تعداد نشریات | 161 |
تعداد شمارهها | 6,568 |
تعداد مقالات | 70,922 |
تعداد مشاهده مقاله | 125,241,795 |
تعداد دریافت فایل اصل مقاله | 98,494,589 |
اثر تیمارهای مختلف آب آبیاری بر میزان پرولین، فعالیت ضد اکسایش برگ و خصوصیات کمی و کیفی میوه انار رقم رباب | ||
علوم باغبانی ایران | ||
دوره 55، شماره 3، مهر 1403، صفحه 349-363 اصل مقاله (1.16 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2024.367820.2131 | ||
نویسندگان | ||
علیرضا بنیان پور* 1؛ محمد علی شاهرخ نیا2 | ||
1بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، سازمان تحقیقات و آموزش کشاورزی، شیراز ، ایران. | ||
2بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، سازمان تحقیقات و آموزش کشاورزی، شیراز، ایران | ||
چکیده | ||
انار با نام علمی L. Punica granatum درختی نیمه گرمسیری است که در بسیاری از مناطق ایران کشت میشود. شرایط مناسب آب و هوایی جهت رشد و نمو و باردهی انار آب و هوای معتدل تا نیمه گرم می باشد که این شرایط در بسیاری از نقاط ایران وجود دارد . تغییر شرایط جوی و کاهش بارندگی سالیانه که در سالهای اخیر در بیشتر مناطق انارکاری حکم فرما شده است باعث ایجاد تنش در باغات انار گردیده و رشد و نمو و باردهی درختان را تحت تاثیر قرار داده است. به این لحاظ برای ارزیابی واکنش درخت انار رقم رباب به رژیمهای مختلف آبیاری، پژوهش حاضر در طی سال-های 1399 و 1400 در شهرستان کوه چنار در استان فارس انجام شد. آزمایش در قالب طرح بلوکهای کامل تصادفی با سه تکرار و به مدت دو سال متوالی انجام شد. پنج تیمار آبیاری شامل، شاهد (آبیاری باغ توسط باغدار به میزان 15000 متر مکعب در سال) و آبیاری هنگام رسیدن خاک به تخلیه رطوبتی 35 ، 50 ، 65 و 80 درصد بود. نتایج نشان داد کاهش میزان آب آبیاری باعث کاهش میزان عملکرد (22 تا 40 درصد) در تمام تیمارهای کم آبیاری و کاهش معنیدار در وزن میوه (12 تا 28 درصد) و وزن خشک آریل در تیمار تخلیه رطوبتی 65 و 80 درصد شد. بیشترین میزان پرولین در تخلیه رطوبتی 80 درصد به میزان476/0 میکرو مولار در وزن تازه برگ مشاهده شد .فعالیت آنزیمهای ضد اکسایش نیز با کاهش آب آبیاری افزایش یافت، بهطوری که بیشترین فعالیت آنزیمهای کاتالاز (47/0 واحد در دقیقه در میلی گرم پروتئین) و سوپر اکسید دیسموتاز (029/1 واحد در دقیقه در میلی گرم پروتئین) در تخلیه رطوبتی 50 درصد مشاهده شد. با توجه به تغییرات مواد ضد اکسایش و متوسط وزن میوه، وزن آریل و درصد دانه سفیدی میتوان نتیجه گرفت که درخت انار رقم رباب تا تخلیه رطوبتی 50 درصد را بخوبی تحمل کرده و میوه کیفیت خود را حفظ میکند ولی تخلیه رطوبتی بالاتر (65 و80 درصد) باعث کاهش در خصوصیات کمی و کیفی و عملکرد میوه شده و دانه سفیدی میوه افزایش میدهد. | ||
کلیدواژهها | ||
سفید شدگی آریل؛ کیفیت میوه؛ ضد اکسایشی؛ رژیم آبیاری | ||
عنوان مقاله [English] | ||
Effect of Different Irrigation Regimes on Leaf Proline Content, Antioxidant Enzymes Activity and Fruit Quantitative and Qualitative Characteristics of ،Rabbab’ Pomegranate | ||
نویسندگان [English] | ||
Alireza Bonyanpour1؛ Mohammad Ali Shahrokhnia2 | ||
1Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center,( AREEO) Shiraz, Iran | ||
2Agricultural Engineering Research Department, Fars Agricultural and Natural Resources Research and Education Center, (AREEO) Shiraz, Iran | ||
چکیده [English] | ||
Pomegranate (Punica granatum) is a subtropical tree that is cultivated in many regions of Iran with . temperate and subtropical climates. In recent years, climatic changes and decrease in annual rainfall prevailed in the most pomegranate growing areas has affected the growth and fruiting of trees in pomegranate orchards. In order to evaluate the responses of ‘Rabbab’ pomegranate tree to different irrigation regimes, the present study was carried out during 2019 and 2020 in Koh-Chenar city in Fars province. The experiment was conducted in the form of a randomized complete block design with three replications in two consecutive years The irrigation regimes applied to the pomegranate trees consisted of control (orchard irrigation with 15,000 m3 of water), irrigation at 35%, 50%, 65% and 80% soil moisture depletion. The results showed that reducing the amount of irrigation water decreased yield by %22 to % 40 in all low irrigation treatments. Irrigation at 65 and 80% of moisture depletion also significantly decreased the fruit weight by 12 to %28 and aril dry weight. The highest amount of proline (0.476 µmol/ leaves fresh weigh) was observed in 80% soil moisture depletion. The activity of antioxidant enzymes also increased with the reduction of irrigation water, so that the highest activity of catalase enzymes (0.47 u/mg protein/min.) and superoxide dismutase (1. 0.47 u/mg protein/min) were observed in 50% soil moisture depletion. According to the changes in antioxidant activities and the average of fruit weight, aril weight and percentage of aril paleness, it can be concluded that ‘Rabbab’ pomegranate tree can tolerate water deficit up to 50% soil moisture depletion and maintain fruit quality, but the higher levels of soil moisture depletion (65 and 80%) cause a decrease in the quantitative and qualitative characteristics of the fruit and yield, and increase the percentage of aril paleness. | ||
کلیدواژهها [English] | ||
Aril paleness, fruit quality, antioxidants, irrigation regims | ||
مراجع | ||
آمارنامه کشاورزی (1400). وزارت جهاد کشاورزی معاونت برنامه ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات. راد، محمدهادی؛ اصغری، محمدرضا؛ و عصاره، محمد حسن (1394). تاثیر تنش خشکی در رشد، عملکرد و کیفیت میوه انار رقم رباب در شرایط تنش خشکی. 31-2(1)، 75-90. REFERENCES Abedi, T & Pakniyat, H. (2010). Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech Journal of Genetics and Plant Breeding. 46(1), 27–34. http://dx.doi.org/10.17221/67/2009-CJGPB Agricultural statics. (2021). Ministry of Jihad and Agriculture, Planning and Economic Deputy, Information and Communication Technology Center. (In Persian) André, C. M, Schafleitner, R., Legay, C., Lefèvre, I., Alvarado Aliaga, C., Nomberto, J., Hoffmann, L., Hausman, J., Larondelle, Y. & Evers, D. (2009). Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress. Phytochemistery, 70(9), 1107-1116. https://doi.org/10.1016/j.phytochem.2009.07.008 Bates, L. S., Waldren, R. P & Teave, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060. Beauchamp C, Fridovich I. (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochemistery, 44(1):276-87. doi: 10.1016/0003-2697(71)90370-8. Blokhina, O., Vitolainen, E. & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress. Annales of Botany. 91, 179–194. http://dx.doi.org/10.1093/aob/mcf118 Bonyanpour, A. R. & Jamali, B. (2020). Seasonal enzymatic and non-enzymatic antioxidant in seven Iranian pomegranate cultivars. Advances in Horticultural Science, 34(3), 265-276. https://doi.org/10.13128/ahsc-8283 Bugueño, F., Livellara, N., Varas, F., Undurraga, P., Castro, M., & Salgado, E. (2016). Responses of young Punica granatum plants under four different water regimes. Ciencia e Investigacion. Agraria, 43(1), 49-56. http://dx.doi.org/10.4067/S0718-16202016000100005 Carmona, L., Alquézar, B., Diretto, G., Sevi, F., Malara, T., Lafuente, M. T. & Peña, L. (2021). Curing and low-temperature combined post-harvest storage enhances anthocyanin biosynthesis in blood oranges. Food and Chemistry, 16, 342, 128334. https://doi.org/10.1016/j.foodchem.2020.128334 Chance, B., & Maehley, A. C. (1955). Assay of catalase and peroxidase. Methods in Enzymology, 2, 764-775. https://doi.org/10.1016/S0076-6879(55)02300-8 Dhindsa, R. S., Dhindsa, P. P. & Thorpa, T. A. (1981). Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32(1), 93-101. https://doi.org/10.1093/jxb/32.1.93 Espades, J. L., Castagn, O. E. & Marina, M. L. (2019). Phenolic compounds increase their concentration in Carica papaya leaves under drought stress. Acta Physiology Plantarum. 41, 180. http://dx.doi.org/10.1007/s11738-019-2972-0 Gao-Takai, M., Katayama-Ikegami, A., Matsuda, K., Shindo, H., Uemae, S. & Oyaizu, M. (2019). A low temperature promotes anthocyanin biosynthesis but does not accelerate endogenous abscisic acid accumulation in red-skinned grapes. Plant Science, 283, 165-176. https://doi.org/10.1016/j.plantsci.2019.01.015 Garg, B. K. )2003(. Nutrient uptake and management under drought: nutrient-moisture interaction. Environmental Science, Biology, 27, 1–8. https://doi.org/10.1201/9780824746728.CH12 Gómez-Bellot, M. J., Garcia, C. J., Parra, A., Vallejo, F. & Ortuño, M. F. (2023). Influence of drought stress on increasing bioactive compounds of pomegranate (Punica granatum L.) juice. Exploratory study using LC–MS-based untargeted metabolomics approach. European Food Research and Technology, 249(11), 2947–2956 https://doi.org/10.1007/s00217-023-04340-8 Halilova, H. & Yildiz, N. (2010). Does climate change have an effect on proline accumulation in pomegranate (Punica granatum L.) fruits? Scientific Research and Essay, 4(12), 1543-1546. Holland, D., Hatib, K., & Bar-Yáakov, I. (2009). Pomegranate: botany, horticulture, breeding. In: Horticultural Reviews, Janick, J. (ed.), Vol. 35, John Wiley and Sons, Inc. 127-191. Jamali, B. & Eshghi, S. (2014). Application timing of nitric oxide ameliorates on deleterious effects of salinity on growth and fruit quality of strawberry cv. ‘Selva’. Journal of Berry Research, 4(3),137–145. Jamali, B., Eshghi, S. & Kholdebarin, B. (2016). Changes in antioxidant activities of strawberry cv. ‘Selva’ as affected by salicylic acid application timing under saline conditions. Journal of Berry Research. 6(3), 291-301. DOI:10.3233/JBR-160130 Jamali, B. & Bonyanpour, A. R. (2018). Comparison of fruit quality characteristics and polyphenolic compounds in seven Iranian pomegranate cultivars. Horticulture International Journal. 2(6), 469‒473. http://dx.doi.org/10.15406/hij.2018.02.00098 Jaleel, C. A. & Llorente, B. E. (2009). Drought stress in plants: A review on water relations. Bioscience Research. 6(1), 20-27. Kalra, Y.P. (Ed.) (1998). Handbook of reference methods for plant analysis. CRC Press, New York, USA. https://doi.org/10.1201/9780367802233 Khattab, M., Shaban, A., El-Sherif, A. & El-Deen Mohammad, A. (2011). Growth and productivity of pomegranate trees under different irrigation levels I: Vegetative growth and fruiting, Journal of Horticultural Science and ornamental Plants, 3(2), 194-198 Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembrane. Methods Enzymology. 148, 350-382. Liu, C., Liu, Y., Guo, K., Fan, D., Li, G., Zheng, Y., Yu, L. & Tang, R. (2011). Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environmental and Experimental Botany, 71(2), 174–183. https://doi.org/10.1016/j.envexpbot.2010.11.012 Martinez, J. P., Silva, H., Ledent, J. F., & Pinto, M. (2007). Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). European. Journal of Agronomy, 26(1), 30–38. https://doi.org/10.1016/j.eja.2006.08.003 Merchi, B., Tekaya, M., Hemamai, M., Chehab, H. (2020). Effects of drought stress on phenolic accumulation in greenhouse-grown olive trees (Olea europaea). Biochemical Systematics and Ecology, 92, 104-112. http://dx.doi.org/10.1016/j.bse.2020.104112 Misan A. C., Mimica-Dukic N. M., Mandic A. I., Sakac M. B., Milovanovic, I. L., & Sedej, I. J. (2011). Development of a rapid resolution HPLC method for the separation and determination of 17 phenolic compounds in crude plant extracts. Central European Journal of Chemistery, 9(1), 133-142. http://dx.doi.org/10.2478/s11532-010-0126-8. Naeini, M. R., Khoshgoftarmanesh, A. H. & Fallahi, E. (2006) Partitioning of chlorine, sodium, and potassium and shoot growth of three pomegranate cultivars under different levels of salinity, Journal of Plant Nutrition, 29(10), 1835-1843. https://doi.org/10.1080/01904160600899352 Okhovatian-Ardakani, A. R., Mehrabanian, M., Dehghani, F. & Akbarzadeh, A. (2010). Salt tolerance evaluation and relative comparison in cuttings of different pomegranate cultivars. Plant, Soil and Environment, 56(4), 176-185. https://doi.org/10.17221/158/2009-PSE. Pagter, M., Bragato, H. & Brix, H. (2005). Tolerance and physiological responses of Phragmites australis to water deficit. Aquatic Botany, 81(4), 285-299. http://dx.doi.org/10.1016/j.aquabot.2005.01.002 Parvizi, H., Sepaskhah, A. R. & Ahmadi, S. H. (2016). Physiological and growth responses of pomegranate tree (Punica granatum (L.) cv. Rabab) under partial root zone drying and deficit irrigation regimes. Agricultural Water Management, 163,146–158. https://doi.org/10.1016/j.agwat.2015.09.019 Pourghayumi, M., Rahemi, M., Bakhshi, D., Alami, A. & Kamgar-Haghighi, A. A. (2017). Responses of pomegranate cultivars to severe water stress and recovery: changes on antioxidant enzyme activities, gene expression patterns and water stress responsive metabolites. Physiology and Molecular Biology of Plants, 23(2), 321–330. https://doi.org/10.1007/s12298-017-0435-x Rad, M. H., Asghari, M. & Asareh M. H. (2015). The Effects of drought stress on growth, yield and fruit quality of Pomegranate (Punica granatum L.) cv. Rababe under dry climate condition. Seed and plant production,31 (1), 75-90. https://doi.org/10.22092/sppj.2017.110567 (In Persian) Sarker, U. & Oba, S. (2020). Phenolic profiles and antioxidant activities in selected drought-tolerant leafy vegetable amaranth. Scientific Report. 10, 18287 https://doi.org/10.1038/s41598-020-71727-y Šircelj, H., Tausz, M., Grill, D. & Bati, F. (2005). Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought. Journal of Plant Physiology, 162, 1308-1318. doi:10.1016/j.jplph.2005.01.018 Slabbert, M & Kruger, G. (2014). Antioxidant enzyme activity, proline accumulation, leaf area and cell membrane stability in water stressed Amaranthus leaves. South African Journal of Botany, 95, 123–128. https://doi.org/10.1016/j.sajb.2014.08.008 Taiz, L. & Zeiger, E. (2010) Plant Physiology. Sinauer Associates Inc, USA. Tavousi, M., Kaveh, F., Alizadeh, A., Babazadeh, H., and Tehranifar, A. (2015). Effects of drought and salinity on yield and water use efficiency in pomegranate tree. Journal of Materials and Environmental Science, 6(7), 1975-1980. Zahedi, S. M., Hosseini, M. S., Daneshvar Hakimi Meybodi, N., Abadía, J., Germ, M., Gholami, R. & Abdelrahman, M. (2022) Evaluation of drought tolerance in three commercial pomegranate cultivars using photosynthetic pigments, yield parameters and biochemical traits as biomarkers, Agricultural Water Management. 261(25), 107357, https://doi.org/10.1016/j.agwat.2021.107357. | ||
آمار تعداد مشاهده مقاله: 142 تعداد دریافت فایل اصل مقاله: 129 |