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Abstract 

Determining the elastic constants for composites with fibers is a continuous 

concern of researchers, being studied and analyzed different types of 

materials, with different topologies and geometries. In the work, these 

constants are determined for a composite reinforced with cylindrical fibers 

with a rectangular packing. The obtained results are applied for the 

calculation of these constants for a composite used in engineering 

applications. 
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1. Introduction 

Determining the elastic constants for any type of material used in engineering applications is an important 

objective for designers. The methods of obtaining them are theoretical, using different calculation formulas obtained 

in certain assumptions by researchers or experimental methods, the safest for this purpose. For composite materials, 

in particular for those reinforced with fibers, the way to obtain these formulas is presented in a rich literature. We 

mention that for many of these methods it is necessary to determine the stress and strain field, so definitely a 

difficult numerical calculation. Other frequently used methods are the variational ones that offer upper and lower 

limits of the modulus of elasticity or other elastic constants (bulk modulus, shear modulus, Poisson's ratio, etc.). The 

accuracy of the estimates in this approach is given by the difference between the two limits. And it can be quite bad 

for certain concentrations of the phases of the composite material [1]. They are obtained for particular cases of 
boundary conditions and are, in general, rather imprecise [2, 3]. Another type of approach, using micromechanical 

models, gives better values for the elastic constants but requires the determination of the stress and strain field for 

the studied materials, in certain loading cases [4-6]. In engineering practice, composites reinforced with cylindrical 

fibers are frequently used and, as a consequence, numerous studies on elastic properties have been carried out [7-10]. 

A series of theoretical results are presented in [11-16]. In all cases, the experimental methods of obtaining the results 

represent the most suitable solution for obtaining credible values, but the use of these methods involves significant 

costs with equipment and time. This is the reason why, in the first phase of a project, it is necessary to have some 

estimates that can be obtained easily, quickly and with a satisfactory degree of precision. 

A method that allows the determination of the homogenized elastic coefficients using a repeatable unit of the 

material, called representative volume, is presented in [17], being applied to a composite material reinforced with 

short fibers. The method can be successfully used for other topologies of the fiber structure. Among the methods 
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used, the Finite Element Method (FEM) can be distinguished, which has proven to offer very good results for 

solving such problems [18, 19]. 

FEM has the advantage of being able to introduce other factors that could influence the value of the elastic 

constants, such as temperature or humidity. The study of a polymer composite reinforced with unidirectional 

graphite fibers is done in [20-22]. 

The experimental methods ensure values obtained with high precision for materials currently used in engineering 

such as brass, copper, Plexiglas and PVC [23-26]. An important application in practice is the use of composites in the 

manufacture of pipes. They are made of rubber reinforced with metal braids. The use of pipes on a very large scale 

justifies the interest in the study of these elements and the materials from which they are made [27]. Wood is a 

composite material with fibers and in this case, FEM is used for the mechanical identification of some types of wood 

[28-32]. 

And for the analysis of reinforced concrete MEF proved to be a useful and suitable method for the analysis of the 
elastic constants of the homogenized material [33, 34]. Experimental checks have demonstrated in this case the 

accuracy of the results obtained. The study of polymer composites reinforced with glass fibers has experienced a 

strong development in the last period, due to the numerous engineering applications where they are found. The 

viscoelastic behaviour of these materials makes the study more difficult [35]. The time factor in the description of 

viscoelastic materials is introduced in [34]. Other types of materials are studied in [36-41]. 

In the work, the elastic constants are determined for a polymeric material reinforced with cylindrical, parallel 

fibers placed in a rectangular arrangement. The method is simple and the sought values can be obtained with a very 

good precision for applications. The method based on which these elastic constants are calculated can also be 

applied to other situations encountered in practice. 

 

2. Models and Methods 

The effective viscoelastic behaviour of a two phases composite body is dependent upon the elastic/viscoelastic 

property of the constituent material. 

A number of approaches are presented in the literature for the prediction of the bounds on elastic/viscoelastic 

parameter of multi (or two) phase composite. Most of the works which have been done to estimate the bounds on the 

effective elastic/viscoelastic property of fiber reinforced composite, assume both of the phases to possess isotropic 

material behaviour. Little work has been presented in the literature for those cases where for instance the reinforcing 

phase has anisotropic or transversally isotropic properties. An example of this could be a graphite/epoxy composite 

where the matrix material is considered to be isotropic but the fiber show anisotropic behaviour. To get a better 

insight into such problems, let us briefly review some of the methods encountered in the literature. First however 

some hypothesis for estimation of the bounds on elastic/viscoelastic moduli, when both phases are isotropic, will be 

presented. 
The problem considered for the computation of the bounds on elastic/ viscoelastic moduli is that of parallel 

fibers which are long enough so that end effects can be neglected. The material may be represented by a cylindrical 

specimen whose cross section is very large in comparison the fiber cross section. The longitudinal axis of the 

specimen coincides with the fiber direction and since the end effects are neglected, the fiber may be assumed to run 

continuously through the entire length of the specimen. 

It is also assumed that the specimen is statistically both homogeneous and transversally isotropic. The problem 

to be considered is that of predicting the bound on elastic/viscoelastic property of such a specimen in terms of its 

geometric and the elastic/viscoelastic moduli of its constituents. In order to demonstrate the difficulties in obtaining 

the bounds on characteristic values of a composite with analytical procedure, let us first assume that the two 

constituents are linear and isotropic. Let's 
+
23K  and 

+
23G   denote the upper bounds of the bulk and shear moduli 

respectively, while 
−
23K  and 

−
23G  represent the corresponding lower bounds. Note that here and is the remaining of 

the present section the upper and the lower bound on the characteristic parameters are represented by “+” and “-“ 

upper indices as in 
+
11E , 

−
11E , 

+
12 , 

−
12 . 

 There are different approaches in the literature which allows the prediction of the above bounds.  Using Hill's 

theory [24-27] one may obtain the bounds on the bulk modules 23K ,  the longitudinal Young's modulus 11E , and 

the Poisson's ratio 13121  == .  These bounds are determined in terms of the volume ratios of fiber f  and 

matrix m : 
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Note that in this relation K  is the plane-strain bulk modulus and G is the shear modulus, where as before 

mf ,=  is to represent the fiber and matrix phases, respectively.  These bound should be more impressive than 

those suggested by Voigt (V) and Reuss (R) expressed as: 
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for the shear modulus. This means that the bulk and shear moduli follow the relations: 
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and 

+− == 232323 GGG  ,                                                              (8) 

respectively. 

For the longitudinal Young's modulus E11, the results obtained by Hill can be written as: 
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where mixE1  is to represents the modulus determined according to the law of mixture, viz. 

                                                                          mmffmix EvEvE +=1  .                                                            (11) 

It is interesting to note that if the Poisson's ratio of the two constituents is the same, the upper and lower bounds 

are identical which in turn means that the law of mixtures can be used for the exact estimation of the Young's 

modulus.  

The bounds on the Poisson's ratio have been shown to be: 
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Note that in this relation: 

mmffmix vv  +=1   .                                                                 (14) 

An example of the bounds on 23K  and 1  is shown in Fig. 1 and 2 for a composite with the indicated properties. 

In Hashin [17] following bounds are given: 
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for the share modulus 23G  and  
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Fig.1: variation of upper and lower bounds on 23K  with fv  [24] 

 

Fig.2: variation of upper and lower bounds on 1  with fv  [24] 

 

The results reveals that there exists a rather large difference between the bounds and as a consequence this 

formulation of the bounds cannot be of much interest from engineering point of view. Attention is drawn to the 

effect that using Hill's [23-26] and Hashin's [17-20] theories not all the five effective model required for the 

characterization of the transversally isotropic composite can be obtained. This is necessary to establish all the 

relations required to obtain the compliance matrix and hence the time dependent strain in a creep experiment. 

Another limitation of the above theories is that the two phases in the composite are considered isotropic. Recall that 

is the computation of the above bounds, the concentration of the two phases and not the shape of the reinforcing 

phase is considered. Therefore, it should be expected that in some cases these bounds may be very different. 
Obviously by taking also the geometry of the fiber parking into account, more accurate bounds can be expected 

then in those cases when only the volume ratios of the constituents are considered. For a reinforced composite with 

cylindrical fibers, the upper and lower bounds on the effective elastic moduli have been calculated for a geometry of 

hexagonal fiber array (Fig. 3) by Hashin [20]. For illustrative purpose two of these bounds are presented in Figures 6 

and 7 for two different ratios of fiber to matrix moduli.  
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Now an attempt will be made to apply Hashin's approach [20] to determine the upper and lower bounds on the 

bulk modulus for a rectangular fiber arrangement. To the authors knowledge this theory has not been applied to the 

quadratic array and is done for the first time in the present work. The procedure is applied in the elastic domain. 

This can be taken as an approximation of the viscoelastic behavior at an infinitesimally small-time t. By using the 

time dependent function of the elastic constant of the matrix constituent, the long-time material behaviour of the 

composite can be determined. Note also that both phases of the composite are considered to be isotropic. The 

Young's modulus and Poisson's ratio of the phases E and  ( fm == ) as well as geometrical parameters 0r , 

fr  and mr  are known (see the results in Fig.4 and 5). 

 
Fig.3: The hexagonal array 

 

 

 

Fig.4: the upper and lower bounds on G1 for hexagonal array, Ef  = 72.4; m =0.35; f =0.22  (after [21]) 
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Fig. 5: the upper and lower bounds on E22 for hexagonal array, Ef  = 72.4; m =0.35; f =0.22 (after [21]) 

3. Rectangular array 

For a fiber reinforced cylindrical specimen with infinitely long circular fibers running in x1 direction and 

distributed in the x2x3 plane - plane of isotropy - following problem can be considered (Fig.6):   

The boundary conditions imposed on the composite specimen can be expressed as: 

jiji xSu =)(0   ,                                                                         (21) 

where )(0 Sui   are displacement component or as: 

jiji nST =)(0  ,                                                                          (22) 

with )(0 STi  as the stress-vector components. In both of the above conditions, S is to represent the entire bounding 

surface of the specimen, xj  are the coordinates of any point on the surface and nj are the components of the outward 

normal to  representing the contour of the unit cell.  

Note that if boundary condition (11) is applied to a macroscopically homogeneous material the average strains over 

the specimen can be shown as to be ij and for (12) the average stresses to be ij [42, 43]. Hashin refers to 

cylindrical sub-regions of the composite specimen having the same property as those of the entire composite as the” 

representative volume element” (RVE). For the rectangular array considered in the current investigation the same 

analogy can be used for a repeating unit cell (RUC) which is a rectangular prism consisting of one central fiber and 

the corresponding matrix material as shown in Figure 8. 

       The constitutive relation for a composite specimen assuming a homogeneous body can be expressed as either of 
the following relations: 

khijkhij C  =   ,                                                                               (23) 

khijkhij S  =  .                                                                                (24) 

The various notations applying to ijkhC will be explained in Appendix C. In these equations ij and ij are to 

represent the average stresses and strains in the RUC which are assumed to be the same as those existing in the bulk 

material. As mentioned earlier, the number of independent elastic moduli is reduced to five for a transversely 

isotropic specimen. 
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Fig.6: the rectangular fiber packing arrangement 

 

Depending on the problem being investigated, either ij or the average strain ij are sought while applying 

conditions (21) or (22) respectively. When applying either of the above boundary conditions the strain energy W 

stored in the RUC is: 

ijijW 
2

1
= .                                                                               (25) 

By considering boundary conditions (21) and making use of Eq. (23) this last equation can be written as: 

khijijkh
e CW 

2

1
=  .                                                                          (26) 

Conversely when boundary condition (22) is imposed, it follows together with Eq. (24) that: 

khijijkh
e SW 

2

1
=  ,                                                                          (27)                       

where ijkhC  and ijkhS  are the effective elastic moduli and compliances respectively. As mentioned earlier in the 

present study the fiber have a square parking geometry which give the composite specimen quadratic symmetry. 
Therefore, the plan transverse to the longitudinal axis of the composite is taken as the plan of isotropy. 

The stress strain Eq. (13) for the above transversally isotropic material may be written in terms of the five elastic 

moduli in the form presented in appendix C. Now the upper and the lower bound on the bulk modulus for the square 

array presented in Figure 8 will be determined. In this figure rf denote in a cylindrical surface the radius of the 

circular fibers surrounded by the circular matrix mantle with the radius rm . By applying Eq. (21) to the boundary of 

the above cylindrical surface and using the principle of minimum potential energy throughout the composite 

following relation can be written: 

                                                                
 UU

~
   .                                                                                (28)                  

 In this equation 
U

~
 is the strain energy for the displacement field (21) and 

U is the actual strain energy 

Eq.(15). This relation supplies one of the conditions to be satisfied by the combination of the elastic constant, viz.the  

upper bound. Similar arguments can be made for the stress energy 
U

~
 and the corresponding actual stress energy 

U , Eq.(16). By applying the stress field (22) throughout the composite and using the principle of minimum 

complementary energy it follows that: 

 UU
~

  .                                                                                 (29) 

 This provides a new bound for the constants. Let us know for the sake of illustration, apply the foregoing 

procedures to determine the bounds on the bulk modulus: 
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For a particular plane-strain field, where 

 == 3322 ,                                                                              (31) 

 with other strain component being identical to equal to zero, the boundary conditions (21) become: 
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 In this case the strain-energy is: 
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The boundary condition (32) expressed it in cylindrical coordinate system are: 

.)(0;;0 0000
1 rruruuu rx =====                                               (34)            

This axially symmetric plane-strain problem is well introduced in the literature for which the following general 

solution may be written as: 

   ;
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and: 

,22
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B
GAKr
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where ru  and r  are radial displacement and radial stress respectively. In this equation K is the plane-strain bulk 

modulus and G is the share modulus. It should be pointed out again that for the fiber f= and for the matrix 

m= . And this is only for notational purposes and does not imply some summation of tensors. Now, one 

should seek to such solution for frrr 0 and mf rrr   with the corresponding elastic constants. These two 

sets of equations contain for constant fmf BAA ,,  and mB  which required four conditions for their evaluation. One 

condition is provided by substituting mrr = in the relation rur =0
 given above. The other three are obtained by 

requiring continuity of ru  and r  at the interfacial location frr =  and 0=r  at 0rr =  . According to Hashin 

[20] the radial stress at mrr =  can be shown to be: 
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with: 
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For the fiber packing arrangement considered in the present study where 00 =r , the expression for Km simplifies 

to: 
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The strain energy stored in a composite cylinder is given by: 
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where l is the length of the cylinder. This expression can be written in a simplified form as: 

ccKmcc VmKU  2=   ,                                                                     (42)                     

where Eqs.(35) and (37) have been used. Here lrV mcc
2=  is the volume of the composite cylinder. The “strain 

energy” 
U

~
 stored in the entire composite is now given by: 

2
2

1
2 22

~
VKVmKU mKm  +=   ,                                                    (43)                          

where V1 represents the volume occupied by all composite cylinders and V2 is the remaining volume. On the other 

hand, the actual strain energy can be written as: 

                                                                              VKU 2
232  = ,                                                                     (44)      

where V is the sum of the above two volumes. The upper bound 
+
23K  can be obtained by using the expression (17) 

togheter the Eqs. (43) and (44), i.e. 
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v  For the geometry of the square array, it can be shown that: 
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where tv  represents the fractional volume of the fiber in the composite. 

In order to obtain the lower bound 
−
23K , the boundary condition (22) is used with: 

                                                                          == 3322  .                                                                        (49)      

And all other stress components equal to zero except 11  which is necessary to prevent 11 . A procedure similar to 

that presented to obtain the upper bound should be followed now while applying the concept of “stress energy”  
U

~
    

as well as the inequality (39). It can be shown that: 

23

2

2K
W

 =    ,                                                                        (50)     

which results in the following expression for the lower bound on the bulk modulus: 
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In Figures 7 and 8 the bounds computed with (45) and (51) in the composite for a square packing geometry together 

with those obtained by Hashin [20] for a hexagonal arrangement are presented. The bounds of Hashin are more 

impressive because of the more efficient fiber arrangement compared with that of the square fiber packing. Figures 7 

and 8 highlight that for the fiber concentration used in the present investigation ( %60=f ) there exists a rather 

difference between the bounds presented, thus the information supplied by these bounds can not be descriptive of 

the true behavior of the material. 

 

4. Conclusions 

In the work, the authors propose a method for calculating the elastic constants for a composite material 

reinforced with cylindrical fibers, in which the fibers are arranged in a rectangular network. The advantage of the 

method is to provide fast and relatively accurate results for the design stage of a product. In this way the costs are 

reduced and the results used are sufficient for the first phase of the design. It is only necessary to know the values of 

the elastic constants for the constituent phases of the composite and the percentage of fiber and matrix that make up 

the material. The speed with which this method can be used and with which the results are obtained and its 

simplicity represent an important argument for its application for a quick and precise estimation of the mechanical 

properties. For the case presented in the paper, the results are similar to other results obtained with other methods, 
numerically or experimentally [44]. The presented model can be improved if this is desired, especially in the case of 

the appearance of new parameters that describe the material situation. For example, if the effect of temperature or 

humidity must be taken into account. The method can also be used for these cases by refining the presented model. 

There are therefore possibilities for the development of research in the future. 

 

 

Fig. 7: the upper and lower bounds on K23 for hexagonal and rectangular array 
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Fig.8. the upper and lower bounds on G23 for hexagonal and rectangular array 
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