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The present study estimates the thermal conductivity ratio (KR) of 

stabilized γ-Al2O3/water nanofluid by response surface methodology 

(RSM). This study was conducted under experimental conditions with solid 

volume fractions of SVF = 0.05–2% and T = 25–45 °C temperature. 

Sedimentation visualization and dynamic light scattering (DLS) were 

performed to test the stability of nanofluids. The results of monitoring the 

stability of the nanofluid with the sedimentation visualization method 

showed that it was stable for at least 24 hours. Different models were 

evaluated based on a series of quality indicators and charts. Some indicators 

that were investigated in this study include standard deviation (Std. Dev.), 

coefficient of determination (R2), and coefficient of variation (C.V.). After 

checking the quality indicators and charts for different models, the quadratic 

model was selected as the optimal model—the values of Std. Dev, R2, and 

C.V. for the quadratic model were 0.0241, 0.9785, and 1.87, respectively. 

Also, adjusted R2 and predicted R2 parameters of the quadratic model were 

equal to 0.9606 and 0.8776, respectively, which signifies the model’s 

accuracy. The residual plot, the standard probability plot, the Box-Cox plot, 

and the predicted vs. actual plot also showed that the quadratic model has 

good accuracy and is capable of estimating the KR of the nanofluid. The 

most optimum KR is 1.485. At a temperature of 45 °C, this condition was 

achieved in samples at SVF = 1.764%. 

 

Introduction  

In many engineering applications, base fluids like water, oils, and glycols are utilized as 

operational fluids in heat exchange systems. Improving the base fluids' thermal conductivity 

can raise the devices' thermal efficiency. The idea that solid particles the size of nanometers 

can disperse in base fluids was evolved by Choi et al. [1] and has grown to be a significant 

subject known as nanofluids. In order to be able to research nanofluids, preparing these types 

of fluids in a stable form is a very important factor because the stability of nanofluids strongly 

affects their thermophysical properties [2, 3]. The type, size, shape, concentration, base fluid, 

operating temperature, and addition of surfactant all affect the thermophysical properties of 

dispersed nanoparticles in nanofluids [4-6]. In addition, although augmenting the nanoparticle 

concentration enriches the thermophysical features of the nanofluid, there is a penalty for 

changing the stability behavior [7-9]. Hence, optimizing parameters poses a significant 

challenge for researchers [10].Thermal conductivity is a crucial physical feature of nanofluids 
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that warrants further investigation. As a result, numerous researchers have accomplished 

various experimental and numerical studies to determine the thermophysical features of 

nanofluids [11-20]. It is crucial to research the factors that have an important effect on these 

features. Numerous researchers have looked into the thermophysical features of varied 

nanoparticles in current years in various base fluids [21-28]. Esfe et al. [29] accomplished a 

laboratory examination of the thermal conductivity of nanofluids suspended in water, including 

five nm-diameter Al2O3 nanoparticles. The thermal conductivity of Al2O3/water was measured 

within a temperature range of 26 to 55 °C. The findings demonstrated that raising the 

temperature at any concentration significantly increased the thermal conductivity of nanofluids. 

Putra et al. [30] experimentally studied the thermal conductivity of Al2O3/water nanofluid with 

an average nanoparticle size of 131 nm. The findings proved that the nanofluid's thermal 

conductivity rose by approximately 24% when the concentration was increased to 4%. Zhang 

et al. [31] have performed an experimental study to find how Al2O3/water nanofluid 

concentration affected the thermal conductivity. The thermal conductivity increased by 15% 

when the concentration was increased to 5%. Masuda et al. [32] researched the thermal 

conductivity of titanium oxide and aluminum oxide in water-based fluid through 

experimentation. They demonstrated that these nanofluids' thermal conductivity increases by 

10% and 30%, respectively when compared to water at a concentration of 4%. Eastman et al. 

[33] observed a 40% rise in CuO-EG nanofluid thermal conductivity at 0.3 vol%. Murshed et 

al. [34] investigated the thermal conductivity of water-based titanium oxide nanofluid with rod 

and spherical forms. Their findings demonstrated that the shape of the particles is a significant 

factor in raising the thermal conductivity of the nanofluid. After comparing the experimental 

outcomes with theoretical models, it was discovered that the thermal conductivity values of 

nanofluids obtained from experiments were higher than those estimated by the models. Mintsa 

et al. [35] have documented that concentration and temperature enhance thermal conductivity 

in nanofluids of copper oxide (47 nm) and aluminum oxide (36 nm). A study by Abdel-Samad 

et al. [36] has demonstrated that as temperature and concentration rise, the thermal conductivity 

of the titanium oxide-water nanofluid accelerates. They found that at 90°C, there was an 

increase in thermal conductivity of 37.35% with a volume fraction of 0.47%, whereas at 20 °C, 

there was an increase of 24.11%. Eshgarf et al. [37] investigated an iron oxide-water nanofluid's 

viscosity and thermal conductivity at various temperatures and concentrations. Next, artificial 

neural networks (ANNs) were utilized to progress models for forecasting the thermophysical 

properties mentioned. According to these findings, the suggested models could accurately 

forecast nanofluids' thermophysical characteristics. The statistical modeling method known as 

response surface methodology (RSM) describes the interconnectivity of system inputs and 

outputs using mathematical models [38]. The ability of RSM to capture the non-linear 

relationships between the inputs and the outputs has demonstrated its effectiveness in modeling 

the thermophysical characteristics of nanofluids [39, 40]. Peng et al. [41] have presented the 

findings of a trustworthy model utilizing RSM to predict the thermal conductivity of CuO/water 

nanofluid at varied temperatures and concentrations. Esfe et al. [42]  examined the rheological 

behavior of the HNF (Hybrid Nanofluid) containing MWCNT-SiO2 (10:90) with the RSM. The 

main objective of this study was to introduce a new correlation. Khetib et al. [43] used RSM to 

investigate the viscosity of a paraffin-based CuO nanofluid. Experiments conducted at T = 25–

100 °C and mass fractions of 0 –25% provided the data used in the modeling. RSM shows that 

the results obtained from the third-degree polynomials are more accurate compared to second-

degree and linear polynomials. Table 1 shows an overview of prior research on using RSM in 

estimating nanofluids' thermal conductivity. 

 
Table 1. Applications RSM in forecasting thermal conductivity of nanofluid 

https://www.merriam-webster.com/thesaurus/examined
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Remarks 
Base 

fluid 
Nanoparticles References 

R2 = 0.9939 

AAD% = 0.615% 
Water CuO (II) Peng et al.[41] 

R2 = 0.9982, EG/water Al2O3 Esfe et al.[44] 

R2 = 0.9957 

Std. Dev = 0.002516 
EG/water ND + Co3O4 Esfe & Hajmohammad [22] 

R2 = 0.994 

MSE = 2.0297×10-6 
EG/water ND + Fe3O4 Khetib et al. [45] 

R2 = 0.998 

MSE = 0.0013 
Water Fe3O4 

Khetib et al.[46] 

 

R2 = 0.969 

AAD% = 1.165% 
Water Fe3O4+ SiC Malika & Sonawane [39] 

R2 = 0.9898 

Adjusted R2 = 0.9895 

Predicted R2 = 0.9888 

Std. Dev = 0.1856 

C.V% = 1.31% 

Oil GO + Fe2O3 + TiO2 Shahsavar et al.[47] 

R2 = 0.9882 

Adjusted R2 = 0.9840 

Predicted R2 = 0.9721 

Std. Dev = 0.0020 

C.V% = 0.3263% 

Water GNP + Al2O3 Borode & Olubambi [48] 

R2 = 0.9972 

Adjusted R2 = 0.9968 

Predicted R2 = 0.9962 

Std. Dev = 4.447 ×10-3 

C.V% = 0.4% 

-1.05% < MOD < + 1.08% 

Water MWCNT + Al2O3 + ZnO Esfe et al.[49] 

R2 = 0.9957 

Adjusted R2 = 0.9934 

Predicted R2 = 0.9909 

Std. Dev = 0.0082 

C.V% = 0.6799% 

-1.754% < CD% < + 0.9615% 

EG/water MWCNT + TiO2 Esfe et al.[50] 

AAD: average absolute deviation 

C.D: correlation deviation 

C.V: coefficient of variation 

Std. Dev: standard deviation 

R2: coefficient of determination 

MOD: margin of deviation 

MSE: mean square error 

GNP: graphene nanoplatelets 

ND: Nanodiamond 

 

The first part of this study deals with preparing Al2O3/water nanofluid, stabilization method, 

and stability measurements. Then, the process of measuring thermal conductivity is defined. 

The reasons for choosing Al2O3 nanoparticles are its desirable features such as reasonable price, 

the possibility of various applications, availability with high purity, high thermal and corrosion 

resistance, strength and high degree of mechanical hardness, and favorable environmental 

compatibility. Then, the design of the experiment, the model's formation, and the model's 
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accuracy with respect to the experimental data are investigated using Design Expert software 

(13.0.0). 

We establish a correlation dependent on the interaction of operating parameters and evaluate 

its reliability with experimental data. Based on the literature, it can be realized that most of the 

models developed for the prediction of thermal conductivity have certain limitations that limit 

the application of the correlations to other nanofluids. So, the primary objective of this work is 

to evaluate the possible effect of the operating temperature and also the SVF (solid volume 

fraction) and their interactions on the thermal conductivity of the nanofluid. The other goal of 

this study is the optimization of parameters to maximize the thermal conductivity of the system 

using RSM. The last goal of this research was to compare the outcomes of the estimation of the 

RSM model with other models presented in the literature. 

Nanofluid Preparation and Property Measurement 

Nanofluid Preparation and Stability Check 

There are two methods for nanofluid production, including one-step and two-step. Due to 

the commercial availability of nanoparticles, numerous researchers have developed a two-part 

process for manufacturing nanofluid. Specification of γ-alumina nanoparticles (obtained from 

US Research Nanomaterials, Inc.) is displayed in Table 2. Transmission electron microscopy 

(TEM) was employed to estimate the size of primary nanoparticles. Based on the illustration in 

Fig. 1, it is evident that the nanoparticles have an approximately spherical shape. 

 
Table 2. Specification of nanoparticle used in this study 

Aluminum Oxide (gamma) Nanoparticle 

20 Average particle size (nm) 

>99% Purity 

3890 Density (kg/m3) 

White Color 

Nearly spherical Morphology 

>138 Specific area (m2/g) 
880 Specific heat (J /kg K) 
46 Thermal conductivity (W/m K) 

 

 

Fig. 1. Image of TEM nanoparticles used in this study 
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In this study, a two-step method was used to prepare nanofluids. The stability of nanofluids 

is a significant concern in this technique. Thermophysical and heat transfer properties are 

closely tied to the stability of a nanofluid [51]. The long-term stability of nanofluids is a crucial 

factor in determining their practical applicability. In this study, the nanofluids' concentration 

(0.05, 0.5, 1, and 2 vol%) and temperature (25, 35, and 45 °C) were chosen. Alumina 

nanoparticles are added to distilled water as the base fluid, and their weight is measured in four 

decimal places. The fluid was stirred with a magnetic stirrer for one hour and then transferred 

to an ultrasonic vibrator (BANDELIN Company - power 240 W and frequency 35 kHz) for 

three hours. In this study, we employed sedimentation visualization and dynamic light 

scattering (DLS) to assess the stability of nanofluids. The results of monitoring the stability of 

nanofluid with the sedimentation visualization method showed that it was stable for at least 24 

hours. The mentioned method is used in references [52-56]. DLS detects the size distribution 

of nanoparticles in the dispersed phase. DLS technique was employed to obtain particle size 

distribution in nanofluids using a Malvern Zetesizer Nano (Malvern Panalytical, UK) to study 

clustering and agglomeration phenomena. Fresh and old samples (after 7 days) were analyzed 

to determine the particle size distribution. The findings are outlined in Table 3. Because DLS 

measures the hydrodynamic radius of nanoparticles, the average size obtained by these particles 

was larger than what could be seen through a micrograph of TEM. The findings also indicate 

that a rise in the vol. fraction of nanofluid leads to a larger particle size. The increased 

agglomeration of nanoparticles upon their addition to the base fluid can be attributed to this 

phenomenon. In addition, the results show that freshly prepared nanofluids in different 

concentrations have larger average diameters of nanoparticles than nanofluids after 7 days old. 

Such a phenomenon is related to the fact that the larger aggregated particles settle, and this 

causes the easy detection of smaller particles by DLS [57, 58]. The mentioned findings agree 

with the results of studies [57, 59, 60]. 

Table 3. The average diameter of nanoparticles at different times obtained from dynamic light scattering (DLS) 

Nanoparticle diameter (nm) Concentration (vol.%) 

7 days old freshly  

90 134 0.05 

129 161 0.5 

147 169 1 

197 218 2 
 

Measurement of Thermal Conductivity  

A KD2 Pro thermal properties analyzer (Decagon Devices, Inc. USA, Fig. 2) was applied to 

measure the thermal conductivity of the nanofluid under different experimental conditions. The 

measurement works in the range of 0.02-2 W/m.K. This device is fitted with a KS-1 needle 

sensor placed vertically and centrally in the nanofluid container. The temperature of the sample 

was controlled with the aid of a water bath during the measurement process. To avoid the 

possibility of transient heat effects, a 30-minute interval between subsequent measurements 

was chosen to minimize their impact on the temperature increase near the probe. Therefore, the 

obtained results are stable and repeatable. To achieve precision and consistent results, the 

average of three thermal conductivity measurements for each sample is used. The uncertainties 

in thermal conductivity measurements were predicted based on the accuracies of the tools given 

in Table 4 and calculated by the method [61]. The maximum uncertainty in the measured 

thermal conductivity was 1.8 %. 
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Fig. 2. Thermal properties analyzer device 

Table 4. Accuracy of the instruments 

Accuracy Instruments 

±0.0001 Weighing balance 

3 kHz   ±  Ultrasonic bath 

±0.01 W/m.K Thermal conductivity apparatus 

±0.1 °C Water bath 

 

RSM 

Many engineering phenomena have been modeled using theories. A suitable mathematical 

model for many phenomena is unavailable due to various controlling factors, computational 

complexity, or unknown mechanisms. Experimental modeling techniques are efficient. One of 

the approaches to experimental modeling is RSM. In this approach, the response variable is 

affected by numerous independent input parameters, aiming to optimize the response variable 

and analyze the factors impacting it while minimizing the number of tests conducted. Response 

surface methodology (RSM) has many applications in different topics such as essential oil [62] 

and seed oil extraction [63, 64], optimization and mathematical modeling [65, 66], 

impregnation [67, 68], nanoparticle formation [69-71], etc. 

Results and Discussion 

The RSM evaluation uses a statistical regression approach to model the correlation between 

the input variable SVF and T and the nanofluid output response variable (KR = thermal 

conductivity ratio = 
𝑲𝒏𝒇

𝑲𝒃𝒇
  ). Table 5 displays the p-values, Adjusted R2, and Predicted R2 values 

for the linear, two-factor interaction (2FI), quadratic and cubic models that were examined in 

the analysis. 

 

 

 

 

https://doi.org/10.1016/j.supflu.2017.04.007%5d,%20impregnation
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Table 5. Summary of statistics for the various models 

Source Sequential p-value Adjusted R² Predicted R² 
 

Linear 0.0002 0.8156 0.7353 
 

2FI 0.7769 0.7948 0.6797 
 

Quadratic 0.0030 0.9606 0.8776 Suggested 

Cubic 0.2971 0.9534 0.8113 Aliased 

 

The sequential p-value column denotes the importance level of each model term as they were 

sequentially added to the model. It quantifies the probability of achieving the recorded data or 

even more extreme results assuming the null hypothesis holds true. A p-value below 0.05 

indicates that the term is statistically essential, signifying its impact on the variability of the 

response variable [72]. The Adjusted R2 value indicates the proportion of the overall variance 

in the dependent variable determined by the model while also considering the number of 

independent variables included. A higher Adjusted R2 value implies a better fit between the 

model and the data. The Predicted R2 column displays the anticipated proportion of variability 

in forthcoming observations that the model can clarify. A greater Predicted R2 value suggests 

that the model is expected to perform strongly when applied to new data. This table shows that 

the quadratic model has the best Adjusted R2 (0.9606) and Predicted R2 (0.8776), which is the 

most accurate model to provide the best fit to the data and estimate the response variable. The 

adjusted R2 value for the cubic model is also high (0.9534), whereas the R2 values for the 2FI 

and Linear models are comparatively lower. The Cubic model exhibits a low Predicted R2 

(0.8113) and is marked as Aliased, indicating that it cannot be differentiated from another model 

due to collinearity or confounding factors. Hence, this study has chosen the quadratic model for 

further examination. Table 6 displays the results of the ANOVA analysis for the quadratic 

model. The sources of variability are presented, along with their corresponding sum of squares, 

degrees of freedom, mean square, F-value, and p-value. The F-value is utilized in ANOVA to 

assess the statistical importance of the variation among factors [73]. The model is considered 

statistically significant with an F-value of 54.59, indicating that the probability of obtaining 

such a high F-value by random chance is extremely low at 0.01%. The results suggest that both 

factors, the SVF (A) and temperature (B), have extremely low p-values (<0.0003), signifying 

their significant influence on the response. Both the AB interaction term and B2 have p-values 

that exceed 0.05, suggesting that they are not statistically significant. Conversely, A2 possesses 

a p-value of 0.0012, denoting its significance as a term. 

Table 6. ANOVA outcome for the suggested quadratic model 

Source Sum of 

Squares 

Df Mean 

Square 

F-value p-value 
 

Model 0.1581 5 0.0316 54.59 < 0.0001 significant 

A-SVF 0.1134 1 0.1134 195.68 < 0.0001 
 

B-T 0.0337 1 0.0337 58.19 0.0003 
 

AB 0.0003 1 0.0003 0.4471 0.5286 
 

A² 0.0193 1 0.0193 33.30 0.0012 
 

B² 0.0014 1 0.0014 2.33 0.1778 
 

Residual 0.0035 6 0.0006 
   

Cor Total 0.1616 11 
    

Table 7 shows the fit statistics of the quadratic model. The table denotes that the Predicted 

R2 value of 0.8776 nearly matches the Adjusted R2 value of 0.9606, with a difference of less 

than 0.2. This indicates that the model can be trusted when making estimations for future 

observations. The Adeq Precision assesses the model's quality by comparing the variation in 

the data with the variation anticipated by the model. A ratio exceeding four is deemed 

satisfactory, and a viewed ratio of 23.2535 suggests that the model is suitable for exploring the 

design space. 
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Table 7. Fit statistics for the quadratic model 

Std. Dev. Mean CV % R2 Adjusted R2 Predicted R2 Adeq Precision 

0.0241 

 

1.29 

 

1.87 

 

0.9785 

 

0.9606 

 

0.8776 

 

23.2535 

 

 

Table 8 exhibits the coefficient estimates, degrees of freedom, standard error, 95% 

confidence interval, and variance inflation factors (VIFs) for each factor in the KR. The 

coefficient estimate signifies the anticipated alteration in the response when the value of a factor 

changes by one unit while all other factors remain constant. In an orthogonal design, the 

intercept represents the mean response of all the runs. The coefficients indicate adjustments to 

the mean reaction according to the factor configurations. When the factors are orthogonal, the 

variance inflation factors (VIFs) will equal 1. VIFs exceeding 1 indicate the existence of 

multicollinearity, with a stronger correlation between factors as the VIF value increases. 

Typically, VIFs that are below 10 are considered acceptable. The intercept coefficient estimate 

is 1.34, which suggests the average response of all runs when all variables are set to their 

baseline values. The coefficient estimate for factor A (SVF) is 0.1318, indicating that a one-

unit increase in SVF leads to a 0.1318 increase in the response, while all other factors remain 

constant. The factor B (temperature) has a coefficient estimate of 0.0661, suggesting that a one-

unit increase in temperature leads to a response increase of 0.0661 while holding all other 

factors constant. The AB coefficient estimate is 0.0077, denoting that the interaction between 

factors A and B has a minor positive effect on the response. The coefficient estimate for A2 is 

-0.0920, indicating that a one-unit increase in A2 leads to a reduction of 0.0920 in the reaction, 

while all other factors are held constant. The coefficient estimate for B2 is 0.0225. Additionally, 

VIFs offer insights into the collinearity present among factors. In this instance, they are all near 

or below 1.04, indicating that collinearity is not a significant concern in the model. 

Table 8. Coefficient estimate in terms of the coded factors 

Factor Coefficient 

Estimate 

Df Standard 

Error 

95% CI 

Low 

95% CI 

High 

VIF 

Intercept 1.34 1 0.0153 1.31 1.38 
 

A-SVF 0.1318 1 0.0094 0.1088 0.1549 1.02 

B-T 0.0661 1 0.0087 0.0449 0.0873 1.04 

AB 0.0077 1 0.0114 -0.0204 0.0357 1.04 

A² -0.0920 1 0.0159 -0.1310 -0.0530 1.02 

B² 0.0225 1 0.0147 -0.0136 0.0586 1.0000 

 

The relationship between the KR and the actual values of the SVF and T factors is illustrated 

in Eq. 1. The coefficients assigned to each factor determine their impact on KR. At the same 

time, the interaction term signifies the combined effect of both factors. This equation, different 

from the coded one, forecasts the actual response values in their original units. Nevertheless, it 

is impossible to compare the coefficients to assess each factor's relative strength, as they have 

been adjusted to match the units of each factor. Furthermore, the intercept does not depict the 

center of the design space. 

 

KR = 1.17601 + 0.306159 * SVF – 0.009947 * T + 0.000785 * SVF * T – 0.096795 
* SVF 2 + 0.000225 * T 2 

 

(1) 

                                                                  

The perturbation plot in Fig. 3 demonstrates the effect of two factors on the KR response. 

The diagram visually depicts the relationship between the examined factors and the system's 

response. The diagram is created by perturbing a single factor at a time while keeping the other 
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factors fixed and monitoring the resulting alterations in the response. This permits you to 

visualize the curvature of the response surface and identify interactions between factors. The 

slope of each line demonstrates the sensitivity of the reaction to that particular factor. In 

contrast, the curvature of the line signifies the existence of any interactions with the other 

factors. According to Fig. 3, it can be viewed that factor A exerts the most significant influence 

on the KR, whereas factor B demonstrates the least impact. 
 

 

Fig. 3. Perturbation plot of the influence of input factors on the KR 

Fig. 4 compares the outcomes gained from the experimental examination with the anticipated 

results deduced from the correlations suggested by RSM. Fig. 4 demonstrates that the actual 

and predicted outcomes are nearly similar, with just a few minor deviations, as evidenced by 

Fig. 5a-c. The studentized residual distribution is depicted in Fig. 5a, showing that most 

residuals are concentrated near the '0' reference line. This implies that the correlations 

established are reliable and the models accurately capture the behavior of the data. Furthermore, 

in Fig. 5b, one can observe a reasonably random distribution of residuals throughout the run 

order, suggesting that the model adequately addresses the temporal dimension of the data. Fig. 

5c shows the normal probability graph of the selected model. This graph illustrates the normal 

distribution of the residuals and their linearity. Even for typical data, some degree of scattering 

can be expected. If the data follows an S-shaped curve, it is necessary to employ transfer 

functions. As shown in Fig. 5c, the selected model is linear primarily with minimal deviation. 

A standard probability plot is used to evaluate how a small data set is normally distributed. 

https://www.merriam-webster.com/thesaurus/gained
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Fig. 4. Correlation between the experimental and predicted values 

 
(a) 
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(b) 

 

 

 
(c) 

Fig. 5. Plot of externally studentized residuals in relation to (a) predicted value, (b) run order, (c) standard plot 

 

A lambda value 1 in Box-Cox plot analysis indicates that the original data fits well. Box-

Cox plots are utilized to transform the data distribution into a normal distribution. Fig. 6 

displays the Box-Cox plots of the quadratic model. This plot offers guidance on selecting the 

appropriate transfer function. The optimal transfer function is recommended by considering the 

best lambda value situated at the curve's minimum point. The software will not suggest any 

transformation if the 95% confidence interval surrounding this lambda includes 1. As depicted 

in Fig. 6, the quadratic model plot exhibits suitable behavior, with the lambda line 

predominantly positioned at the lower bottom of the curve. 
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Fig. 6. Box-Cox diagrams for determining Lambda value. Current λ=1, Best λ=0.24, Recommended 

transform=none 

 

The 2D contour and 3D surface plots in Figs. 7 & 8 demonstrate how different input 

parameters affect the KR of the nanofluid. Fig. 7 presents a 2D contour illustrating the effect of 

SVF and T on KR, which helps us understand their relationship. Instead, Fig. 8 improves 

deducing by exhibiting a three-dimensional surface plot that allows more detailed visualization 

of the complex interaction between SVF, T, and KR. The plot contour lines link points sharing 

the same KR value, enabling us to pinpoint regions with higher or lower KR values and detect 

trends or patterns.  Figures indicate that the KR of the nanofluid enhances rapidly as the SVF 

level rises. Additionally, the statistics exhibit that the KR enhances as the temperature increases 

(although this effect is not tangible compared to the SVF.), which can be attributed to the rise 

in Brownian motion due to increasing temperatures. These results align with earlier research 

studies that have been published [74, 75]. 

 

 
Fig. 7. 2D contour plot of the impact of SVF and T on the KR 
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Fig. 8. 3D surface plot of the impact of SVF and T on the KR 

Optimum Response 

An optimization was performed on the thermal conductivity ratio (KR) of the Al2O3/water 

nanofluid to achieve its maximum value. This optimization involved adjusting the SVF and T 

of the nanofluid. In order to optimize the process, the KR of the nanofluid was maximized by 

utilizing the correlation acquired through RSM. The optimization results demonstrated that the 

nanofluid's KR is maximized at 45 ◦C, reaching 1.485, within the investigated range of T (25 

to 45 ◦C) and SVF (0.05 to 2% vol.). Achieving this value is possible only when the SVF of the 

nanofluid is adjusted to 1.764%. Table 9 showcases a range of optimal solutions for nanofluid. 

Fig. 9a & b displays the desirability value and optimal KR values at different points. 

Table 9.  Different optimal solutions for nanofluid 

Number SVF T KR Desirability  

1 1.764 45.000 1.485 0.988 Selected 

2 1.754 45.000 1.485 0.988  

3 1.780 45.000 1.485 0.988  

4 1.744 45.000 1.485 0.988  

5 1.808 45.000 1.485 0.988  

6 1.879 45.000 1.484 0.985  

7 1.598 45.000 1.483 0.981  

8 1.578 45.000 1.482 0.980  

9 2.000 44.046 1.469 0.947  
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(a) 

 

(b) 

Fig. 9. Optimal values of KR in different SVF (a) desirability (b) KR 

 

Fig. 10 compares the proposed RSM model with other theoretical and experimental models 

in the literature to estimate the KR of the nanofluid. As it is clear from Fig. 10, other models 

performed poorly in estimation, while the RSM model has a very good match with the 

experimental data. Also, in Table 10, the comparison of different models has been done 

quantitatively and with different statistical parameters. The table clearly shows that the best 
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results are related to the RSM model for all statistical parameters. The mentioned findings are 

in agreement with the results [76]. Table 11 displays the mathematical representation of 

statistical parameters employed in this research. 

 

Fig.10. Comparison of different models in the forecasting of KR nanofluid 

 
Table 10. The comparison between the results of the RSM model and other models for the estimation of KR 

nanofluid 

Models AARD% MSE RMSE Maximum MOD% 

WASP [77] 19.3 0.097 0.311 

 

29.2 

Williams et al. [78] 

 

18.5 0.088 0.297 

 

26.9 

Mintsa et al. [35] 

 

20.1 0.1 0.323 

 

31.4 

Ho et al. [79] 19.2 0.095 0.308 

 

28.4 

RSM 3.7 0.007 0.0841 

 

14.3 

 

 

Table 11. The mathematical expressions of statistical parameters used in this study 

Statistical parameters Formula 

Average absolute relative deviation percent 

(AARD%) [80] 
𝐴𝐴𝑅𝐷% =

100

𝑛
∑

|𝑃𝑖𝑒𝑥𝑝 − 𝑃𝑖𝑝𝑟𝑒𝑑|

𝑃𝑖𝑒𝑥𝑝
𝑖

 

MSE [80] 𝑀𝑆𝐸 =
1

𝑛
∑(|𝑃𝑖𝑒𝑥𝑝 − 𝑃𝑖𝑝𝑟𝑒𝑑|)

2

𝑖

 

Root Mean Square Error (RMSE) [76] 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑃𝑖𝑒𝑥𝑝 − 𝑃𝑖𝑝𝑟𝑒𝑑)

2

𝑖

 

Margin of deviation (MOD%) [81] 𝑀𝑂𝐷% =
𝑃𝑖𝑝𝑟𝑒𝑑 − 𝑃𝑖𝑒𝑥𝑝

𝑃𝑖𝑒𝑥𝑝

× 100 

 

0.9
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Conclusion 

This study investigated the thermal conductivity of Al2O3/water nanofluid. RSM was 

effectively utilized in this study, yielding equations that accurately estimate the KR of the 

nanofluid. RSM provided different equations to calculate KR based on independent parameters 

such as SVF and T. The quadratic model has been demonstrated to be superior to the other 

models through statistical parameters and plots. R2, adjusted R2, predicted R2 and Std. Dev 

parameters of the quadratic model were equal to 0.9785, 0.9606, 0.8776, and 0.0241, 

respectively, which signifies the model’s accuracy. Also, the difference between adjusted R2 

and predicted R2 is less than 0.083, indicating the high accuracy of the proposed model. The 

residual plot, the normal probability plot, the Box-Cox plot, and the predicted vs. actual plot 

also showed that the quadratic model has good accuracy and is capable of estimating the KR of 

the nanofluid. The experimental outcomes displayed that a rise in SVF and T caused an increase 

in KR. This trend was estimated using RSM methods with very high accuracy. Ultimately, the 

optimum combination for better KR was found at SVF = 1.764% and T = 45 ◦C. 

Nomenclature  

2FI two-factor interaction 

AAD average absolute deviation 

ANOVA analysis of variance 

C.D correlation deviation 

CV (%) coefficient of Variation 

D Dimension 

DF degrees of Freedom 

DLS dynamic light scattering 

EG ethylene glycol 

GNP graphene nanoplatelets 

GO graphene oxide 

H Hour 

HNF hybrid nanofluid 

KR Thermal conductivity ratio 

(Knf/Kbf) 

MOD margin of deviation 

MSE mean square error 

MWCNT multi-walled carbon nanotubes 

ND Nanodiamond 

R2 coefficient of determination (-) 

RSM response surface methodology 

SR Shear rate 

Std. Dev standard deviation 

SVF solid volume fraction 

T Temperature (°C) 

TEM Transmission electron microscopy 

VIF variance Inflation Factors 

Vol Volume 

W Water 
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