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Abstract 

Multiscale modeling (MM) has broadened its scope to encompass the calculation 

of mechanical properties, with a particular focus on investigating how the 

dimensions of single-walled carbon nanotubes (SWCNTs), specifically their 

diameters, affect the mechanical properties (Longitudinal and Transverse 

Young’s modulus) of simulated nanocomposites through Molecular Dynamics 

(MD) simulations. The MD method was employed to construct nanocomposite 

models comprising five different SWCNTs chiralities: (5, 0), (10, 0), (15, 0), (20, 

0), and (25, 0), serving as reinforcements within a common Polymethyl 

methacrylate (PMMA) matrix. The findings indicate a correlation between the 

SWCNT diameter increase and enhancements in mechanical and physical 

properties. Notably, as the diameter of SWCNTs increases, the density, 

Longitudinal Young’s modulus, Transvers Young’s Shear modulus, Poisson’s 

ratio, and Bulk modulus of the simulated nanocomposite transition from (5, 0) to 

(25, 0) by approximately 1.54, 3, 2, 1.43, 1.11, and 1.75 times, respectively. To 

corroborate these results, stiffness matrices were derived using Materials Studio 

software. 
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1. Introduction 

Molecular dynamics simulation is a powerful computational technique used to study the behavior of atoms and 

molecules over time. It employs Newton's laws of motion to track the positions and velocities of particles in a 

system, allowing researchers to simulate the dynamic evolution of molecular systems under various conditions. By 

numerically solving the equations of motion for a system of interacting particles, molecular dynamics simulations 

provide insights into the structural, thermodynamic, and kinetic properties of materials at the atomic scale [1-3]. 

Recently, nanostructured materials, particularly carbon nanotube (CNT)-reinforced nanocomposites, have garnered 

attention as a novel generation of materials among researchers [4, 5]. CNTs possess exceptional properties including 
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high stiffness, strength, and thermal and electrical conductivity, rendering them ideal candidates for polymer-based 

nanocomposites [6]. The mechanical properties of such nanocomposites are affected by various parameters such as 

the size, distribution, orientation, and morphology of the reinforcement [7-10]. In CNT-reinforced composites, 

factors like chirality and aspect ratio significantly influence elastic properties such as Young's modulus [11]. 

Atomistic and multiscale modeling (MM), particularly employing molecular dynamics (MD) simulations, have been 

instrumental in predicting the physical and mechanical properties of thermoset polymeric structures [12-16]. Several 

studies have utilized MD to model nanocomposite samples at the nanoscale [17-19]. For instance, Mahboob and 

Islam investigated the mechanical properties of CNT-reinforced polyethylene (PE) composites using MD, revealing 

a decrease in Young’s modulus with increasing defects in the CNTs [20]. Arash et al. [21] explored the mechanical 

properties of CNT/poly (methyl methacrylate) (PMMA) composites via MD, analyzing the effects of CNT aspect 

ratio on Young’s modulus using the Mori–Tanaka (MT) method. Al-Haik et al. [22] examined how CNT 

construction influences radiation-induced damage in composites based on PE and single-walled carbon nanotubes 
(SWCNTs) with different chiralities using MD. Despite the exceptional mechanical properties attributed to CNTs, 

experimental results have shown only modest improvements in the effective elastic moduli of nanocomposites, 

which could be attributed to CNT agglomeration. Shi et al. [23] proposed an analytical method to study the effects of 

CNT agglomeration on nanocomposite elastic properties using the MT method, suggesting that increased 

agglomeration could lead to a significant decrease in Young’s modulus. While MD is a potent method for nanoscale 

material modeling and simulation, it is limited by its applicability to small sizes [24-27]. To address this limitation, 

multiscale methods have been developed. Typically, multiscale modeling involves two main steps: atomistic 

simulation at the nanoscale and continuum methods such as micromechanics or finite element methods (FEM) at the 

micro or macroscale. Odegard et al. [28] introduced the effective fiber method for modeling polymer-based 

nanocomposites reinforced with CNTs, combining molecular computations with continuum methods to examine 

elastic behavior across different scales.  
This paper presents a comprehensive study of how carbon nanotube dimensions affect the mechanical properties of 

nanocomposites using the MD method. Simulated nanocomposite models comprising five SWCNT case studies with 

different chiralities [(5, 0), (10, 0), (15, 0), (20, 0), and (25, 0)] as reinforcement, along with Polymethyl 

methacrylate (PMMA) as the matrix, were created using MD. The total weight of the nanocomposite is assumed to 

be 8 grams, with 2 grams allocated to SWCNTs as reinforcement. 

 

2. Materials and Methods 

2.1. Software, Force Field, and Simulation steps 

 
In this article Materials Studio 6.0 has been used for carrying out the molecular (MDs) simulation. To study 

mechanical properties (Longitudinal and Transverse Young’s modulus) of armchair SWCNTs with different 

chiralities (5, 0), (10, 0), (15, 0), (20, 0) and (25, 0) with diameter of 3.91, 7.83, 11.74, 15.66 and, 19.57 A° and the 

same length of 21.30 A° for each five case study as shown in Fig. 1 have been used respectively. To avoid the 

influences of unsaturated boundary conditions, both the ends of CNT were terminated by hydrogen atoms. It is the 

most common force field, has been applied for defining the inter and intra-molecular atomic interactions. The 

ensemble of NVE reveals that the sum of kinetic (KE) and potential energies (PE) is conserved, T and P are 

unregulated, and N, V, and E denote a constant number, volume, and energy, respectively. At this step, the 

simulation box is placed at a temperature of 300 K under NVE. The simulation time is considered 100 ps. NVT 
represents that temperature (T) is regulated via a thermostat, which typically adds a degree of freedom to the 

conserved Hamiltonian; KE and PE are included in the Hamiltonian; P is unregulated. At this part, the simulation 

box is set at a temperature of 300 K under NVT. The initial density of the system (0.9gr / cm³) is assumed to allow 

molecules and atoms to be displaced to move towards optimal mode. The simulation time considered 100 ps. NPT is 

like NVT, but the pressure (P) is regulated. Density is one of the physical properties that is considered in atomic 

modeling. It defines the accuracy of the density of the atoms in equilibrium. If the atomic modeling path is followed 

correctly, the density of the atomic system is expected to be close to the actual density of the system in comparison 

to the macro. Furthermore, it is assumed that after the simulation time the amount of any quantity attributed to the 

system of atoms, including the converged density of the solution fluctuations, will decrease over time. At this point, 

the system is pressurized at atmospheric pressure 1 at a temperature of 300 K under a constant NPT to close the 

system density to the actual density. NPT can also eliminate system tensions. The simulation time at this stage is 
considered 100 ps. 
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Fig. 1. The view of (a) diameter (b) length of armchair SWCNTs with 5 repeat units in Materials Studio software 

 

A single chain of the polymer, consisting of 50 chain length of Polymethyl methacrylate (PMMA), a widely used 

synthetic thermoplastic polymer has been used as a matrix as shown in Fig. 2. Condensed Phase Optimized 

Molecular Potential for Atomistic Simulation Studies (COMPASS). PMMA as the matrix material in this study 

likely stems from its desirable combination of mechanical properties, thermal stability, processability, transparency, 
chemical resistance, and biocompatibility, making it a versatile and relevant choice for investigating the influence of 

carbon nanotube dimensions on nanocomposite properties. 
 

 

Fig. 2. (a) A monomer of PMMA (b) A polymer of PMMA with 50 chain length 

 

The following steps have been taken to complete the MDs method for obtaining mechanical and physical properties 

as shown in Fig. 3. 
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Fig. 3. Four steps to reach mechanical and physical properties using Materials Studio software 

 

2.2. Simulation methodology 

In this part, the effect of the diameter of CNTs on their mechanical properties (Longitudinal and Transverse Young’s 

modulus) is investigated by the MDs method as shown in Fig. 4. To simulate nanocomposite in MDs software, and 
for accurate calculations the total weight percent of reinforcements was 25% of the total weight and constant amount 

(75%) for the polymer. It should be noted that the overall weight of the simulated composites is 8 gr, and the weight 

of the polymer (PMMA) is 6 gr.  
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Fig. 4. Five simulated boxes with different chiralities (a) (5, 0), (b) (10, 0), (c) (15, 0), (d) (20, 0) and (e) (25, 0) using Materials Studio 

software 

3. Result and Discussion  
 

The mechanical properties (Longitudinal and Transverse Young’s modulus) of SWCNTs with different chiralities 

(5, 0), (10, 0), (15, 0), (20, 0) and (25, 0) as the reinforcement and using Polymethyl methacrylate (PMMA) as the 

common matrix are investigated as shown in Fig. 5. The longitudinal Young’s modulus is calculated 3.7, 5.1, 6.3, 

7.9 and 9.5 GPa respectively which shows a threefold increase. The transverse Young’s modulus is calculated 3.3, 

3.8, 4.1, 5.9 and 9.1 GPa respectively which shows approximately twofold increase. 
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Fig. 5. Result of Longitudinal and Transvers Young’s modulus (SWCNTs- PMMA) 

 

 

In this part the extra calculations were done and to reduce the number of graphs, the sample with chirality (25, 0) 
was chosen and the obtained results were discussed for further investigations. To draw the density diagram, first, the 

simulated NVT to maximize the energy of system and then the NPT was plotted to show the density. As shown in 

Fig. 6 the density was predicted approximately 1.25 g/cm3.  

 
Fig. 6. Density diagram armchair SWCNTs (25, 0) mixed with PMMA 

 

 

To validate the simulation results, elastic stiffness matrix was determined using a constant strain method. The elastic 

stiffness matrix components were defined for SWCNTs (25, 0) with PMMA as a polymer matrix, under a strain of 

60.003 and at a pressure of 1 atm. These results are as follows: 
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As can be seen, because of the isotropy of the material, the diagonal elements are nearly similar, and the matrix is 

approximately symmetric. Finally, the other significant mechanical and physical properties are calculated and due to 

reduce diagrams all information gather in Table 1 and shows with increasing diameter of CNTs all mechanical and 

physical properties increased. 

 
Table 1: Details of significant mechanical and physical properties of five case study for simulated nanocomposites  

Type of CNT                             Density       Poisson’s ratio      Shear modulus               Bulk modulus  

                                                    (g/cm3)                                          (GPa)                (GPa) 

(5,0)                                          0.81                    0.27                          4.20                                 2.90 

(10,0)                                        0.83                    0.28                          4.29                                 3.30 

(15,0)                                        0.97                    0.28                          5.05                                 3.78 

                                      (20,0)                                        1.04                     0.28                          5.09                                 4.26 

                                      (25,0)                                        1.25                     0.30                         6.03                                  5.08 

   

Conclusion 

In this research, the molecular dynamics (MDs) simulation for predicting the effect of diameter of armchair 

SWCNTs with different chiralities (5, 0), (10, 0), (15, 0), (20, 0) and (25, 0) on the mechanical and physical 

properties of SWCNTs as reinforcements with common polymer (PMMA) were simulated based on materials studio 

software. With these good looking and easily understandable atom models, the mechanical and physical properties 

of simulated nanocomposites were calculated and compared individually. The most important results are as follows: 

1-Predicting the effect of diameter of SWCNTs on mechanical and physical properties of five cases was 

simulated by materials studio software. 

2- Physical properties improve with increasing diameter of SWCNTs 

3- Mechanical properties increase due to high Young's modulus of SWCNTs 

4- With the increasing diameter of SWCNTs, Longitudinal Young’s modulus from (5, 0) to (25, 0) becomes 

approximately 3 times more than (5, 0). 

5- With the increasing of diameter of SWCNTs, Transverse Young’s modulus from (5, 0) to (25, 0) becomes 
approximately 2 times more than (5, 0). 

6- With the increasing of diameter of SWCNTs, Shear modulus from (5, 0) to (25, 0) becomes 1.43 times more 

than (5, 0). 

7- With the increasing diameter of SWCNTs, Poisson’s ratio from (5, 0) to (25, 0) becomes 1.1 times more than 

(5, 0). 

8- To validate the results, the stiffness matrix is obtained by MD simulation for (25, 0) simulated nanocomposite 

calculated and observed, because of the isotropy of the material, the diagonal elements are nearly similar, and the 

matrix is approximately symmetric. 

Future research endeavors could delve deeper into the integration of advanced machine learning methodologies with 

molecular dynamics simulations to enhance predictive capabilities and uncover subtle nuances in nanocomposite 

behavior. Additionally, exploring the effects of environmental factors, such as temperature and humidity, on the 

properties of nanocomposites could provide valuable insights into their real-world applicability. Furthermore, 

extending our analysis to include a broader range of nanotube configurations and composite matrices could offer a 

more comprehensive understanding of the design space and facilitate the development of tailored materials with 

enhanced functionalities. In summary, the integration of machine learning techniques with molecular dynamics 
simulations opens up exciting possibilities for advancing our knowledge of nanocomposite systems. By continuing 

to explore these interdisciplinary approaches, we aim to address current challenges and pave the way for the design 

and optimization of next-generation materials with tailored properties for various applications. 
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