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Abstract

For the aircraft and space shuttles to have the right properties, they need

do this. These features should be seen in in-plane, bi-dirl!”l
0

graded taper beam (TDFGTB) with uniform load distributio
higher-order shear deformation theory, Lagrange equations, and t
are formulated in simple algebraic polynomials incorporating a@
satisfy the boundary conditions in both directions with the help‘of a Ritz-type solution.
The components of admissible functions are derive

examines the influence of taper ratios, i
vibration response. The results provi assessing beam theories and are
crucial for optimizing the design of TDFG

fie analysis uses a refined
displacement functions
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1. Introduction

An essential aspect of developing structu esign and guaranteeing structural integrity is the examination of the vibration
properties of Two-directional Functio Grad aper Beam (TDFGTB) using refined higher-order shear deformation theory
(RHSDT). Understanding ome dynamic chafacteristics exhibited by Functionally Graded Materials (FGM) within tapered beam
structures facilitates the en

angers, turbine blades, etc. in which the material experiences a significantly elevated
temperature field charactési tantial temperature gradient both on the surface and inside its thickness [1].
Intricate structural ¢ ents epcounter dynamic loads that result in vibration. In some instances, the magnitude of dynamic

distinctive characteristi ich exhibit continuous variation throughout their volume [2]. Stress concentrations in homogeneous
S failure under specific loading circumstances, while FGMs may improve load-bearing and stress
y changing their material composition.
has examined many aspects of vibration analysis in functionally graded taper beams (FGTB), providing
significant Gontributions to understand their dynamic characteristics and structural performance. conducted a comparative analysis
on the effectiWeness of 1D and 3D models in modeling free vibrations of FGTBs using ABAQUS and found that as FGTB geometric
complexity and material inhomogeneity increase, the differences between models become more noticeable [3]. conducted a
comparative analysis of deflections in a FGTB under a uniformly distributed load using the higher-order shear deformation theory
(HSDT), power-law formula, Hamilton's principle, and Navier's solutions and concluded that the geometrical factors influence the
structural analysis of the beam [4]. used HSDT and von-K&rman's nonlinear geometric relation to create linear and nonlinear
isogeometric finite element models for an FGTB with graphene platelet-reinforced composite and the nonlinear bending and

* Corresponding author. Tel.: +91-8297909752; fax: +0-000-000-0000 .
E-mail address: cmreddy115@gmail.com



2 First author et al.

vibration responses were examined through parametric studies [5]. Explored the relationship between size and nonlinear free
longitudinal vibration of axially functionally graded nanorods using nonlocal elasticity theory while using Hamilton's principle to
compute nonlinear natural frequencies [6].

conducted a numerical study on dimensionless natural frequencies of non-uniform aluminum beams covered with FGM and
found that the width of the beams exhibits variability, coating material's characteristics change according to a polynomial function
and highlighted the importance of considering the critical threshold for shape variation [7]. investigated the vibrations of a
cantilevered conical beam, focusing on the non-linear impacts of curvature and inertia on the frequency response using the Euler-
Bernoulli beam theory and Hamiltonian mechanics principles and explored the influence of material distribution on the system's
frequency response during the early resonance stage, integrating finite gradient methodology and nonlinear dynamics [8]. studied
the vibration mechanics of a porous bi-directional functionally graded doubly curved sandwich shell using HSDT theory and the
p-version finite element technique and explored the impact of gradient indices and porosity distribution on performance [9].
conducted a nonlinear study on a cantilever bar element made of graded material with porosity characteristics, considering the
axial orientation, material properties, and stress-strain relationship and found that porosity and material graduatiog signifi

incorporating nonlocal parameters in Bessel functions and found that in-plane pre-loads significantly influen encies
for decreasing radii of the circular nanoplate [12].

Various solution methods have been proposed for solving the governing equations that assess th
Graded Beams (FGB). The primary objective of analytical approaches is to get precise solutions
considering simplifying assumptions and using closed-form solutions such as exact solutions
Galerkin and state space formulation [13]. The method of initial values was adapted by to consi

ntial equations,
, typically based on
cale effects occurring
is using the Galerkin method and
applicability to real-world

elasticity theory. They used Hamilton's principle, Galerkin techniques and other methe
boundary conditions. The findings revealed that length-scale characteristics significantly
of these devices [16].

Conducted a study on the free vibration analysis of FGTB to ohs
equations using the complementary functions method [17].
solving the governing equation and estimating the coeffici e structural mechanics of a Timoshenko nanobeam
in assessing the vibration analysis of a FGTB composed
of piezoelectric material [19]. The isogeometric analysis was a by in studying the vibration characteristics of curved
microbeams. Utilizing numerical approaches, the beam domain i§ discretized using numerical methods, and the governing
sed Fredholm integral equations to analyze the free vibrationina FGTB

enhance buckling resistance and natural fre ile used homogenization methodology to assess microbeam vibration
kling of orthotropic single-layered graphene sheets using nonlocal elasticity
theory and the differential quadratu . They analyzed six border conditions, considering elastic media, temperature
variations, material propertiﬂ, and b nditions [24].

Used the Chebyshev-Ritz ute buckling and compared it with buckling tests on composites made from epoxy
resin, glass fiber, and na s andifieund that nanorods enhance tensile strength, rigidity, and critical buckling load [25]. Studied
a sandwich composite be rengthened with carbon nanorods from potato waste that was subjected to axially variable force, and
w yzed using strain gradient, general strain theory, shear deformation theory and HSDT. They
ed materials enhances sandwich beam rigidity and increase critical buckling loads [26]. Examined the
stability of a spinning astic sandwich beam with a soft core and carbon nanotube reinforced metal matrix nanocomposites
skin, foclising,on residual’stress effects and the governing equations of motion for a rotating viscoelastic sandwich beam. Factors
such as

[27]. Studied the vibration characteristics of multilayered piezoelectric nanobeams using Timoshenko beam theory, nonlocal
continuum thedry, surface elasticity theory and the differential quadrature method [28]. Studied the vibration behaviors of a micro-
cylindrical Sandwich panel using carbon nanotubes and graphene platelets as renforcements with porous and foam cores and
analyzed higher-order shear deformation theory. They found that natural frequencies decrease with temperature but increase with
SMA materials. The impact of different core materials on sandwich composite plates' low velocity impact behavior, to design and
manufacture samples with more stored energy against impact and to find light sandwich structures [29]. The method for
synthesizing hollow magnetic spheres with antibacterial properties, which could be useful in medicine, particularly cancer
treatment and a hydrothermal method for synthesizing carbon nano-arrays using locally available materials using stainless steel
type 1.4401 for autoclave system construction [30, 31].

Studied the oscillation characteristics of a sandwich beam with a porous core and composite face layers with shape memory
alloy (SMA) under free and forced vibrations. They used Vlasov's model, Hamilton's principle, first-order shear deformation
theory, Navier's method and validated results using relevant literature sources, while the key variables included temperature, SMA
volume fraction, porosity distribution, CNT weight fraction, and geometric factors [32, 33]. Analyzed the structural properties of
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a sandwich beam strengthened with carbon nanotubes/graphene origami auxetic metamaterials (GOAM) and porous cores. They
used the variational iteration method (VIM) to solve the equations of motion under different boundary conditions. Factors such as
carbon nanotube distribution, porosity coefficient, porous core type, porosity parameter, weight fraction, and GOAM folding
degree were examined. The results showed a strong agreement with previous studies, with a maximum error percentage of 0.3%
for the first five frequencies and 0.22% for the first frequency [34, 35]. The buckling, vibration and deflecitons in a five-layer
sandwich nanocomposite beam, with reinforcements of graphene platelets (GPLs) and shape memory alloys (SMAs), and a foam
core was investigated and the Coriolis effect on the vibration analysis was investigated [36, 37]. Studied the oscillation
characteristics of circular graphene sheets under in-plane pre-load.

Prior studies on vibration analysis in FGBs have made significant contributions to the comprehension of their dynamic
properties and structural applicability. The findings of a comparative study indicate that there is an increasing variation in the
geometric complexity along with material inhomogeneity of FGBs. Research has also investigated the deflections in FGBs when
subjected to homogenous loads, with a focus on the impact of geometrical parameters on structural analysis. The assessment of

approaches.

This research paper highlights a significant gap in existing literature, highlighting a lack of comprehensiv,
vibration characteristics in TDFGTBs using RHSDT. This study aims to create a model of a TDFGTB, ex e governing
equation that describes the vibration characteristics of the TDFGTB. This will be done by employing t cement fields and
stress-strain relations, which are based on Hooke's law. The solution to the governing equation wi chieVed using the Ritz
technique. The accuracy of the developed beam model is confirmed by comparing it with existin? data/in scientific literature, and

further verified by considering both alumina and aluminum as potential materials for the b ghly investigate the
behavior of free vibration in TDFGTB, adapting RHSDT under different boundary conditj Vibration analysis of TDFGTB
using RHSDT is essential for understanding the dynamic behavior of functionally graded taper beams, facilitating their design,
analysis, and optimization in various engineering applications such as aerospace, automotive, civil structures, and biomedical
devices.

2. Nomenclature

X, Y, 2 Different coordinates along length, width, thickness dirgetions of beam
TD Two dimensional

FGB Functionally graded beam

SS Simply supported

ccC Clamped-clamped

L Length

K Kinetic energy

h Height

Vf Volume fraction

Pz Gradient index in thic ire
Px Gradient index in length diregti
F(2) Shear shape function
HSDT Higher order shear geformation theory
E Modulus affelastici
u
p
f(@)
RHSDT
U
c
m
n ess parameter
TBT Timoshenko beam theory
3. Material\properties of TDFGTB

The study favors TDFGTBs due to their variation in composition, material parameters, and thickness. The non-uniform beams
have h, and h; thicknesses, determined by the equation h(x) = h, [1 - n(x/L)]. The prevailing view is based on fundamental
assumptions.
e In accordance with the Cartesian coordinate system, the point of origin is situated on the neutral surface of the FG beam.
e In comparison to the transverse normal stress, 6, the normal stress in the plane, o, is virtually insignificant.
o In order to satisfy the criteria for the lower and upper beam boundaries, this theory requires the application of a shear
correction factor and operates under the supposition of a constant transverse shear stress.

RHSDT is adopted in this study as it includes higher-order terms in the displacement field compared to conventional theories.
These additional terms account for effects like transverse shear deformation and thickness stretching, which are significant in thin
structures but are neglected in simpler theories.
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Fig 1 : Geometry of FG Taper Beam.
Fluctuations in the volume proportion of the component materials cause TDFGTB properties to constantly fluctuate. Let's consider
a functional correlation between the thickness coordinate and certain material properties. The volume fraction of mgtak (V) can
be mathematically represented using the power law equation [16].

x\P* (1 z \PZ
v =) (i) (
TDFGTB's material characteristics are as follows [16] :
_ A\P* ( z 1\P?
P2 =R=P)(5) (5+3) +Pn @)
‘m’ stands for metal phase and ‘c’ for ceramic phases. 'Px' and 'Pz' denote power law exponent in Fig 2, the power

law exponents are (Px=P,=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1).

0.5

05 05 x/L

Fig 2 : Metal volume fractions in the directidn of length (x/L) and thickness (z/h).

3.1. TDFGTB Formula

The following is a list of the TDFGTB'S densityd'p"), Poisson's ratio ("u"), and modulus of elasticity ("E") [16].
E(6,2) = (B — Ep) (h(x) 3)

3.2. Constitutive equatio disp

RHSDT with a shearstrain fu n is considered in order to illustrate the displacement equations [2].

u(,z,£) = ug(x, t) @2 (4, £) + f(2)p(x, £) ®)

w(x,z, (6)

Ug, Wo, a axial displacement, transverse displacement, and shear slope at a given position on a neutral axis. The

?

displacemgnt’ fields” offer a versatile foundation for representing intricate deformations in structures. By decomposing the
displacemefit into primary and additional components, the beam model is able to accommodate different loading situations and
boundary capditions, resulting in a more precise depiction of the structural response. The additional displacement term f(z) ¢ (x, t)
allows for the incorporation of any other applied loads or boundary conditions that may affect the structural response. This
flexibility enables the model to capture a wide range of loading scenarios, including external forces, thermal effects, or constraints
imposed by the surrounding environnement. Utilizing the inverse elastoplastic function, or shear shape function, f(z) [2], to
calculate the transverse shear deformation distribution.

£ =G = 50— 252+ () (52) 7

g, =2=0 ®)
=f@e ©

f(2) =z[1—§(i) ] (10)

F@=[1-4()] (11)
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where,

€, IS strain in x-direction

€,= strain in z-direciton

Yxz= Shear strain

As Hooke's rule is always obeyed by the beam in FGMs, the behavioural relations may be expressed in the following format :

Q11(Z)
sz [ QSS(Z)] Vxz (12)
01(2) = E(”) (13)
Qss(2) = fjj;ﬁ) (14)

3.3. Motion-Governing Equations
From Hamiltonian principle the equations of motion are derived and can be expressed as follows in the time span [0, t]:

J, 8 —K)dt =0

Where 8k denotes the fluctuation of kinetic energy and U denotes the variation of strain energy [4]. N
Strain Energy, U =% oeV (16)
Kinetic Energy, K = % m V?

== pv V? 17

3.4. Formulation of free vibration v

Bi-directional functionally graded beam's strain energy can be expressed as [4] :

h

LB
U =2, [ #(0xex +Ta¥ry)dzdx (18)

2
Equations (8) (10), (13), and (14), respectively, are substituted into Equation (18), rain energy can be expressed as,

E( z) E(x,z)
U=l [ ( D et + P Yoy ) d2d (19)
fo [(E(xz) % 0 aiodwo_'_zf()auoao 2 4 ez ))2( )))+
0D (42 (f (2))2) | dzdx (20)
2(1+w)
The Kinetic energy of TDFGTB can be written in similar way :
ou dugp d2w, d a?wp\? d%wg 3¢ a¢

k=0 (oo () - et v 2 1 2 (52 - 200 228+ o (5)') )+
E(x,2) 2 /et 2
s (97(F (@) )] dzdx (21)
The displacement functions display the kifiemati ndary conditions, which are represented in terms of generalized coordinators
and expressed in infinity dimensions in Lagrafge €quations derived from Hamilton's principle [4].
u(x,t) = X2, Aj8;(x)et, 6 (22)
w(x,t) =X, B ' (23)
P(x, t) = XLy (24)

Boundary constrainggifor the proposed shape functions are 8; (x), «;(x) and y;;(x).The complex numbers i = v—1 should be used

using L
ou 5]
O_q] + - (25)
As a result\of using g; to represent the values of A;, Bj and Cj,
[S1a] [ [My1] [Mi2] [My3]7] (A {0}
[S12]7 [S22] [S23] | — w? [ [M12]" [M,] [Ma3] [ B ¢ = { {0} (26)

[S13]7[S23]7[S33] [M13]"[M,3]" [M35]1 \C {0}
The “stiffness” and “mass matrices” are denoted by [Ski] and [MKi], respectively. There must be symmetry and a maximum size
for the stiffness and mass matrices. The stiffness and mass matrix's constituent parts are provided by,

50 = 1322 (e 7 (=)™ () ()" @
S = 20 13 D 7 ()" o o2 (o) 2

2

i) = 2@ L, 352 (e 8) (e=2) w1 (x4 2) (e =)™ w7tz @)
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2

S5, (6, )) = (2%) f_ég El(_xﬁzz) [(x + L)p(p (x - %)qq) x,xt1 (x + %)W (x - %)q(p X, xf‘1] dzdx + (f (2))? f%L ECoz) (x + E)p(p (x -

Cpres| (43
5 it (42" (1~ 5" 01 T @
S,5G,)) = —(2 f@) f_% s [(x + 57 (=5 i (x4 g)w (x- g)ql" xf—l] dzdx + (f (2))? f_LLZE((lLﬂj) [(x +
O ()" w6 (x5 (2-2)" ]t @
56 = (@) (A2 (0 (=)™ w7 (0 (=" 0 | g P[0 -
g)qw (x+ g)w (x- gz)w] dzdx 2 (32)
M) = [ 0@ (45 (0= 5" w7t (2 45)" (x=5)" 2] dzdx

My () = ~@2) M7, p(@) [(x + g)pe (x- g)qe xt (x4 (=5 "y, xf—l] dzdx (

My f) = 2 f(@) 12, p(2) [(x + g)pe (x- g)qe X1 (x+ g)m" (x- g)‘“" xf—l] dzdx (35)

Maali)) = ) fp@) [(x+5)" (x =5 wxt (x 45 (= 5)" x| dzdx + GRS o@D [(x +2) (x -
%)qq) x, xt71 (x + g)pw (x - %)qq) X, xj‘l] dzdx (36)

M,5(i,j) = —(2 f(z)) fip(z) [(x + g)pw (x - é)qq) x,xi1 (x + é)pw (x - Q’ dzdx + (f (2))? f_égp(z) [(X +

D (=" (rr )" ()" s @)
M, (i,j) = (f(z))2 fi p(z) [(x + E)pw (x - g)qw xi-1 (X +3 (2))? fi p(z) [(X + E)W (x -
9" (e ) (x= 5" dzan 38)

4. Results and discussion

The factors that influence the vibration behaviour of TDFGTB a
property gradient. The taper ratio as well as the aspec

per ratio, aspect ratio, gradation exponents and material
atio interact to establish the overall shape and distribution of stiffness in
d aspect ratios, yield more pronounced fluctuations in stiffness over
e of intricate vibration patterns and potentially higher frequencies of

properties, the stiffness as well as mass disfribution vary more significantly, resulting in noticeable differences in vibration
characteristics. The numeric?st die

with various boundary conditi
accurate. Results constru
TDFGTB model :

and CC. Vibration analysis is discussed and shows that the existing hypothesis is
ina" and "aluminium" with the following material properties are taken into account for the

Alumina : Ec=380 P = 0%,;:0: 0.3
Aluminum : En=7 = 2702 %, um=0.3

Table 1 : Numerical calculations based on kinematic boundary conditions (BC).
BC x=-L72 X =+L/2

SS  u=0,w=0 w=0

CC u=0,w=0, ¢=0,w’=0  u=0,w=0, $=0, w’=0

The characteristics of the TDFGTB material fluctuate in axial (L) and thickness (h) directions, according to power-law

distribution. The dimensionless frequency (A) parameter is used to represent the results.
2

1= % Z_:: (39)
4.1. Validation

The selection of taper ratios, aspect ratios, and gradation exponents for beam analysis involves a balance between structural
requirements, geometric constraints, numerical considerations, and the objectives of the study. These parameters play a crucial role
in defining the geometry and behavior of the beams under investigation and are chosen thoughtfully to ensure the relevance and
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reliability of the analysis. For the numerical analysis, it is assumed that the material properties of the beam are homogeneous
throughout, the material behaviour is linear and the load is distributed uniformly to facilitate the present investigation. A thorough
and meticulous validation of the TDFGTB using RHSDT is performed using the nondimensional frequency as equation (39). Table
2 displays the results and comparisons based on idealized beams with various BCs. The current study's findings slightly deviate
from those published by Shanab et al. [16]. For the CC beam, the frequency results in Table 3 are also the same; the deviation is
attributed to the fact that the present study deals with the RHSDT, in which the shear stress is made zero at the top and bottom
surfaces of the beam for accuracy result, whereas Shanab et al. [16] theory was related to the TBT, in which the shear shape
function and the shear factor couldn’t be considered.

Table 2 : Comparison of frequency values of SS TDFGTB based on taper ratio (n=0.0), and gradation exponents (p) at L/h=5
Theory P=0 P=05 P=1 p=2 P=5  P=10

TBT[16] 105 14.4 157 167 173 175

RHSDT 114 155 165 175 183 183

% Error 71% 6.8% 49% 46% 53% 54% ; j
ents(p) /h=5

Table 3 : Comparison of frequency values of SS 2D-FGTB based on different taper ratio(n=0.5), and gradation
Theory P=0 P=05 P=1 p=2 P=5  P=10

TBT[16] 12.8 17.7 193 205 212 213
RHSDT 13.9 18.8 204 215 222 223

%Error  7.1% 55% 50% 48% 4.6%
Table 2 compares the frequency results of RHSDT and TBT for SS beams,

ed by the gradation exponent. RHSDT
actor. We found a higher error percentage

Table 4 : Frequency values of SS TDFGTB based on atio (n = 0.0 and 0.5), aspect ratio (L/h=5)
n pz  Px
0 0.5 1 5 10
00 O 135 148 163 177 18.1

0.5 155 163 173 18.0 18.3

8 165 173 18119 183
154 164 169 175 182 18.3
64 170 174 178 183 18.4
o 0 171 175 177 180 184 18.5
0 139 168 184 202 218 22.2
05 168 188 199 21.0 220 22.3
1 178 195 204 213 221 22.3
2 188 201 208 215 222 22.3
5 201 209 213 218 222 22.3

10 209 214 217 220 223 22.3

parision of frequency values of CC TDFGTB based on different taper ratio (n=0.1 & 0.5) at aspect ratio (L/h=5).
Theory P=0 P=05 P=1 P=2 P=5 P=10

RHSDT atn=0.0 178 21.6 229 239 246 247
RHSDT atn=05 194 242 258 270 277 278

Table 6 : Frequency values of SS TDFGTB based on different taper ratio (n=0.0, 0.5), aspect ratio (L/h=5).
n Pz  Px

0 0.5 1 2 5 10
00 O 178 199 212 226 241 245
05 202 216 225 234 243 246
1 210 222 229 237 244 246
2 218 228 233 239 245 246
5 228 234 238 242 246 247
10 235 239 241 244 246 247




First author et al.

) 4

Dimensionless Frequency

Dimensionless Frequency

0.5

0 194
05 223

23.3
2 24.3
5 255
10 264

22.2
24.2
24.9
25.6
26.3
26.9

23.9
253
25.8
26.3
26.8
27.2

25.6
26.5
26.7
27.0
27.3
275

27.2
275
275
27.6
21.7
21.7

27.6
21.7
21.7
27.8
27.8
27.8

Fig 3 : Frequency values of SS TDE& asm/hﬂ), taper ratio (n=0.0)
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Fig 4 : Frequency values of SS TDFGTB at aspect ratio (L/h=5), taper ratio (n=0.5)
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Dimensionless Frequency

Fig 5 : Frequency values of CC TDFGTB at aspect ratios (L/h=15), ratio (n=0.0)
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Fig 6: Frequency values of CC TDFGTB at aspect ratios (L/h= 20), taper ratio (n=0.5)

Under S$boundary conditions, the suggested theory is applied to assess and compare the results of free vibration with those
anticipated by a taper nanobeam [16]. Satisfactory results are predicted by the presented theory. The remaining numbers, as shown
in Table 5, are likewise appropriate for CC. Since the beam width is constant in this case, the applied load is constant along the
length of the beam, but “moment of inertia” and “elastic modulus” vary with the beam length. The effects of the non-uniform
parameter on the thickness variation, h(x), as well as the maximum dimensionless vibration at different power-law exponents and
supporting types are discussed. The variation in the moment of inertia is caused by the change in thickness that takes place
throughout the length of the beam. Table 4 and Table 6 show that the dimensionless frequency would rise for all types of supporting
structures. Fig 3 and Fig 4 show that for SS beams and Fig 5 and Fig 6 show that the non-uniformity parameter reduces with n,
however, the increase is dependent on the types of supporting elements.

Fig. 3 indicates the frequency differences between the TBT and the RHSDT for the SS beam at zero taper. The frequency
increases with an increase in the gradient indexes in the x and z directions because the beam is transformed from metal to ceramic.
In ceramic, the young modulus is higher than in metal, so the ceramic is stiffer and tends to vibrate at higher frequencies. Fig. 4
indicates the frequency differences between the TBT and RHSDT for the SS beam at 0.5 taper. The frequency increases with an
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increase in the gradient indexes in the x and z directions because the beam convert from metal to ceramic. In ceramic, the young
modulus is higher than in metal so the ceramic is stiffer and tends to vibrate at higher frequencies. Fig. 5 indicates the frequency
at RHSDT for the CC beam at zero taper. The frequency increases with an increase in the gradient indexes in the x and z directions
because the beam convert from metal to ceramic. In ceramic, the young modulus is higher than in metal, so the ceramic is stiffer
and tends to vibrate at higher frequencies. Fig. 6 indicates the frequency at RHSDT for the CC beam at 0.5 taper ratio. The
frequency increases with an increase in the gradient indexes in the x and z directions because the beam convert from metal to
ceramic. In ceramic, the young modulus is higher than in metal, so the ceramic is stiffer and tends to vibrate at higher frequencies.
As Table 4, the SS beam shows the highest rate of dimensionless frequency when compared to other supports such as CC. The
placement of the clamped end, the distribution of young modulus, and the change in the moment of inertia were the key factors
that affected the maximum dimensionless frequency and its rate of change. The taper ratio of a TDFGTB can lead to changes in
the distribution of mass and stiffness along the length of the beam. This alteration can affect the natural frequencies of vibration
modes. Higher taper ratios generally result in higher frequency responses due to the concentration of mass/stiffness towards one
end of the beam. The aspect ratio (length-to-width ratio) of the beam can influence its bending behavior. For slende ms (high
aspect ratios), higher frequency responses are typically observed due to the dominance of bending deformation made ever,
extremely high aspect ratios might introduce buckling instability, which can affect the frequency responses diffgre
In contrast to the effects of thickness variation and the combination of thickness variation and width vari
greatest effects, the effects of width variation on the vibration in the beam are often not significant. Reduci

erggt has the
-uniformity
imensionless
vibration in addition to a change in the maximum dimensionless vibration's position due to the impac idth variation, thickness
variation, and both width and thickness variation. Variations in thickness as well as width contrib i

vibration¥(i.e., x = 1/2). It appears
that both variations in the elastic modulus distribution and variations in the bea position of the dimensionless
vibration to vary.

The introduction of a RHSDT for studying the vibration behavior of TD
complexity. The incorporation of higher-order elements required a more complex fo tion and technique for finding a solution.
In order to tackle this difficulty, rigorous validation and verification procedures were C out to guarantee the precision of the
numerical implementation. Ensuring the satisfaction of boundary conditions posed’challenges, particularly in formulating
admissible functions to meet the prescribed constraints. The incorpor; of Ritz-type solutions using algebraic polynomials

facilitated the fulfillment of boundary conditions in both diregtionsgy camvergence studies were conducted to validate the
chosen boundary conditions and ensure their consistency wi ysi D
ct a TDFGTB model. Constructed equations and related

Ited in the presence of computational

5. Conclusions

This work uses a variational formulation based on RHSDT to co

border conditions that take vibration and the neutral axis.into accouft while applying the Hamilton principle concurrently. This is
achieved by applying the two concepts at the sa . Apart from the properties of the material, the model is composed of
surface elasticity constants and a material parageter that change along the length and thickness directions of the beam
according to the power law. The TDFG el oped using Ritz solutions, which yielded an analytical solution for the

vibration responses of SS and CC TDFGTB. Rif2Solutions looked into how different material and geometrical parameters affected
the vibration responses using a thorou nalysis. The following is a summary of the main findings:
e The utilization of RHSDJ capt mplexities of TDFGTBs' vibration behavior and also, by employing Lagrange

equations and Ritz-type “Solution dy validates the applicability of RHSDT in modeling FGM structures, thereby
contributing to the validati ent of analytical techniques for FGM analysis.
e The surface residual sfieg ucture effect make the beam stiffer, which raises the anticipated vibration.

e The stiffness-hardeni
consequently incrg

is increased by raising the gradient exponents in its thickness (P,) and/or length (Px), which
vibration. This is attributed to the variations in the material properties across the length and thickness
ore, higher gradient index implies steeper variation leading to more significant changes in the stiffness.

e The vibration of the@per beam is increased in proportion to the material's aspect ratio due to its stiffness-hardening effect. A
highe ratio typically corresponds to a longer and potentially narrower beam, which may exhibit greater stiffness-
harde Uariations in material properties. Consequently, the beam becomes less flexible and more resistant to
defor n, leading to increased vibration under applied loads.

behavior of TDFGTBs. This helps validate the efficacy of different analytical approaches and identifies areas for improvement
in existing beam theories.

Applications: Inthe field of structural engineering and design, understanding the frequency responses of bi-directional functionally
graded taper beams is crucial. This information can be used to improve the design of buildings, bridges, and aerospace components
to obtain better performance under varying loads, as well as other industries where high-performance and lightweight materials are
essential. The beam's edges are assumed by RHSDT to be either clamped or merely supported. But in reality, a beam might have
more intricate boundary conditions, such partially or freely clamped edges, which could compromise the accuracy of the study.
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