تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,116,094 |
تعداد دریافت فایل اصل مقاله | 97,220,571 |
تأثیر بیوچار و اسید هیومیک بر کاهش تنش قلیائیت در گیاه ریحان (Ocimum basilicum L.) | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 7، مهر 1403، صفحه 1113-1127 اصل مقاله (1.48 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.371418.669650 | ||
نویسندگان | ||
پردیس فیض عباسی1؛ علی اشرف امیری نژاد* 2؛ فرانک رنجبر3 | ||
1دانشجوی کارشناسی ارشد گروه علوم و مهندسی خاک دانشکده کشاورزی دانشگاه رازی، کرمانشاه، | ||
2استادیار گروه علوم و مهندسی خاک دانشگاه رازی | ||
3گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران | ||
چکیده | ||
برای کاهش اثرات قلیائیت بر گیاهان میتوان از بعضی از مواد اصلاحکننده آلی استفاده کرد. در این پژوهش، تأثیر کاربرد بیوچار در خاک و همزمان محلولپاشی برگی با اسید هیومیک بر کاهش تنش قلیائیت در گیاه ریحان (Ocimum basilicum L.) بررسی گردید. آزمایش بهصورت فاکتوریل، در قالب طرح کاملاً تصادفی با سه تکرار در سال 1401 در گلخانه دانشگاه رازی انجام شد. تیمارهای آزمایشی شامل قلیائیت در سه سطح (0، 50 و 100 میلی مولار از نمک بیکربنات سدیم با آب آبیاری)، بیوچار در سه سطح (0، 5/1 و 3 درصد وزنی بهصورت مخلوط با خاک) و اسید هیومیک در سه سطح (0، 150 و 300 میلیگرم در لیتر بهصورت محلولپاشی برگی) بودند. نتایج نشان داد که اثرات متقابل قلیائیت، بیوچار و اسید هیومیک بر بیشتر ویژگیهای رشدی و نیز مقادیر پرولین، قندهای محلول و رنگیزههای گیاهی معنیدار شد (P≤0.01). حداکثر جرم خشک شاخساره و ریشه (به ترتیب ۸۸/۰ و ۳۹/۰ گرم بر گلدان)، ارتفاع گیاه ( 5/23 سانتیمتر)، طول ریشه (۵/۱۹سانتیمتر) و محتوای نسبی آب برگ (۴/۸۶ درصد) به ترتیب در تیمار حاوی 3 درصد بیوچار، 300 میلیگرم در لیتر اسید هیومیک و بدون قلیائیت بهدست آمد. همچنین، بیشترین مقدار پرولین (۱۳/۳ میکرومول بر گرم) و قندهای محلول (۰۸/۶ میلیگرم بر گرم) در شرایط تنش شدید قلیائیت و بدون کاربرد بیوچار و اسید هیومیک حاصل شد. بهطورکلی، کاربرد همزمان بیوچار یک روش ساده، مناسب و ارزان در راستای کاهش اثر تنش قلیائیت در گیاه دارویی ریحان است. | ||
کلیدواژهها | ||
اصلاحکننده آلی؛ پرولین؛ تنش غیرزیستی؛ گیاهان دارویی | ||
عنوان مقاله [English] | ||
Effect of biochar and humic acid on reducing alkalinity stress in basil (Ocimum basilicum L.) | ||
نویسندگان [English] | ||
Pardis Feyz Abasi1؛ Ali Asshraf Amirinejad2؛ Faranak Ranjbar3 | ||
1MSC Student, Department of Soil Science, Faculty of Agriculture, Razi University, Kermanshah, Iran | ||
2Assistant professor, Department of soil Science and Engineering, Razi University | ||
3Department of Soil Science, College of Agriculture, Razi University, Kermanshah, Iran | ||
چکیده [English] | ||
Some organic modifiers can be used to reduce the effects of alkalinity on plants. In this research, the effects of simultaneous application of biochar in the soil and foliar spraying with humic acid on the reduction of alkalinity stress in basil (Ocimum basilicum L.) were investigated. A factorial experiment was conducted based on a completely randomized design with three replications. The factors included alkalinity stress at three levels (0, 50, and 100 mM as NaHCO3 with irrigation water), biochar (at three levels of 0, 1.5, and 3% by weight mixed with soil) and humic acid at three levels (0, 150, and 300 mg/L as foliar spray). The results showed that the interaction effect of alkalinity, biochar and humic acid on most of the growth characteristics as well as the amounts of proline, soluble sugars and plant pigments were significant (P≤0.01). The highest shoot and root dry weight (0.88 and 0.39 g, respectively), shoot height (23.5 cm), root length (19.5 cm) and relative water content (86.4 %) were obtained with application of 3% of biochar and 300 mg/L of humic acid, without alkalinity. Also, the highest amount of proline (3.13 μmol/g) and soluble sugars (6.08 mg/g) were found under severe alkalinity stress (100 mM of NaHCO3), without the use of biochar and humic acid. In general, the simultaneous use of biochar and humic acid is a simple, suitable and cheap method to reduce the adverse effects of alkaline stress in basil. | ||
کلیدواژهها [English] | ||
Abiotic stress, medicinal plants, organic amendments, proline | ||
مراجع | ||
Abeer, H. E., Abd Allah, A., Alqarawi, A., and Egamberdieva, D. (2015). Induction of salt stress tolerance in cowpea (Vigna unguiculata L.) by arbuscular mycorrhizal fungi. Legume Research, 38, 588-579. https://doi.org/10.18805/lr.v38i5.5933 Ain, Q., Shafiq, M., Capareda, S. C., and Bareen, F. (2021). Effect of different temperatures on the properties of pyrolysis products of Parthenium hysterophorus. Journal of Saudi Chemical Societ, 25(3), 101197. https://doi.org/10.1016/j.jscs.2021.101197 Ansari, S., Nemati, S. H., Shoor, M., and Selahvarzi, Y. (2023). Investigating the effects of biochar application on the biochemical characteristics and concentration of some nutrients under saltwater stress in rose (Rosa hybrida). Plant Process and Function, 12 (57), 385-402. http://jispp.iut.ac.ir/article-1-1864-fa.html. (In Persian). Barrow, N. J., and Shaw, T. C. (1976). Sodium bicarbonate as an extractant for soil phosphate, II. Effect of varying the conditions of extraction on the amount of phosphate initially displaced and on the secondary adsorption. Geoderma, 16(2), 109-123. https://doi.org/10.1016/0016-7061(76)90034-3 Bates, L. S., Waldren, R. P., and Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 29, 205-207 Chen, Q., Qu, Z., Ma, G., Wang, W., Dai, J., Zhang, M., Wei, Z., and Liu, Z. (2022). Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions. Agricultural Water Management, 263, 107-117. https://doi.org/10.1016/j.agwat.2021.107447 Chiang, L. C., Ng, L. T., Cheng, P. W., Chiang, W., and Lin, C. C. (2005). Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clinical and Experimental Pharmacology and Physiology, 32(10), 811-816. https://doi.org/10.1111/j.1440-1681.2005.04270.x. Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D., and Julson, J. L. (2013). Effect of biochars on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60, 393-404 Dell’Agnola, G., Ferrari G., and Nardi, S. (1981). Antidote action of humic substances on atrazine inhibition of sulphate uptake in barley roots. Pesticide Biochemistry and Physiology, 15, 101-104. Fatima, A., Hussain, S., Hussain, S., Ali, B., Ashraf, U., Zulfiqar, U., Aslam, Z., Al-Robai, S. A., Alzahrani, F. O., Hano, C. and El-Esawi, M. (2021). Differential morphophysiological, biochemical, and molecular responses of maize hybrids to salinity and alkalinity stresses. Agronomy, 11(6),1150. https://doi.org/10.3390/agronomy11061150 Gong, B., Wen, D., Vanden Langenberg, K., Wei, M., Yang, F., Shi, Q. and Wang, X. (2013). Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves. Scientia Horticulturae, 157, 1-12. https://doi.org/10.1016/j.scienta.2013.03.032 Hosseinifard, M., Stefaniak, S., Ghorbani Javid, M., Soltani, E., Wojtyla, Ł., and Garnczarska, M. (2022). Contribution of exogenous proline to abiotic stresses tolerance in plants: A review. Intenrnational Journal of Molecular Science, 23(9), 5186. https://doi.org/10.3390/ijms23095186 Jabborova, D., Abdrakhmanov, T., Jabbarov, Z., Abdullaev, S., Azimov, A., Mohamed, I., AlHarbi, M., Abu-Elsaoud, A., and Elkelish, A. (2023). Biochar improves the growth and physiological traits of alfalfa, amaranth and maize grown under salt stress. Peer Journal, 18, 11. http://dx.doi.10.7717/peerj.15684 Ji, X., Tang, J., and Zhang, J. (2022). Effects of salt stress on the morphology, growth and physiological parameters of Juglans microcarpa L. Plants, 11,2381. https://doi.org/10.3390/plants11182381 Jindo, K., Canellas, L. P., Albacete, A., Figueiredo, L., Frinhani Rocha, R. L., Carvalho Baia, D., Oliveira, N., Goron, T. L., and Olivares, F. L. (2020). Interaction between humic substances and plant hormones for phosphorous acquisition. Agronomy, 10(5), 640. https://doi.org/10.3390/agronomy10050640 Gurrieri, L., Merico, M., Trost, P., Forlani, G. and Sparla, F. (2020). Impact of drought on soluble sugars and free proline content in selected arabidopsis mutants. Biology, 9(11),367. https://doi.org/10.3390/biology9110367 Kamari Shahmaleki, S., Peyvast, Q., and Olfati, J. (2010). Effects of humic acid on growth characteristics and absorption of nutrient elements of lettuce. Journal of Horticultural Sciences, 24(2), 149-153. Khan, M. B., Cui, X., Jilani, G., Tang, L., Lu, M., Cao, X., Sahito, Z.A., Hamid, Y., Hussain, B., Yang, X., and He, Z. (2022). New insight into the impact of biochar during vermi-stabilization of divergent biowastes: Literature synthesis and research pursuits. Chemosphere, 238, 124679. https://doi.org/10.1016/j Klute, A. (1986). Methods of soil analysis: Part 1 and 2, Physical and chemical methods. 2nd Edition, American Society of Agronomy; Soil Science Society of America, Madison, Wis., USA. ISBN: 9780891180883, 0891180885 Kochert, G. (1978). Carbohydrate determination by the phenol sulfuric acid method. In: Hellebust, J.A., & Craigie, J.S., (Ed) Handbook of Phycological Methods, Physiological and Biochemical Methods. Cambridge University Press, Cambridge, pp.95-97 Leng, L., Xiong, Q., Yang, L., Li, H., Zhou, Y., Zhang, W., Jiang, S., Li H., and Huang, H. (2021). An overview on engineering the surface area and porosity of biochar. Science of Total Environment, 763, 144-204. https://doi.org/10.1016/j.scitotenv.2020.144204. Li, X., Liu, J., Zhang, Y. T., Lin, J., and Mu, C. (2009). Physiological responses and adaptive strategies of wheat seedlings to salt and alkali stresses. Soil Science and Plant Nutrition, 55(5), 684-680. https://doi.org/10.1111/j.1747-0765.2009.00408.x Lichtenthaler, H. K., and Wellburn, A. R. (1983). Determination of total carotenoids and chlorophyll a and b of leaf extract in different solvents. Biochemical Society Transactions, 11, 591–592. https://doi.org/10.1042/bst0110591 Ma, C., Yuan, S., Xie, B., Li, Q., Wang, Q., and Shao, M. (2022). IAA plays an important role in alkaline stress tolerance by modulating root development and ROS detoxifying systems in rice plants. Intenrnational Journal of Molecular Science, 26, 23, 14817. http://dx.doi.10.3390/ijms232314817 Machado, R. M. A., and Serralheiro, R. P. (2017). Soil Salinity: Soil salinity: Effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30. https://doi.org/10.3390/horticulturae3020030 Mane, A. V., Deshpande, T. V., Wagh, V. B., Karadge, B. A. and Samant, J. S. )2011(. A critical review on physiological changes associated with reference to salinity. International Journal of Environmental Sciences, 1(6), 1192-1216 Pérez-Gálvez, A., Viera, I. and Roca, M. (2020). Carotenoids and chlorophylls as antioxidants. Antioxidants, 9(6), 505. http://dx.doi.org/10.3390/antiox9060505 Premalatha, R. P., Poorna Bindu, J., Nivetha, E., Malarvizhi, P., Manorama, K., Parameswari, E. and Davamani, V. (2023). A review on biochar’s effect on soil properties and crop growth. Front Energy Research, 11,1092637. http://dx.doi.org/10.3389/fenrg.2023.1092637 Rasouli-Sadaghiani, M. H., Vahedi R. and Barin, M. (2018). Effect of pruning waste biochar and compost a microbial inoculation on phosphorus availability. Journal of Water and Soil, 32(4), 709-722. Rawat, J., Saxena, J., and Sanwal, P. (2019). Biochar: A sustainable approach for improving plant growth and soil properties. In: Biochar, an imperative amendment for soil and the environment. http://dx.doi.org/10.5772/intechopen.82151 Ritchie, S. W., Nguyan, H. T. and Holaday, A. S. (1990). Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30, 105-111. http://dx.doi.org/10.2135/cropsci1990. Rosa, M., Prado, C., Podazza, G., Interdonato, R., González, J. A., Hilal, M., and Prado, F. E. (2019). Soluble sugars: Metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signaling & Behavior, 4, 388–393. https://doi.org/10.4161/psb.4.5.8294 Sayarer, M., Aytaç, Z., and Kürkçüoğlu, M. (2023). The effect of irrigation and humic acid on the plant yield and quality of sweet basil (Ocimum basilicum L.) under semi-arid ecological conditions. Plants, 12, 1522. https://doi.org/10.3390/plants12071522 Sharifi Asl, R., Jasemi Manesh, M., and Mirzaie Haydari, M. (2020). The effect of humic acid on growth, yield, and some physiological parameters of wheat under salinity stress. Journal of Plant Environmental Physiology, 15(57), 10-22. (In Persian). Silva, T., Silva Ribeiro, J. E., Nóbrega, J., and Gonçalves, A. (2023). Ecophysiology and growth of basil (Ocimum basilicum) under saline stress and salicylic acid. Acta Biologica Colombiana, 28(1). https://doi.org/10.15446/abc.v28n1.97151 Singh, B., Camps‐Arbestain, M. and Lehmann, J. (eds). (2017). Biochar: A guide to analytical methods. CRC Press, Boca Raton, FL, USA, 310 pages. ISBN: 149876553X, 9781498765534 Sparks, R.L. (1996). Methods for Soil Analysis, Part 3: Chemical methods, Soil Science Society of America, Madison 435-417. Teiymouri, A., Amirinejad, A., and Ghobadi, M. (2021). The effects of biochar and salicylic acid on alleviation of Pb stress in salvia (Salvia afficinalis L.). Journal of Soil and Plant Interactions, 12(1), 95-108. https://doi.org/10.47176/jspi.12.1.20161. (In Persian). Vikram, N., Sagar, A. and Husain, R. (2022). Properties of humic acid substances and their effect in soil quality and plant health. In: Makan, A., Ed., Humus and Humic Substances, Recent Advances, IntechOpen, London.https://doi.org/10.5772/intechopen.105803 Wang, Z., Shen, D., Wu, C., and Gu, S. (2018). State of the art on the production and application of carbon nanomaterial from biomass. Green Chemistry, 20, 5031-5057. https://doi.org/10.1039/c8gc01748d Yang, C. M., Wang, M. C., Lu, Y. F., Chang, F., and Chou, C. H. (2014). Humic substances affect the activity of chlorophylls. Journal of Chemical Ecology, 30, 1065-1057. https://doi.org/10.1023/ JOEC.82191. Zewd I, and Siban M. (2021). The effects of alkalinity on physical and chemical properties of soil. Journal of Plant Biology and Agriculture Science;3(2):1-5. https://doi.org/10.36266/GJAST/141 Zhang, P., Yang, F., Zhang, H., Liu, L., Liu, X., Chen, J., Wang, X., Wang, Y., and Li, C. (2020). Beneficial effects of biochar-based organic fertilizer on nitrogen assimilation, antioxidant capacities, and photosynthesis of sugar beet (Beta vulgaris L.) under saline-alkaline stress. Agronomy, 10, 1562. https://doi.org/10.3390/agronomy10101562. | ||
آمار تعداد مشاهده مقاله: 96 تعداد دریافت فایل اصل مقاله: 89 |