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Abstract 

Physical systems frequently exhibit nonlinear behavior that remains 

unresolved in the majority of cases. In this study, we employ the Aboodh 

transform-based variational iteration method (ATVIM) to resolve the 

nonlinear model of a tapered beam. In order to solve the governing equation, 

the periodic motion is sought, and the explicit relationship between 

frequency and amplitude is revealed. The outcomes of the ATVIM approach 

are compared with those of other prevalent techniques, and a satisfactory 

concordance is observed between them. This study also provides an 

analytical approximation of the tapered beam for a detailed understanding 

of the effects of factors on the nonlinear frequency, which can be beneficial 

to researchers and engineers working on the analysis and design of 

structural projects. 
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1. Introduction 

The study of nonlinear phenomena is of significant importance, given their prevalence in a multitude of natural 

systems and engineering applications. These include chaos theory, robotics, material sciences, and biological 

systems, as evidenced by the extensive literature on the subject [1-5]. An understanding of these phenomena can 

facilitate the explanation and prediction of complex physical processes, which in turn can lead to the development of 

new technologies and novel applications. For instance, the advancement of nonlinear optics has resulted in the 

development of sophisticated laser systems, while nonlinear control theory has facilitated the design of more 

efficient and robust control systems. One of the most significant developments in structural engineering is the 

tapered beam. 

A tapered beam is a structural element that exhibits a variable cross-sectional profile along its length. The beam 

may either expand or contract in width and/or depth, resulting in a gradually changing cross-section. It is necessary 
to examine the nonlinear oscillatory dynamic behaviour of these elements at large amplitudes, as they are commonly 

used in load-bearing applications such as bridge construction, aeronautical engineering, automobile manufacturing, 

and other load-bearing applications [6].  

The differential equations are the principal instrument utilized to model the nonlinearities inherent in the tapered 

beam model. Consequently, the nonlinear oscillatory differential equations have received considerable attention. To 
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address these vibratory issues, a multitude of analytical and numerical techniques have been proposed. Analytical 

techniques are more appealing in the context of oscillatory problems because they provide nonlinear frequency and 

approximate solutions in terms of parameters. There are numerous analytical approaches for nonlinear oscillators, 

including the variational theory [7-11], the frequency formulation [12-19], the max-min approach [20], the variational 

iteration method [21], the homotopy perturbation method [22-24]. 

A nonlinear partial differential equation that exists in both space and time regulates the nonlinear vibration of 

beams. Consider the tapered beam depicted in Figure 1, the dimensionless governing differential equation is [25] 
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where u  is displacement, ,   are arbitrary constants and t  is time. 

 
Fig 1: Tapered Beam 

 

This paper introduces a novel approximate analytic technique, the Aboodh transform-based variational iteration 
method (ATVIM), which represents a significant advancement in the field of variational iteration method. 

2. Aboodh transform-based variational iteration method 

The VIM was initially developed in the late 1990s [21]. Since its inception, this technique has been employed by 

numerous individuals to address a range of problems, including initial values, boundary values, linear, and nonlinear 

problems. In order to employ this technique, a correction functional must be constructed, and the solution must be 

acquired through an unending sequence that results in a precise response. The application of this strategy to real-

world applications may be challenging due to the method's reliance on the knowledge of variational theory [8, 9, 11, 

14], which requires an understanding of the Lagrange multiplier. 

In 2019, the Laplace transform was incorporated with the variational iteration method, making the identification 

of the Lagrange multiplier much easier [26]. In this paper, the Aboodh transform [27-29] is used for the same purpose.  

Let us assume that f(t) is an exponential continuous piecewise function. In this case, the Aboodh transform is 
defined as  

( ) ( ) ( )
1

, 0, ,
1 2

0

vt
A f t f v f t e dt t a v a

v

 −
= =         (2) 

where , 0
1 2

a a   can either be infinite or finite. Ref. [31] displays the Aboodh and inverse Aboodh transform of 

certain functions that are pertinent to this study. The first and second order time derivative of f(t) by using Aboodh’s 

transform is: 

( ) ( )
( )0

,
f

A f t vf v
v

 = −        (3) 

( ) ( )
( )

( )
02

0 ,
f

A f t v f v f
v


 = − −       (4) 

If T is any positive integer and f(t) & g(t) are piecewise continuous functions over the interval [0,T ), then the 
convolution of f and

 
g

 
may be represented as 
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The Aboodh transform of the convolution can be represented as: 
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( )( ) ( ) ( ) ( ) ( ) ,A f g t A f t A g t vf v g v = =               (6) 

Now, consider the general nonlinear oscillatory equation: 

( ) 0,u f u + =       (7) 

We re-write Eq. (7) in the form 

( )2
0,u u g u + + =       (8) 

where ( ) ( ) ( )2
,g u f u u = −  is the frequency and u(t) is a function of time. The variational iteration method's 

correction functional is expressed as: 
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where   is general Lagrange multiplier. Now, applying Aboodh transform in Eq. (9), we have 
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Attempting to make Eq. (10) stationary with respect to ( )u tn  allows for the best value of   to be obtained; this 

requires 
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From above equation we have 
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We assume in preceding derivation that 
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By employing inverse Aboodh transform on Eq. (12) yields 
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( )
1

sin .t t 


= −        (14) 

As a result, we can find the Lagrange multiplier considerably more quickly than we could using variational 

theory. The approximate solution is given by using the Lagrange multiplier in Eq. (10) as follows: 
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From Eq. (15), we can obtain a relationship between   and A  by mean of no secular term in .
1

u
n+

 

3. Approximate solution 

Consider the general form of tapered beam [6, 10]. 
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with basic conditions, we have 

( )0u A=  and ( )0 0.u =         

where A  stands for the highest amplitude. 

Eq. (16) may be represented as follows: 
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Aboodh transform-based variational iteration method (ATVIM) is used to obtain the correctional form for Eq. 

(17), which results in the form. 
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We have the following iterative formula: 
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On both sides, using the Aboodh transform, we have  
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For 0,n =  the above equation becomes 
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By using basic conditions, we choose 
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Applying Aboodh inverse transform, we have 
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In Eq. (23) there is no secular term that implies 
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Hence, the  approximate solution is 
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In order to determine the natural frequency and associated displacement of tapered beams, which serve as 

indicators of the ATVIM's accuracy, the previously described processes are used. The findings from the ATVIM are 

compared in the table with the precise outcomes for various values of the parameters , and .A    The first-order 

analytical estimations for 0.1, 0.1, 0.1A  = = =  have a relative error of analytical methods of 0.278% as shown 

in  Table 1.  

By contrasting the time period oscillatory displacement behavior for tapered beams with exact calculations, as 

shown in Figs. 2-4, the precision of these approximative analytical methodologies is further demonstrated and 

confirmed. The system travels regularly, and the magnitude of the vibration depends on the initial conditions, as 

shown in Figs. 2, 3, and 4. 
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Table 1: A comparison of frequency related to different system parameters [6] 

( ), ,A    
EX

  
VIM

  
MMA

  
HA

  
VIM
  

MMA
  

HA
  

(0.1,0.1,0.1) 0.9973 1.0001  1.0002 1.0001 0.2777% 0.2877% 0.2777% 

(0.2,0.1,0.1) 0.9973 1.0005 1.0007 1.0005 0.3178% 0.3379% 0.3178% 

(0.3,0.1,0.1) 0.9973 1.0011 1.0015 1.0011 0.3780% 0.4181% 0.3780% 

(0.3,0.1,0.2) 0.9973 0.9989 1.0045 1.0045 0.1574% 0.7189% 0.7189% 

(0.3,0.2,0.2) 0.9973 1.0022 1.0030 1.0022 0.4883% 0.5685% 0.4883% 

(0.3,0.3,0.3) 0.9973 1.0033 1.0044 1.0033 0.5985% 0.7088% 0.5985% 

(0.4,0.1,0.1) 0.9973 1.0020 1.0026 1.0020 0.4682% 0.5284% 0.4682% 

(0.4,0.2,0.3) 0.9973 1.0000 1.0105 1.0098 0.2677% 1.3205% 1.2503% 

(0.4,0.6,0.7) 1.0150 1.0075 1.0205 1.0170 0.7438% 0.5369% 0.1921% 

(0.5,0.1,0.1) 0.9973 1.0031 1.0041 1.0031 0.5785% 0.6788% 0.5785% 

(0.6,0.1,0.1) 0.9973 1.0044 1.0059 1.0044 0.7088% 0.8592% 0.7088% 

(0.9,0.1,0.1) 1.0150 1.0097 1.0131 1.0097 0.5270% 0.1921% 0.5270% 

(1,0.09,0.1) 1.0150 1.0083 1.0176 1.0143 0.6649% 0.2512% 0.0738% 

(1,0.2,0.3) 0.9973 1 1.0607 1.0553 0.2677% 6.3539% 5.8125% 

(1,0.3,0.4) 1.0150 1.0104 1.0731 1.0632 0.4581% 5.7189% 4.7436% 

(1,0.4,0.5) 1.0300 1.0198 1.0847 1.0704 0.9931% 5.3076% 3.9193% 

(1,0.5,0.6) 1.0300 1.0284 1.0954 1.0770 0.1582% 6.3464% 4.5600% 

(2,0.09,0.1) 1.0300 1.0288 1.0635 1.0496 0.1194% 3.2494% 1.8999% 

(2,0.1,0.1) 1.0472 1.0408 1.0572 1.0408 0.6111% 0.9549% 0.6111% 

(2,0.2,0.3) 1.0150 1 1.1921 1.1650 1.4826% 17.4424% 14.7726% 

(2,0.3,0.4) 1.0472 1.0274 1.2150 1.1726 1.8907% 16.0236% 11.9747% 

(2,0.5,0.6) 1.1023 1.0660 1.2490 1.1832 3.2939% 13.3075% 7.3382% 

 

 

 
Fig 2: A comparative analysis of the analytical and enhanced solutions for the case when A=0.4, α=0.2 and β=0.3 
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We exhibit the accurate displacement for the parameter sets A=0.4, α=0.2 and β=0.3 from the numerical 

solutions for RK4 (solid line), ATVIM (red plus sign), MMA (black solid line), and HA (green solid line) on the left 
side of Figure 2. It is discovered that, within the range of time and parameter sets taken into consideration for this 

research, the approximations for the displacement of the tapered beam closely resemble those obtained from the 

RK4. The accuracy of the results provided by ATVIM, MMA, and HA in this specific case is nearly identical. On 

the right side of Figure 2, we also show errors against time for the identical value parameters. The ATVIM error (the 

disparity between the RK4 results and the ATVIM), the MMA error (the difference between the RK4 outcome and 

the MMA), and the HA error (the distinction between the RK4 conclusion and the HA) are each indicated by a red 

plus sign with straight lines, a black five-pointed star with dotted lines, and a green six-pointed star with solid lines, 

respectively. Even while it is certain that flaws are minor, it is given that the ATVIM is weaker than the MMA and 

HA. 

 

 

 
Fig 3: Comparison of the approximate solution for  the case when  A=0.4, α=0.6 and β=0.7 

 

For the parameter set A=0.4, α=0.6 and β=0.7 on the left side of Figure 3, we plot the precise displacement from 

the computations RK4 (solid line), ATVIM (plus sign in red), MMA (black solid line), and HA (green solid line). 

For the range of time and parameter sets taken into consideration for the present study, it is discovered that the 

estimations for the displacement of the tapered beam closely resemble those obtained from the RK4. The reliability 

of the outcomes presented by ATVIM, MMA, and HA, in this case, is nearly the same. On the right side of Figure 3, 

we additionally demonstrate lapses against time for the same value parameters. The ATVIM error (the distinction 

between the RK4 conclusion and the ATVIM), the MMA error ( disparities between the RK4 results and the MMA), 

and the HA error (a distinction between the RK4 outcome and the HA) are each symbolized by a red plus sign with 
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straight lines, a black five-pointed star with dotted lines, and a green six-pointed star with solid lines, respectively. It 

is certain, though, that the ATVIM is stronger than the MMA and HA. 

 

 
Fig 4: The enhanced solution for the case when A=1, α=0.09 and β=0.1 

 

In Figure 4, we demonstrate the accurate displacement from the computational results RK4 (solid line), ATVIM 

(plus sign in red), MMA (black solid line), and HA (green solid line) for the parameter set  A=1, α=0.09 and β=0.1. 

For the range of times and parameter sets taken into consideration for the present research, it turns out that the 
predictions for the displacement of the tapered beam are very comparable to those obtained from the RK4. The 

outcomes obtained through ATVIM, MMA, and HA have accuracy levels that are quite similar in this case. For the 

same value parameters, we also display erroneous against time on Figure 4's right side. The ATVIM error 

(difference between the RK4 results and the ATVIM), the MMA error (difference between the RK4 conclusion and 

the MMA), and the HA error (difference between the RK4 outcome and the HA), respectively, are represented by a 

red plus sign with straight lines, a black five-pointed star with dotted lines, and a green six-pointed star with solid 

lines. It ensures that the ATVIM is better than MMA and HA. 

In figures 5 and 6, for small values  and ,  the impact of these parameters on the frequency associated with 

various amplitude parameters has been investigated. 
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Fig 5: The comparison of the frequency associated with different amplitudes and 1. =  

 
Fig 6: The contrast of frequency for different amplitudes  and 1. =  

4. Conclusion 

The governing equations for the nonlinear oscillations of tapered beams were resolved in the current study using 

the ATVIM. The analytical results provide a thorough and insightful understanding of the impacts of system 

elements and beginning circumstances. Analytical outcomes also provide a frame of reference that other 

computational methods might use to validate and ensure precision. ATVIM can be used to tackle both strong and 

moderate nonlinear situations. This technology's accuracy over the entire spectrum of oscillation values for 

amplitude is its best quality. It may also be employed to resolve advanced, conservative nonlinear oscillators. The 

components of the ATVIM solutions are easily calculable and fast converge. Also, it can be seen that ATVIM 

produces results that require less computer work than those of other analytical techniques and that only one iteration 
is enough to reach valid conclusions. The application of the ATVIM in the large amplitude nonlinear oscillation 

problem taken into consideration in this work serves as an example of the efficiency of those methods in resolving 

nonlinear oscillation problems. 
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