تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,119,549 |
تعداد دریافت فایل اصل مقاله | 97,225,955 |
درونپوشانی کورکومین با هیدروژلهای پروتئین و موسیلاژ دانه چیا: ارزیابی پایداری و کینتیک رهایش | ||
مهندسی بیوسیستم ایران | ||
دوره 55، شماره 1، فروردین 1403، صفحه 33-49 اصل مقاله (1.6 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijbse.2024.372951.665539 | ||
نویسندگان | ||
مریم نفر1؛ مهدی وریدی2؛ زهرا امام جمعه* 3؛ سید ولی حسینی4 | ||
1گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران. | ||
2گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران | ||
3گروه علوم و مهندسی صنایع غذایی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
4گروه شیلات، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
کورکومین بهعنوان یک ترکیب طبیعی هیدروفوب دارای خواص ضد میکروبی و ضد سرطانی میباشد، اما پایداری کم و حساسیت بالای آن باعث محدودیت زیستفراهمی این ترکیب شده است. هدف از این پژوهش طراحی هیدروژل پروتئین و موسیلاژ دانه چیا جهت درونپوشانی کورکومین است. درونپوشانی این ترکیب در ساختار هیدروژل، میتواند روشی موثر برای محافظت این ترکیب طی شرایط هضم دستگاه گوارشی باشد. به همین منظور ابتدا هیدروژل پروتئین و موسیلاژ 5/12 درصد از نظر خصوصیات بافتی بهینه شد. رفتار رهایش کورکومین در دو شرایط شبیهسازی معده و روده برای هیدروژلهای پروتئین و موسیلاژ 5/7 درصد و 5/12 درصد مورد ارزیابی قرارگرفتند. نتایج نشان داد که کورکومین بارگذاری شده در هیدروژل پروتئین و موسیلاژ 5/12 درصد، پایداری بهتری نسبت به کورکومین آزاد در طول عملیات حرارتی و نوری دارد. نتایج مربوط به رهایش کنترل شده در شرایط آزمایشگاهی نشان داد که مقدار کلی رهایش کورکومین در طی هضم معده – رودهای برای نمونه حاوی 5/7 درصد پروتئین و موسیلاژ، 71/60 درصد و برای نمونه حاوی 5/12درصد پروتئین و موسیلاژ، 30/27 درصد بود، در نتیجه سرعت رهایش کورکومین با افزایش غلظت موسیلاژ در شرایط شبیهسازی شده معده و روده کاهش یافت که میتواند نشاندهنده توانایی خوب هیدروژلهای ترکیبی برای حفاظت از کورکومین در شرایط معده-روده و رسانش آن به روده بزرگ باشد. رفتار رهایش کورکومین در شرایط دستگاه گوارش از نوع انتشار فیکی بود. | ||
کلیدواژهها | ||
پروتئین دانه چیا؛ موسیلاژ؛ هیدروژل؛ کورکومین؛ رهایش کنترلشده | ||
عنوان مقاله [English] | ||
Encapsulation of curcumin by chia seed protein and mucilage hydrogels: Evaluation of stability and kinetic release | ||
نویسندگان [English] | ||
Maryam Nafar1؛ Mehdi Varidi2؛ Zahra Emam-djomeh3؛ Hosseini Sayed Vali4 | ||
1Department of Food Science and Technology, Faculty of Agriculture, Mashhad Ferdowsi University, Mashhad, Iran | ||
2Department of Food Science and Technology, Faculty of Agriculture, Mashhad Ferdowsi University, Mashhad, Iran | ||
3Department of Food Science, Technology and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
4Department of Fisheries, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran | ||
چکیده [English] | ||
Curcumin as a natural hydrophobic compound has anti-microbial and anti-cancer properties, but its low stability and high sensitivity have limited the bioavailability of this compound. The purpose of this research is to design chia seed protein and mucilage hydrogel for curcumin encapsulation. The encapsulation of this compound in the hydrogel structure can be an effective way to protect this compound during digestion in the digestive tract. For this purpose, first, hydrogel protein and mucilage 12.5% , which was optimized in terms of texture characteristics. The release behavior of curcumin in two conditions of stomach and intestine simulation for protein and mucilage 7.5% and 12.5% hydrogels were evaluated. The results showed that curcumin loaded in hydrogel protein and mucilage 12.5% has a better stability to free curcumin during heat and optical operations. The results related to the controlled release in laboratory conditions indicated that the total amount of curcumin release during gastric-intestinal digestion was 60.71% for the sample containing 7.5% protein and mucilage and 27.30% for the sample containing 12.5% protein and mucilage. As a result, the release rate of curcumin decreased with the increase of mucilage concentration in the simulated conditions of the stomach and intestine, which can show the good ability of combined hydrogels to protect curcumin in gastrointestinal conditions and deliver it to the colon. The release behavior of curcumin in the gastrointestinal tract was of the Fickian release type. | ||
کلیدواژهها [English] | ||
Chia seed protein, Mucilage, Hydrogel, Curcumin | ||
مراجع | ||
Alavi, F., Emam – Djomeh, Z., Yarmand, M. S., Salami, M., Momen, S., & Moosavi – Movahedi, A. A. (2018). Cold gelation of curcumin loaded whey protein aggregates mixed with k – carrageenan: Impact of curcumin loaded whey protein aggregates mixed with k – carrageenan, Impact of gel Microstructure on the gastrointestinal fate of curcumin. Food Hydrocolloids. 85, 267–280. https://doi.org/10.1016/j.foodhyd.2018.07.012 Aliabbasi, N., Emam – Djomeh, Z., Askari, G., & Salami, M. (2021). Pinto bean protein – based acid – induced cold – set gels as carriers for curcumin delivery Fabrication and characterization. Food Hydrocolloids for Health.1(100035). https://doi.org/10.1016/j.fhfh.2021.100035 Amiryousefi, M. R., Mohebbi, M., Golmohammadzadeh, S., & Koocheki, A. (2016). Encapsulation of caffeine in hydrogel colloidosome: optimization of fabrication, characterization and release kinetics evaluation. Flavour and fragrance journal. 31(2), 163 – 172. https://doi.org/ 10.1002/ffj.3297 Ansari, M. J., Ahmad, S., Kohli, K., Ali, J., & Khar, R. K. (2005). Stability-indicating HPTLC determination of curcumin in bulk drug and pharmaceutical formulations. Journal of pharmaceutical and biomedical analysis. 39 (1-2), 132-138. https://doi.org/10.1016/j.jpba.2005.03.021 Appendino, G., Allegrini, P., Combarieu, E.D., Novicelli, F., Ramaschi, G., Sardone, N. (2022). Shedding light on curcumin stability. Fitoterapia. 156, 105084. https://doi.org/10.1016/j.fitote.2021.105084 Boye, J.I., Aksay, S., Roufik, S., Ribéreau, S., Mondor, M., Farnworth, E., & Rajamohamed, S.H. (2010). Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultra filtration and isoelectric precipitation techniques. Journal of Food Research International. 43, 537–546. https://doi.org/10.1016/j.foodres.2009.07.021 Delaram, B. (2023). Exploring the possibility of producing cold-set whey protein- Lepidium perfoliatum seed gum hydrogel for curcumin encapsulation (Masterʹs thesis, Ferdowsi University, Mashhad). Retrieved from previous Theses. Guo, Q., Bayram, I., Zhang, W., Su, J., Shu, X., Yuan, F., Mao, L., & Gao,Y. (2020). Fabrication and characterization of curcumin - loaded pea protein isolate - surfactant complexes at neutral pH. Food Hydrocolloids. 106214.1 - 48. https://doi.org/10.1016/j.foodhyd.2020.106214 Gupta, S., Ghoshal, G. (2024). Plant protein hydrogel as a delivery system of curcumin: Characterization and in vitro release kinetics. Journal of Food and Bioproducts Processing. 143.66-79. https://doi.org/10.1016/j.fbp.2023.10.007 Hsieh, K.C., Lin, T.C., & Kuo, M. I. (2022). Effect of whole chia seed flour on gelling properties, microstructure and texture modification of tofu. Food Science and Technology.154, 1-9. https://doi.org/10.1016/j.lwt.2021.112676 Jalali, M. (2017). Encapsulation of curcumin inside the casein micelles of camel milk and production of powder from the produced particles (Masterʹs thesis, Tehran University, Karaj). Retrieved from previous Theses. Katunzi-Kilewela, A., Kaale, L. D., Kibazohi, O., & Rweyemamm, L.M.P. (2021). Nutritional, health benefits and usage of chia seeds (Salvia hispanica): African Journal of Food Science.15(2), 48-59. Kazemi – Taskooh, Z., Varidi, M. (2021). Designation and characterization of cold – set whey protein – gellan gum hydrogel for iron entrapment. Food Hydrocolloids. 111, 106205: 1–60. Kim, Y.H., Furuya, H., & Tabata, Y. (2014). Enhancement of bone regeneration by the dual release of a Macrophage recruitment agent and platelet-rich plasma from gelatin hydrogels. Biomaterials. 35, 214-224. Kuhn, K. R., Cavallieri, A. L. F., & Da Cunha, R. L. (2010). Cold‐set whey protein gels induced by calcium or sodium salt addition. International journal of food science & technology. 45(2), 348-357. https://doi.org/10.1111/j.1365-2621.2009.02145.x. Lee, B.H., Choi, H.A., Kim, M.R., Hong, J. (2013). Changes in chemical stability and bioactivities of curcumin by ultraviolet radiation. Journal of Food Science and Biotechnology. 22, 279-282. https://doi.org/10.1007/s10068-013-0038-4 Liu, F., Li, R., Mao, L. Y., & Gao, L. (2018). Ethanol-induced composite hydrogel based on propylene glycol alginate and zein: Formation, characterization and application, Food chemistry. 255, 390-398. https://doi.org/10.1016/j.foodchem.2018.02.072 Maltais, A., Remondetto, G. E., Gonzalez, R., & Subirade, M. (2005). Formation of soy protein isolate cold‐set gels: Protein and salt effects. Journal of food science. 70(1), C67-C73.https://doi.org/10.1111/j.1365-2621.2005.tb09023.x Marin Flores, F.M., Acevedo, M.J., Tamez, R.M., Nevero, M.J., & Garay, A.L. (2008). Word International Property Organization. Method for obtaining mucilage from Salvia hispanica L. Mexico.WO / 2008 / 0044908. Moghadam, M., Salami, M., Mohammadian. M., Delphi, L., Sepehri, H., Emam - Djomeh, Z., & Moosavi- Movahedi, A.A. (2019). Walnut protein - curcumin complexes: fabrication, structural characterization, antioxidant properties, and in vitro anticancer activity, Journal of Food Measurment and Characterization. https://doi.org/10.1007/s11694-019-00336-9 Moghaddasi Farimani, F. (2018). Natural nanoemulsion curcumin: preparation and characterization of solubility, stability, antioxidant activity and toxicity assessment (Ph.D. ʹs thesis, Ferdowsi University, Mashhad). etrieved from previous Theses. Mohammadian, M., Salami, M., Momen, S., Alavi, F., & Emam - Djomeh, Z. (2019). Fabrication of curcumin – loaded whey protein microgels: Structural properties, antioxidant activity, and in vitro release behavior, LWT –Food Science and Technology. 103, 94-100. https://doi.org/10.1016/j.lwt.2018.12.076 Mousavi Baygi, S.F., Koocheki, A., Ghorani, B., & Mohebbi, M. (2023). Evaluation of Behavior and Modeling of Curcumin Release from Liposomes under Simulated Gastrointestinal Laboratory Conditions.Iranian Food Science and Technology Research Journal. 57-78. [in Persian]. Peng, H., Xiong, H., Li, J, Xie, M., Liu, Y., Bai, C., & Chen, L. (2010). Vanilliin cross – linked chitosan microspheres for controlled release of reseveratrol. Food Chemistry. 121(1), 23–28. https://doi.org/10.1016/j.foodchem.2009.11.085 Pinheiro, A.C., Coimbra, M.A., & Vicente, A.A. (2016). In vitro behaviour of curcumin nanoemulsions stabilized by biopolymer emulsifiers – Effect of interfacial composition. Food Hydrocolloids. 52, 460–467.https://doi.org/10.1016/j.foodhyd.2015.07.025 Rafiee, Z., Nejatian, M., Daeihamed, M., & Jafari, S.M. (2018). Application of different nanocarriers for encapsulation of cumrcumin. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2018.1495174. Sagiri, S. S., Singh, V. K., Kulanthaivel, S., Banerjee, I., Basak, P., Battachrya, M. K., & Pal, K. (2015). Stearate organogel – gelatin hydrogel based bigels: Physicochemical, thermal, mechanical characterizations and in vitro drug delivery applications. Journal of the mechanical behavior of biomedical materials. 43, 1–17. https://doi.org/10.1016/j.jmbbm.2014.11.026 Saha, D. and Bhattacharya, S. (2010). Characteristics of gellan gum based food gel. Journal of Texture Studies. 41: 459-471. https://doi.org/10.1111/j.1745-4603.2010.00236.x Sanderson, G.R. 1990. Gellan gum. In P. Harris, Food gels. Saze-Plaze, P., Navas, M.J., Wybraniec, S., Michalowski, T., & Asuero, A.G. (2013). An overview of the Kjeldahl method of nitrogen determination. Part II. Sample preparation, working scale, in strumental Finish, and quality control. Critical Reviews in Analytical Chemistry. 43(4), 224-272. https://doi.org/10.1080/10408347.2012.751787 Shankar, S., Ganapathy, S., Chen, Q., & Srivastava, R. K. (2008). Curcumin sensitizes TRAIL – resistant xenografts: Molecular mechanisms of apoptosis, metastasis and an- giogenesis. Molecular Cancer. 7(1), 16. 10.1186/1476 - 4598 – 7 - 16. https://doi.org/ 10.1186/1476-4598-7-16 Somchue, W., Sermsri, W., Shiowatana, J., & Siripinyanond, A. (2009). Encapsulation of α – tocopherol in rotein – based delivery particles. Food Research International. 42, 909–914. https://doi.org/10.1016/j.foodres.2009.04.021 Tripathi, R., & Mishra, B. (2012). AAPS PharmSciTech. 13. 1091. Vahedifar, A., Madadlou, A., & Salami, M. (2018). Influence of seeding and stirring on the structural properties and formation yield of whey protein microgels. International Dairy Journal. 79, 43–51. https://doi.org/10.1016/j.idairyj.2017.12.003 Wang, C., liu, Z., Xu, G., Yin, B., &Yao, P. (2016). Preparation and Characterization of chia seed protein isolate - chia seed gum complex coacervates. Food Hydrocolloids. 52, 554-563. http://dx.doi.org/10.1016/j.foodhyd.2015.07.033 Wang, Y., Sun, R., Xu, X., Du, M., Zhu, B. (2021). Structural interplay between curcumin and soy protein to improve the water- solubility and stability of curcumin. International Journal of Biological Macromolecules. 193, 1471-1480. https://doi.org/10.1016/j.ijbiomac.2021.10.210 Xu, D., Aihemaiti, Z., Cao, Y., Teng, C., and Li, X. 2016. Physicochemical stability, microheological properties and microstructure of lutein emulsions stabilized by multilayer membranes consisting of whey protein isolate, flax seed gum and chitosan. Food Chem. 202: 156–164. https://doi.org/10.1016/j.foodchem.2016.01.052 Yang, J., Zhou, Y., & Chen, L. (2017). Elaboration and characterization of barley protein nanoparticles as an oral delivery system for lipophilic bioactive compounds. Food & unction. 5, 92-101. https://doi.org/10.1016/j.foodhyd.2016.07.023 Zheng, B., Zhang, Z., Chen, F., Luo, X., & McClements, D.J. (2017). Impact of delivery system type on curcumin stability: Comparison of curcumin degradation in aqueous solutions, emulsions, and hydrogel beads. Food Hydrocolloids. 71, 187-197. https://doi.org/10.1016/j.foodhyd.2017.05.022 Zheng, B., & McClements, D.J. (2020). Formulation of More Efficacious Curcumin Delivery Systems Using Colloid Science: Enhanced Solubility, Stability, and Bioavailability. Molecules. 25(12), 2791. https://doi.org/10.3390/molecules25122791 | ||
آمار تعداد مشاهده مقاله: 102 تعداد دریافت فایل اصل مقاله: 106 |