  

 

3 3 33

0

0 11 12 66 22 12 663 2 3 2

4 4 4 4 4
0

11 22 12 66 11 1 22 24 4 2 2 4 4

4 2

12 66 1 2 132 2 2

0 0 0: ( 2 ) ( 2 )

0 0             2( 2 )

           +( 2 )( )

u v vu
w B B B B B B

x x y y x y

w w w
D D D D F K A F K B

x y x y x y

F F K A K B Y Y
x y x



 

 

  
+ + + + +

     

    
− − − + + +

     

 
+ + + +

  

2 22
0 0 0

223 2

2 2 2
0 0 0 0

02 2 2

0)

         ( ) 0

x xy

y

w w
N N

y x yx

w w w
N Kw G

y x y

  
+

  

  
+ + − + =

  

 

3 3 3

0 0

11 1 12 2 66 1 2 13 22 23 2 3

3 4 4

0 0 0 0

12 1 66 1 2 23 11 1 22 22 4 4

4 2 2

0 0 0

1 2 12 66 13 23 112 2 2 2

0 0: ( ( )

( ( ))

( )( 2 )

u u u v
Cs K A Cs K B Cs K A K B X Cs K B

xx x y x

v v w w
Cs K A Cs K A K B X F K A F K B

yx y x y

w w w
K A K B F F Y Y H

x y x y


   

− − + + − −
   

   
− + + − + +

   

  
+ + + + + −

   

4
2

1 4

4 4
2 2 2 0

1 4422 2 12 1 2 66 1 24 2 2

2 2
1 2 0

661 44 66 13 1 2 55 2 66 23 22 2

2 2 2
0 0 0

2 233

( )

( ) (2 ( )( ) ( ) ) (( )

2 2 ( )) (( ) 2 2 ( ))

( ) (x xy y

K A
x

H K B H K A K B H K A K B K A G
y x x

K A G G R K A K B G K B G G R K B
x y

w w w
Z g z N N N g

x yx y



 

 


−



 
− + + + +

  

 
+ − + + + − −

 

  
− − − +

  

 
 
 

2 2

0
2 2

0 0) ( ) 0
w w

z Kw G
x y

 
 
 
 

 
− + =

 

 

(30) 

(31) 

(32a) 

(32b) 

(32c) 

(32d) 



Journal of Computational Applied Mechanics 2024, 55(3): 381-400 389 

2.3. Solution for FG plate with various boundary conditions 

Solution of Eq. (32) for the FGMs plate under various boundary conditions can be constructed. To solve the 

governing equations based on the proposed theory, a general solution of different boundary conditions is used. To 

this end, the displacement field can be assumed as 

0

0

0

( )
( )( , )

( , ) ( )
( )

( , )
( ) ( )

( , )
( ) ( )

m
mn
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U Y yu x y n
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v x y Y y
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x y

X x Y y
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
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         

=   
   

   
 
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Where , , andU V W   are arbitrary parameters to be determined. The functions Xm(x) and Yn(y) are suggested 

here to satisfy the geometric boundary conditions and represent approximate shapes of the deflected surface of the 

plate. These functions, for the different cases of boundary conditions, are listed in Table 1. 

Substituting equations (33) into equations (32), the obtained equations are expressed as follow: 
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The elements Mij are expressed as follow: 
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Table 1: The admissible functions Xm(x) and Yn(y) [52, 53] 

 Boundary conditions The functions Xm and Yn 

atx= 0,a aty= 0,b Xm(x) Yn(y) 

SSSS ''(0) (0) 0m mX X= =  ''(0) (0) 0n nY Y= =  sin( )x  sin( )y  

''( ) ( ) 0m mX a X a= =  ''( ) ( ) 0n nY b Y b= =  

CSSS '(0) (0) 0m mX X= =  ''(0) (0) 0n nY Y= =   sin( ) cos( ) 1x x  −

 

sin( )y  

''( ) ( ) 0m mX a X a= =  ''( ) ( ) 0n nY b Y b= =  

CSCS '(0) (0) 0m mX X= =  '(0) (0) 0n nY Y= =   sin( ) cos( ) 1x x  −

 

 sin( ) cos( ) 1y y  −

 ''( ) ( ) 0m mX a X a= =  ''( ) ( ) 0n nY b Y b= =  

CCSS '(0) (0) 0m mX X= =  ''( ) ( ) 0n nY b Y b= =  2sin ( )x  sin( )y  

'( ) ( ) 0m mX a X a= =  ''( ) ( ) 0n nY b Y b= =  

CCCC '(0) (0) 0m mX X= =  '(0) (0) 0n nY Y= =  2sin ( )x  2sin ( )y  

'( ) ( ) 0m mX a X a= =  '( ) ( ) 0n nY b Y b= =  

FFCC '' '''(0) (0) 0m mX X= =  '(0) (0) 0n nY Y= =  2 2cos ( ) sin ( ) 1x x  + 

 

2sin ( )y  

'' '''( ) ( ) 0m mX a X a= =  '( ) ( ) 0n nY b Y b= =  

FFSS  '' '''(0) (0) 0m mX X= =  ''( ) ( ) 0n nY b Y b= =  2 2cos ( ) sin ( ) 1x x  + 

 

sin( )y  

'' '''( ) ( ) 0m mX a X a= =  ''( ) ( ) 0n nY b Y b= =  

( )’ Denotes the derivative with respect to the corresponding coordinates. 

3. Expression of in-plane load [27] 

The in-plane compressive load applied is of the form: 

( ) ( )0 0 0, , 0x y xyN y N y N = − = − =
 

where η  is the magnitude of the in-plane buckling load applied in the x-direction. 

( )y is defined as a function representing the variation of in-plane load along the y-axis (see table 2).  is the non-

dimensional load parameter. It takes two values, 0 =  for uniaxial compression and 1 = for biaxial compression. 

0
  is a parameter which controls the shape of a function defining in-plane load 

( ) ( )
0

0

1
sin sin

b r y j y
y dy

w b b

 
 

   
 =     

   
 

w  is a constant parameter determined during post-processing and gives satisfactory results for one parameter 

approximation only, 1r j= = , and is equal to / 2b . 

(38) 

(39) 

(40) 

(41) 

(42) 
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0 0 = for uniform distributed compressive load, 
0 1, = for compressive triangular load and 

00 1 for 

trapezoidal compressive load. 

Table 2: Different type of variations in-plane load [27] 

 Load behavior ( )y  ( )0   

1 Uniformly varying (UVL) 0
1

y

b


−  

     

0
1

2


−  

2 Sinusoidal (SL) sin
y

b

 
 
 

 

         

8

3
 

3 Exponential (EL) 
   

0 y

be



 

( )
( )

2 0 0

2 2

0 0

4 1

4

e e



 
−

  +
 

4. Numerical results and discussion 

In this section, various examples are introduced for the buckling of FG plate resting on Kerr/Pasternak/Winkler 

foundation with general boundary condition. The composed plate is made of Aluminuim (Al) and Alumina (Al2O3) 

with the following properties: 

✓ Alumina, Al2O3: 
9380 10E =  N/m2;  

✓ Aluminium, Al: 970 10E =  N/m2;     

The Poisson’s ratio is assumed as constant for all results ( )0,3 = . 

In order to verify the accuracy of the present formulations, the non-dimensionalized buckling load N̂ of FG plate 

simply supported and without elastic foundation predicted using the quasi-3D solution is compared with the 2D 

solution of Singh and Harsha [27] as listed in Tables 3-5. The results are presented for different values of power law 

exponent “k”, shape parameter “
0 ” and for three compressive in-plane load (UVL, EL and SL). Note that, in these 

tables, the span-to-thickness ratio (a/h) is taken to be equal to 10. 

Table 3. Comparison of non-dimensional critical buckling loads N̂  (UVL = Uniformly Varying Load) 

b/a Ω0 

k=1 k=4 k=10 

Ref [27] Present Ref [27] Present Ref [27] Present 

1 

0 9.3391 9.57315 6.23988 6.50800 5.45286 5.59653 

0.25 10.6733 10.9407 7.13129 7.43773 6.23184 6.39603 

0.5 12.4521 12.7642 8.31984 8.67734 7.27048 7.46204 

0.75 14.9426 15.3170 9.98381 10.4128 8.72458 8.95444 

1 18.6782 19.1463 12.4798 13.0160 10.9057 11.1931 

2 

0 3.75015 3.81066 2.53616 2.60333 2.20779 2.24664 

0.25 4.28588 4.35503 2.89847 2.97523 2.52318 2.56760 

0.5 5.0002 5.08087 3.38155 3.47110 2.94371 2.99553 

0.75 6.00024 6.09704 4.05786 4.16531 3.53246 3.59464 

1 7.5003 7.62131 5.07232 5.20664 4.41557 4.49330 

5 

0 2.59144 2.65196 1.74857 1.81420 1.53236 1.56720 

0.25 2.96165 3.03081 1.99836 2.07337 1.75126 1.79109 

0.5 3.45526 3.53594 2.33142 2.41893 2.04314 2.08960 

0.75 4.14631 4.24313 2.79771 2.90271 2.45177 2.50751 

1 5.18289 5.30391 3.49714 3.62840 3.06471 3.13440 
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Table 4. Comparison of non-dimensional critical buckling loads N̂  (EL = Exponential Load). 

b/a Ω0 

k=1 k=4 k=10 

Ref [27] Present Ref [27] Present Ref [27] Present 

1 

0 9.3391 9.57315 6.23988 6.50800 5.45286 5.59653 

0.25 10.5718 10.8367 7.13129 7.36701 6.23184 6.33523 

0.5 11.9428 12.2421 8.31984 8.32240 7.27048 7.15681 

0.75 13.4641 13.8016 9.98381 9.38255 8.72458 8.06848 

1 15.1485 15.5281 12.4798 10.5563 10.9057 9.07784 

2 

0 3.75015 3.81066 2.53616 2.60333 2.20779 2.24664 

0.25 4.24514 4.31363 2.89847 2.94694 2.52318 2.54318 

0.5 4.79567 4.87304 3.38155 3.32911 2.94371 2.87300 

0.75 5.40657 5.49380 4.05786 3.75320 3.53246 3.23898 

1 6.08292 6.18107 5.07232 4.22271 4.41557 3.64417 

5 

0 2.59144 2.65196 1.74857 1.81420 1.53236 1.56720 

0.25 2.93349 3.00200 1.99836 2.05366 1.75126 1.77406 

0.5 3.31392 3.39131 2.33142 2.31999 2.04314 2.00413 

0.75 3.73607 3.82331 2.79771 2.61551 2.45177 2.25943 

1 4.20345 4.30160 3.49714 2.94271 3.06471 2.54207 

Table 5. Comparison of non-dimensional critical buckling loads (SL = Sinusoidal Load) 

b/a 
 

Ω0 

k=1 k=4 k=10 

Ref [27] Present Ref [27] Present Ref [27] Present 

1 0 11.002 11.2781 7.3511 7.66707 6.424 6.59326 

2 0 4.4180 4.48933 2.9878 3.06697 2.6009 2.64677 

5 0 3.0529 3.12426 2.0599 2.13730 1.8052 1.84631 

 

As can be seen from these tables, a good agreement is observed between the results of the present quasi 3D 

solution and those of the 2D solution of Singh and Harsha [27]. However, a slight deviation is noticed between the 

results. This can be justified by the fact that the results reported in the tables are for a value of a/h=10 which 

corresponds to the case of a thick plate. 

For this case, the stretching effect plays an important role in determining the response of the plate. The latter is 

neglected in formulation of Singh and Harsha [27] since it is a 2D theory and is taken into account in the present 

formulation. 

In addition, the following information can be derived from these tables: 

✓ For Uniformly varying load (UVL), the critical buckling load almost doubles in value from uniform 

( )0 0 =  to triangular loading ( )0 1 = . For Exponential Load (EL), this increase is more than 60%. 

✓ Increasing the geometry ratio (b/a) leads to a reduction in the critical buckling load, irrespective of the 

type of loading and the value of the “k” index. 
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Fig 3. Variation of the critical buckling load ( N̂ ) versus the side-to-thickness ratio “a/h” for a simply supported FG plate. (a) plate 

without elastic foundation , (b) plate on Pasternak elastic foundation (UVL, a/b=1,
0 0 = ) 

In figure 3, the variation of the critical buckling load as a function of the a/h ratio is plotted for different plate 
configurations (variation of the volume fraction index k). The plate is considered simply supported and subjected to 

UVL with and without an elastic foundation. For the two cases treated, the highest critical loads are obtained for an 

isotropic ceramic plate. 

Also, it is found that with the increase in values of volume fraction index, the volume fraction of metal content in 

FG plate increases which leads to a reduction in stiffness and consequently, the critical buckling load decreases. The 

comparison between the two figures (a) and (b) reveals that the incorporation of an elastic foundation increases the 

critical buckling loads of the plate regardless of its composition. This is due to the increase in plate stiffness 

generated by the elastic foundation. It can also be seen that the ratio a/h affects the critical buckling load only in the 

thick plate area ( )/ 10a h  . Exceeding this area, its influence is minimal. 
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Fig 4. Variation of the critical buckling load ( N̂ ) versus the aspect ratio “a/b” for a simply supported FG plate. (a) Plate without elastic 

foundation, (b) plate on Pasternak elastic foundation 

(UVL, 0 0 = ) 

The variation of the critical load N̂  as a function of the geometric ratio (a/b) is shown in figure 4 for two cases 

with and without foundation. Several types of plaques are analyzed. It is found that the critical buckling load 

increases with increasing (a/b) ratio and that the highest critical buckling loads are obtained for an isotropic ceramic 

plate. 

The effect of the elastic foundation parameters on the critical buckling load is shown in Figure 5 (a-b). For both 

figures, the increase in either parameter leads to an increase in the critical buckling load. This can be explained by 

the fact that the increase in the parameters of the elastic foundation leads to an increase in the rigidity of the plate 

and consequently the increase in the critical buckling loads. In addition, the increase in the Pasternak parameter 

generates an increase in the critical load compared to that of Winkler. 
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Also, the a/h ratio, and as mentioned above, affects the critical load only for the case of thick plates (as is the 

case for a/h = 5). For the other cases, its influence is minimal. 
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Fig 5. effect of the elastic foundation parameter on the critical buckling load ( N̂ ) for a simply supported FG plate (a) Effect of Winkler 

parameter, (b) Effect of Pasternak parameter (UVL,
0 0 = ) 

Figure 6 shows the variation of the critical buckling load as a function of the volume fraction index for the first 

three modes. The highest critical buckling loads correspond to the case of “k=0”, i.e. the case of an isotropic plate 

made entirely of ceramic. The increase in the values of the index k, which corresponds to the reduction in the 

quantity of ceramic in the plate and therefore a reduction in rigidity, leads to a reduction in the critical buckling load. 
In addition, as can be seen in this figure, the modes have a great influence on the critical buckling loads. Indeed, the 

lowest critical buckling loads are obtained for mode (1,1). Then, for a value of k=0, the critical load increases by 

about 300% for mode (1,2) and by 900% for mode (1,3). This increase tends to decrease with increasing values of 

the k index. 

In addition, the presence of an elastic foundation causes an increase in the stiffness of the plate and consequently 

an increase in the critical buckling loads. 
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Fig 6. variation of the critical buckling load ( N̂ ) versus the power-law index of simply supported FG plate with & without elastic 

foundations and for different modes (UVL, 0 0 = ) 
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Fig 7.Variation of the of critical buckling load ( N̂ ) of FG plate resting on elastic foundation versus: a)-side-to-thickness ratio “a/h” and 

b) aspect ratio “a/b”, under different boundary conditions. 

Figure 7 (a) and (b) depicts respectively the variation of critical buckling load ( N̂ ) versus the side-to-thickness 

ratio “a/h” and the aspect ratio “a/b” for FG plate resting on elastic foundation under different boundary conditions. 

It is seen that the maximum values of the critical buckling loads are obtained for the clamped boundary condition 

(CCCC) and this for the two figures. This can be explained by the fact that the embedding of the plate on these four 

edges offers it additional rigidity and consequently the critical buckling loads increase. The lowest critical buckling 

loads are obtained for the SSSS condition and the other edge conditions, namely CCSS and CSCS, lie between the 

first two. 

In addition, it was found in Figure 7b that the critical buckling loads increase with the geometry ratio “a/b”. 

Therefore, in order to have a high critical buckling load, it is better to have a rectangular plate geometry than a 

square one. 

0 2 4 6 8 10

0

10

20

30

40

50

60

70

 N̂

 without fondation

 with  fondation

  a/h=5, kw=100, kg=10

index low power k

 UVL   

  SL     

  EL     

 

Fig 8. Comparison of the critical buckling loads ( N̂ )for different types of in-plane load of FG plate simply supported with and without 

elastic foundations ( 0 1 = ) 

To examine the influence of the in-plane compressive load on the critical buckling load of FG simply supported 

plate with and without elastic foundation; the variation of critical buckling load versus the volume fraction index “k” 

is displayed in figure 8. 
As it can be seen from this figure, plate under subjected to UVL always has a maximum critical buckling load 

than any other load and this with or without an elastic foundation.  

The effect of the three Kerr foundation parameters on the critical buckling load of a simply supported FG plate is 

shown in figure 9. The results are given for three values of the a/h ratio (5, 10 and 20). According to this figure, the 

critical buckling load is increased by increasing the parameters Ks and Ku, while it is decreased by increasing the 

parameter Kl, regardless of the side-to-thickness ratio “a/h”. 
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Fig 9. effect of the three parameter of Kerr foundation on the critical buckling load ( N̂ ) of FG square simply supported plate (UVL, a/h 

=5, 10, 20) 
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Fig 10.Buckling load and modes shapes for rectangular FG plate subjected to linearly varying uniaxial in plane compressive load 

(without elastic foundation) 

Figure 10 shows that the critical buckling loads are obtained for the case of a triangular compressive 

load ( )0 1 = , the lowest for a uniformly distributed load ( )0 0 = . The trapezoidal loading ( )00 1 gives 
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critical buckling loads between the first two types for both boundary conditions (SSSS and CCCC). In addition, the 

curves indicate values of a/b ratio in which mode transition occurs. 

5. Conclusion 

In the present article, the buckling response of FG plate resting on Kerr/Pasternak/Winkler foundation and 

subjected to in-plane loading is studied and analyzed. The formulation used in this work is based on quasi-3D theory 

which takes into account the stretching effect. Three types of elastic foundations have been used such as Kerr, 

Winkler, and Pasternak and several boundary conditions are considered. The equations of motion have been derived 

from Hamilton’s principle. The critical buckling loads are obtained after solving the problem by Navier solution. A 

parametric study has been carried out to highlight the effect of the material grading indexes, in-plan compressive 

load, elastic foundation parameters, boundary conditions and other parameters on critical buckling loads of FG plate 

on elastic foundation. 
According to the results of the study, the followings can be drawn: 

• The triangular load gives the highest critical loads compared to the other load cases, 

• An FG plate with a CCCC boundary condition gives the highest critical buckling loads compared to other 

boundary conditions, 

• The highest critical buckling loads are given by isotropic plate made entirely of ceramic. The increase in the 

values of the index k, leads to a reduction in the critical buckling load, 

• Elastic foundation increases the critical buckling loads of the plate regardless of its composition, 

• A rectangular FG plate gives higher critical buckling loads than a square one. 

Although this document deals with the analysis of buckling, the formulation used can be extended for the 

analysis of other types of materials and other models [54-60]. 
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