تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,516,553 |
تعداد دریافت فایل اصل مقاله | 98,777,650 |
الگوی پراکنش سخت بالپوشان (Coleoptera) خسارتزای انباری در رویشگاههای خرما در ایران | ||
دانش گیاهپزشکی ایران | ||
دوره 55، شماره 1، شهریور 1403، صفحه 43-62 اصل مقاله (1.89 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijpps.2024.374395.1007058 | ||
نویسندگان | ||
مریم جلیلی مقدم1؛ جاماسب نوذری* 2؛ مسعود لطیفیان3؛ سید پژمان شیرمردی4؛ سیدمحمد علی ابراهیم زاده موسوی5 | ||
1گروه گیاهپزشکی دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران. کرج. ایران | ||
2گروه گیاهپزشکی دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران. کرج. ایران | ||
3سازمان تحقیقات، آموزش و ترویج کشاورزی، مؤسسه تحقیقات علوم باغبانی، پژوهشکده میوههای معتدله و سردسیری، کرج، ایران | ||
4پژوهشگاه علوم و فنون هستهای، تهران، ایران. | ||
5گروه مهندسی علوم وصنایع غذایی، دانشکده علوم و مهندسی کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران. | ||
چکیده | ||
شناسایی کانونهای آلودگی و تغییرات جمعیت آفات انباری در مناطق مختلف اکولوژیکی یکی از مهمترین نیازهای مدیریت تلفیقی آفات در شرایط انبار است. این پژوهش بهمنظور شناسایی فون سخت بالپوشان فعال در انبارهای خرمای استانهای خرماخیز ایران، نحوه پراکنش جغرافیایی، پتانسیل استقرار و بهرهبرداری از زیست خوانگاه [1] آنها از زیستبوم انبارهای خرمای شش استان مهم خرماخیز ایران شامل کرمـان، فارس، خوزسـتان، سیسـتان و بلوچسـتان، بوشـهر و هرمـزگان در سال 1401 انجام شد. در مناطق خرماخیز ایران هفت گونه سخت بالپوش شاملOryzaephilus surinaemensis ، Oryzaephilus mercator، Tribolium castaneum، Tribolium confusum،Carpophilus hemipterus، Carpophilus mutilatus و Togoderma ganarium فعال بودند. بالاترین دامنه پراکنش این سختبالپوشان به ترتیب در استانهای (کرمان، فارس و بوشهر)، (کرمان و سیستان و بلوچستان)، (خوزستان و سیستان و بلوچستان)، (خوزستان و سیستان و بلوچستان)، بوشهر و فارس بود. بالاترین نرخ استقرار نسبی مربوط به سختبالپوش O. surinaemensis در استانهای کرمان، فارس و بوشهر بوده است. بیشترین مقدار زیست خوانگاه بهرهبرداری نشده در استان هرمزگان و مربوط به سخت بالپوش گونه T. ganarium در استانهای خوزستان و بوشهر ثبت شد. هر چه شاخص زیست خوانگاه بهرهبرداری نشده بالاتر باشد، احتمال طغیان پیشبینی نشده آن سخت بالپوش در انبارهای آن استان بالاتر است. پیشبینی توزیع بالقوه آفات، نقش کلیدی در تعیین اثرات تغییرات جهانی بر زیستبومهای کشاورزی ایفا میکند. [1]. Ecological nich | ||
کلیدواژهها | ||
سخت بالپوشان؛ پراکنش زیستی؛ استقرار جمعیت؛ زیست خوانگاه؛ خرما | ||
عنوان مقاله [English] | ||
The distribution pattern of the Coleopteran store pests in the important date growing areas of Iran | ||
نویسندگان [English] | ||
Maryam Jalili Moghadam1؛ Jamasb Nozari2؛ Masoud Latifian3؛ Seyed Pezhman Shirmardi4؛ Seyed Mohammadali Ebrahimzadeh Mosavi5 | ||
1Department of Plant Protection Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
2Department of Plant Protection Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
3Professor, Temperate Fruits Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.. | ||
4Department of nuclear engineering, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran | ||
5Department of Faculty of Food scince and Engineering &TechnologyCollege of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
چکیده [English] | ||
This research aims to identify beetle fauna active in the date stores of Iran's date-growing provinces, the geographical distribution of their ecological nest potential, and the exploitation of date stores in six important date-growing provinces of Iran, including Kerman, Fars, Khuzestan, Sistan and Balochistan, Bushehr and Hormozgan were done in 2023. In date-growing areas of Iran, seven species of beetles were active, including Oryzaephilus surinaemensis, Oryzaephilus Mercator, Tribolium castaneum, Tribolium confusum, Carpophilus hemipterus, Carpophilus mutilatus, and Togoderma ganarium. This beetle had the most widespread presence in (Kerman, Fars, and Bushehr), (Kerman and Sistan and Baluchistan), (Khuzestan and Sistan and Baluchistan), and Bushehr and Fars, respectively. The highest relative establishment rate was related to O. surinaemensis and in Kerman, Fars, and Bushehr provinces. The largest unexploited habitat niche was in Hormozgan province, and it was associated with T. ganarium species in Khuzestan and Bushehr provinces. The higher the index of an unexploited habitat niche, the greater the chance of an unexpected flood in the local stores. The potential distribution of pests is a crucial factor in determining the effects of global change on horticultural ecosystems. | ||
کلیدواژهها [English] | ||
Coleoptera, biological distribution, population establishment, habitat niche, Date palm | ||
مراجع | ||
Abo‐El‐Saad, M., & El‐Shafie, H. (2013). Insect pests of stored dates and their management. Dates: postharvest science, processing technology and health benefits, 81-104. DOI: 10.1002/9781118292419.ch4 Al Antary, T. M., Al-Khawaldeh, M. M., & Ateyyat, M. A. (2015). Economic importance of date palm Phoenix dactylifera L. (Liliopsida: Arecales: Arecaceae) pests in Jordan Valley. Brazilian Journal of Biological Sciences, 2(3), 101-109. Al-Deeb, M. A. (2012). Date palm insect and mite pests and their management. Dates production, processing, food, and medicinal values, 113-128. DOI: abs/10.1201/b11874-10 Al-Zadjali, T. S., ABD-ALLAH, F. F., & EL-HAIDARI, H. S. (2006). Insect pests attacking date palms and dates in Sultanate of Oman. Egyptian Journal of Agricultural Research, 84(1), 51-59. DOI: 10.21608/ejar.2006.228947 Asplen, M. K. (2018). Dispersal strategies in terrestrial insects. Current Opinion in Insect Science, 27, 16-20. DOI: 10.1016/j.cois.2018.01.009 Baker, R. H. A., Sansford, C. E., Jarvis, C. H., Cannon, R. J. C., MacLeod, A., & Walters, K. F. A. (2000). The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agriculture, Ecosystems & Environment, 82(1-3), 57-71. DOI: 10.1016/S0167-8809(00)00216-4 Baldin, E.L.L., Cruz, P.L., Morando, R., Silva, I.F., Bentivenha, J.P.F., Tozin, L.R.S. and Rodrigues, T.M. (2017). Characterization of antixenosis in soybean genotypes to Bemisia tabaci (Hemiptera: Aleyrodidae) biotype B. Journal of Economic Entomology, 110(4),.1869-1876. DOI: /110/4/1869/3850120 Banks, H. J. (1994). Illustrated identification keys for Trogoderma granarium, T. glabrum, T. inclusum and T. variabile (Coleoptera: Dermestidae) and other Trogoderma associated with stored products. CSIRO Australia Division of Entomology Technical Paper, (32). DOI: 10.25919/5d1663dab25ca Baptista, D. F., Buss, D. F., Dorvillé, L. F. M., & Nessimian, J. L. (2001). Diversity and habitat preference of aquatic insects along the longitudinal gradient of the Macaé river basin, Rio de Janeiro, Brazil. Revista Brasileira de Biologia, 61, 249-258. DOI: 10.1590/S0034-71082001000200007 Bibars, E. E. D. A., Yassin, E. M., & Abdel Khalik, A. R. (2018). survey of different mites and insect pests associated with date palm fruits in different locations of Egypt. Egyptian Journal of Agricultural Research, 96(3), 909-919. DOI: 10.21608/ejar.2018.138421 Bogusch, P., Macek, J., Janšta, P., Kubík, Š., Řezáč, M., Holý, K., ... & Heneberg, P. (2016). Industrial and post-industrial habitats serve as critical refugia for pioneer species of newly identified arthropod assemblages associated with reed galls. Biodiversity and Conservation, 25, 827-863. DOI: 10.1007/s10531-016-1070-5 Cock, M. J. W., & Burris, D. H. (2013). Neotropical palm-inflorescence feeding moths (Lepidoptera: Batrachedridae, Blastobasidae, Cosmopterigidae, Gelechiidae, Pyralidae, Tineidae): a review of the literature and new records from Trinidad, West Indies. The Journal of Research on the Lepidoptera, 46, 1-21. DOI: 10.5962/p.332186 Connell, W. A. (1977). A key to Carpophilus sap beetles associated with stored foods in the United States (Coleoptera: Nitidulidae). Cooperative Plant Pest Report, 2(23), 398-404. DOI: 10.1649/736 Duan, S., Li, Y., Zhu, B., Adam, B., & He, Z. (2024). Intelligent pest trap monitoring under uncertainty in food industry. Swarm and Evolutionary Computation, 86, 101465. DOI: 10.1016/j.swevo.2023.101465 El-Nazir, S. M., & Musa, I. O. (2019). A note on the insects associated with stored onion in khartoum state. University of Khartoum Journal of Agricultural Sciences, 22(2). DOI: 10.55446/IJE.2021.364 El-Shafie, H. A. F. (2012). List of arthropod pests and their natural enemies identified worldwide on date palm, Phoenix dactylifera L. Agriculture and Biology Journal of North America, 3(12), 516-524. DOI: 10.5555/20133077451 El-Shafie, H. A. F., Abdel-Banat, B. M. A., & Al-Hajhoj, M. R. (2017). Arthropod pests of date palm and their management. CABI Reviews, 12(049):1-18. DOI: 10.1079/PAVSNNR201712049 Ekström, G., & Ekbom, B. (2011). Pest control in agro-ecosystems: an ecological approach. Critical Reviews in Plant Sciences, 30(1-2), 74-94. DOI: 10.1080/07352689.2011.554354 Ferrer, J. U. L. I. O. (1995). A key to the Flour beetles of the genus Tribolium macleay in Sweden Coleoptera, Tenebrionidae), with distributional notes. Entomologisk Tidskrift, 116(3), 123-126. Forghani, S. H., & Marouf, A. (2015). An introductory study of storage insect pests in Iran. Biharean Biologist, 9(1), 59-62. Frades, I., & Matthiesen, R. (2010). Overview on techniques in cluster analysis. Bioinformatics Methods in Clinical Research, pp. 81-107. DOI: 10.1007/978-1-60327-194-3_5 Fraley, C. and Raftery, A.E. (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association, 97(458), pp.611-631. DOI: 10.2307/3085676 García-Lara, S., García-Jaimes, E., & Bergvinson, D. J. (2019). Mapping of maize storage losses due to insect pests in central Mexico. Journal of Stored Products Research, 84, 101529. DOI: 10.1016/j.jspr.2019.101529 Gerken, A. R., & Campbell, J. F. (2022). Spatial and temporal variation in stored-product insect pest distributions and implications for pest management in processing and storage facilities. Annals of the Entomological Society of America, 115(3), 239-252. DOI: 10.1016/j.agee.2012.11.013 Ghaedi, H., Kocheili, F., Latifian, M., & Nejad, R. F. (2020). Spatial and temporal distribution of rhinoceros beetles Oryctes Hellwig (Col.: Scarabaeidae) in date palm plantations of Khuzestan province. Plant Pest Research, 10(2). DOI: 10.22124/iprj.2020.4292 Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis‐Lewis, I., Sutcliffe, P. R., Tulloch, A. I., ... & Buckley, Y. M. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 16(12), 1424-1435. DOI: 10.1111/ele.12189 Hagstrum, D. W., & Phillips, T. W. (2017). Evolution of stored-product entomology: protecting the world food supply. Annual Review of Entomology, 62, 379-397. DOI: 10.1146/annurev-ento-031616-035146 Hall, D. G., & Albrigo, L. G. (2007). Estimating the relative abundance of flush shoots in citrus with implications on monitoring insects associated with flush. HortScience, 42(2), 364-368. DOI: 10.21273/HORTSCI.42.2.364 Halstead, D. G. H. (1980). A revision of the genus Oryzaephilus Ganglbauer, including descriptions of related genera (Coleoptera: Silvanidae). Zoological Journal of the Linnean Society, 69(4), 271-374. DOI: 10.1111/j.1096-3642.1980.tb01126.x Hengl, T., Sierdsema, H., Radović, A., & Dilo, A. (2009). Spatial prediction of species' distributions from occurrence-only records: combining point pattern analysis, ENFA and regression-kriging. Ecological Modelling, 220(24), 3499-3511. DOI: 10.1016/j.ecolmodel.2009.06.038 Holloway, J. C., Daglish, G. J., & Mayer, D. G. (2020). Spatial distribution and flight patterns of two grain storage insect pests, Rhyzopertha dominica (Bostrichidae) and Tribolium castaneum (Tenebrionidae): implications for pest management. Insects, 11(10), 715. DOI: 10.3390/insects11100715 Hosseini, S. & Kamali, K. (1989). Phone list of storage products in Iran. Letter of Iranian Entomological Society, 9(Suppl. 5), 1-47. DOI: 10.52547/jibs.6.3.261 Jian, F. (2019). Influences of stored product insect movements on integrated pest management decisions. Insects, 10(4), 100. DOI: 10.3390/insects10040100 Johnson, K. (2016). Realism and uncertainty of unobservable common causes in factor analysis. Noûs, 50(2), 329-355. DOI: 10.1111/nous.12075 Latifian, M, (2013). Date palm stored pests control. Ahangghalam Publisher, Mashhad, Iran, 100 PP. (in Persian) DOI: 10.13140/RG.2.2.17629.20964 Latifian, M., Jalili Moghadam, M., & Ramzi Jahromi, S. (2020). The survival and biological characteristics of Oryzaephilus surinamensis L. (Coleoptera: Silvanidae) in the feeding conditions on three date palm cultivars. Archives of Phytopathology and Plant Protection, 53(15-16), 698-714. DOI: 10.1080/03235408.2020.1793649 Latifian, M., Moghadam, M. J., & Jahromi, S. R. (2021). Competition and overlap of Oryzaephilus surinamensis and Plodia interpunctella populations under condition of stored date fruits. Journal of Asia-Pacific Entomology, 24(1), 201-207. DOI: 10.1016/j.aspen.2020.12.013 Latifian, M., & Rad, B. (2022a). Population assessment of common storage pests in deiri date palm cultivar using spectrophotometric method. International Journal of Tropical Insect Science, 42(1), 345-354. DOI: 10.1007/s42690-021-00552-1 Latifian, M., & Rad, B. (2022b). Sequential sampling pattern of important date storage pests based on the spectroscopic method. International Journal of Tropical Insect Science, 42(5), 3373-3384. DOI: 10.1007/s42690-022-00836-0 Mailafiya, D. M., Bamaiyi, L. J., Magaji, B. T., Musa, I. P., Kwanashie, A. J., Banwo, O. O., & Bawa, L. Y. (2022). Pest activity and natural enemy diversity in stored dry date (Phoenix dactylifera L. (Arecales: Arecaceae)) in the Northern Guinea Savannah Agroecological Zone. International Journal of Tropical Insect Science, 42(1), 457-470. DOI: 10.1007/s42690-021-00562-z Nguyen, H. D. D., & Nansen, C. (2018). Edge-biased distributions of insects. A review. Agronomy for Sustainable Development, 38, 1-13. DOI: 10.1007/s13593-018-0488-4 Pourian, H. R., Khoobdel, M., & Alizadeh, M. (2019). Stored-grains pests and their control with emphasis on military food warehouses in Iran: a review. Journal of Military Medicine, 21(4), 313-324. Purnamasari, A., & Haryanto, H. (2023). Diversity of stored-product beetles at the rice warehouses in Mataram City and Central Lombok Regency, Indonesia. Jurnal Ilmiah Pertanian, 20(1), 9-16. DOI: 10.31849/jip.v20i1.10879 Rada, S., Spitzer, L., Šipoš, J., & Kuras, T. (2017). Habitat preferences of the grasshopper Psophus stridulus, a charismatic species of submontane pastures. Insect Conservation and Diversity, 10(4), 310-320. DOI: 10.1111/icad.12225 Rodríguez, R. A., Herrera, A. M., Santander, J., Miranda, J. V., Fernández-Rodríguez, M. J., Quirós, Á., ... & Delgado, J. D. (2015). Uncertainty principle in niche assessment: a solution to the dilemma redundancy vs. competitive exclusion, and some analytical consequences. Ecological Modelling, 316, 87-110. Roques, A., Auger-Rozenberg, M. A., & Boivin, S. (2006). A lack of native congeners may limit colonization of introduced conifers by indigenous insects in Europe. Canadian Journal of Forest Research, 36(2), 299-313. DOI: 10.1139/x05-277 Rustia, D. J. A., Chiu, L. Y., Lu, C. Y., Wu, Y. F., Chen, S. K., Chung, J. Y., ... & Lin, T. T. (2022). Towards intelligent and integrated pest management through an AIoT‐based monitoring system. Pest Management Science, 78(10), 4288-4302. DOI: 10.1002/ps.7048 Rusynov, V. I., Martynov, V. O., & Kolombar, T. M. (2019). Coleoptera pests of stored food supplies and field crops. Current Problems of Agrarian Industry in Ukraine, 34. DOI: 10.15421/511903 Salisu, Z. I., Oniye, S. J., Anjorin, T. S., Wada, Y. A., Abubakar, M., & Abdulkarim, M. M. (2021). Insect pests of dried date palm (Phoenix dactylifera L.) fruits sold in selected markets in Zaria, Kaduna State, Nigeria. Dutse Journal of Pure and Applied Sciences DUJOPAS, 7, 232-241. Semeao, A. A., Campbell, J. F., Hutchinson, J. S., Whitworth, R. J., & Sloderbeck, P. E. (2013). Spatio-temporal distribution of stored-product insects around food processing and storage facilities. Agriculture, Ecosystems & Environment, 165, 151-162. DOI: 10.1016/j.agee.2012.11.013 Severtsov, A. S. (2004). Fundamental species niche: Mechanism of formation and ecological significance. Russian Journal of Ecology, 35, 357-363. DOI: 10.1023/B:RUSE.0000046970.23100.6a Sileshi, G. (2007). A method for estimating insect abundance and patch occupancy with potential applications in large-scale monitoring programmes. African Entomology, 15(1), 89-101. DOI: 10.4001/1021-3589-15.1.89 Trematerra, P., Sciarretta, A., De Paula, M. C., & Lazzari, S. M. (2004). Monitoring and spatial distribution of insect pests infesting a paddy rice storage facility. IOBC Bull, 27, 59-68. DOI: 10.1590/S1519-566X2004000400012 Tscharntke, T., Steffan-Dewenter, I., Kruess, A., & Thies, C. (2002). Characteristics of insect populations on habitat fragments: a mini review. Ecological Research, 17, 229-239. DOI: 10.1046/j.1440-1703.2002.00482.x Tu, X.B., Fan, Y.L., McNeill, M. and Zhang, Z.H., (2018). Including predator presence in a refined model for assessing resistance of alfalfa cultivar to aphids. Journal of Integrative Agriculture, 17(2),.397-405. DOI: 10.1016/S2095-3119(17)61708-8 Wheeler, M. M. (1993). Discriminating between adult mandibles of Oryzaephilus surinamensis and Oryzaephilus mercator using setal brush length. Journal of AOAC International, 76(4), 941-943. DOI: 10.1093/jaoac/76.4.941 Yang, B. (2005). Factor analysis methods. Research in organizations: Foundations and methods of inquiry, 181-199. DOI: 10.1002/hrdq.20007 | ||
آمار تعداد مشاهده مقاله: 359 تعداد دریافت فایل اصل مقاله: 119 |