
تعداد نشریات | 163 |
تعداد شمارهها | 6,823 |
تعداد مقالات | 73,558 |
تعداد مشاهده مقاله | 134,673,954 |
تعداد دریافت فایل اصل مقاله | 105,202,999 |
The Impact of Cytopathogenic and Non-cytopathogenic Biotypes of Bovine Viral Diarrhea Virus on Total Antioxidant Capacity of Bovine Oocytes In-vitro | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 15، دوره 19، شماره 3، مهر 2025، صفحه 563-570 اصل مقاله (704.23 K) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.19.3.1005577 | ||
نویسندگان | ||
Amirmahdi Roshanzamir* 1؛ Massoud Talebkhan Garoussi* 2؛ Jalil Mehrzad3 | ||
1Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. | ||
2Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran | ||
3Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. | ||
چکیده | ||
Background: Bovine viral diarrhea virus (BVDV) is the most common pathogen in dairy cattle herds. Objectives: This study aims to examine the impact of cytopathic (CP) and non-cytopathic (NCP) BVDV biotypes on the total antioxidant capacity (TAC) of bovine oocytes in vitro. Methods: Oocytes were obtained from slaughtered bovine ovaries, washed, and matured in a maturation medium. Oocytes were divided into five groups, each consisting of at least 60. The control group was not exposed to BVDV biotypes. Oocytes were challenged with CP and NCP, BVDV at two concentrations of 104 and 105 tissue culture infectious doses (TCID)50/mL. To determine the antioxidant capacity of oocytes, a TAC assay was conducted after two hours of incubation. Graph Pad Prism software, version 8.4.3 was utilized to analyze the data. A one-way analysis of variance (ANOVA) was performed, and a post-hoc Tukey’s honestly significant difference (HSD) test was accompanied. Results: The results indicated that only the CP biotype of BVDV significantly decreased the TAC of infected oocytes compared to the control group, whereas the NCP biotype did not significantly alter the TAC of the infected groups. Conclusion: Our study showed that only CP BVDV in 104 and 105 TCID50/mL doses affected the infected oocytes and significantly decreased the oocyte’s TAC. At the same time, the NCP biotype did not significantly alter the infected oocyte’s TAC. | ||
کلیدواژهها | ||
Bovine viral diarrhea virus (BVDV)؛ Cytopathic (CP)؛ Non-cytopathic (NCP)؛ Oocyte؛ Total antioxidant capacity (TAC) assay | ||
اصل مقاله | ||
Introduction
Virus culture and preparation
Abdelsalam, K., Rajput, , Elmowalid, G., Sobraske, J., Thakur, N., & Abdallah, H., et al. (2020). The effect of bovine viral diarrhea virus (BVDV) strains and the corresponding infected-macrophages' supernatant on macrophage inflammatory function and lymphocyte apoptosis. Viruses, 12(7), 701. [DOI:10.3390/v12070701] [PMID] Alfadda, A. A., Sallam R. M. (2012). Reactive oxygen species in health and disease. BioMed Research International, 2012, 936486. [DOI:10.1155/2012/936486][PMID] Al-Kubati, A. A. G., Hussen, J., Kandeel, M., Al-Mubarak, A. I. A., & Hemida, M. G. (2021). Recent advances on the bovine viral diarrhea virus molecular pathogenesis, immune response, and vaccines development. Frontiers in Veterinary Science, 8, 665128. [DOI:10.3389/fvets.2021.665128][PMID] Asadi, , Bahmani, M., Kheradmand, A., & Rafieian-Kopaei, M. (2017). The impact of oxidative stress on testicular function and the role of antioxidants in improving it: A review. Journal of Clinical and Diagnostic Research, 11(5), IE01–IE05. [DOI:10.7860/JCDR/2017/23927.9886][PMID] Barrozo, L. G., Paulino, L. R. F. M., Silva, B. R., Barbalho, E. C., Nascimento, D. R., & Neto, M. F. L., et al. (2021). N-acetyl-cysteine and the control of oxidative stress during in vitro ovarian follicle growth, oocyte maturation, embryo development and cryopreservation. Animal Reproduction Science, 231, 106801. [DOI:10.1016/j.anireprosci.2021.106801] [PMID] Böhm, E. W., Buonfiglio, F., Voigt, A. M., Bachmann, P., Safi, T., & Pfeiffer, N., et al. (2023). Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biology, 68, 102967. [DOI:10.1016/j.redox.2023.102967][PMID] Dabiri, M., Talebkhan Garoussi, M., Mehrzad, J., Tajik, P., & Barin, A. (2021). [The effects of cytopathic and non-cytopathic biotypes of bovine viral diarrhea virus on sperm vitality and viability of holstein dairy bulls in vitro (Persian)]. Iranian Journal of Veterinary Medicine, 15(2), 197-206. [DOI:10.22059/ijvm.2020.305268.1005103] da Silva Cardoso Pinto, V., Alves, M. F., de Souza Nunes Martins, M., Basso, A. C., Tannura, J. H., & Pontes, J. H. F., et al. (2017). Effects of oocytes exposure to bovine diarrhea viruses BVDV-1, BVDV-2 and hobi-like virus on in vitro-produced bovine embryo development and viral infection. Theriogenology, 97, 67–72. [DOI:10.1016/j.theriogenology.2017.04.028] [PMID] Dayal, R., Singh, A., Pandey, A., & Mishra, K. P. (2014). Reactive oxygen species as mediator of tumor radiosensitivity. Journal of Cancer Research and Therapeutics, 10(4), 811–818. [DOI:14103/0973-1482.146073] [PMID] Dontha S. A. (2016). Review on antioxidant methods. Asian Journal of Pharmaceutical and Clinical Research. 9(2):14-32. [DOI:10.22159/ajpcr.2016.v9s2.13092] Garoussi, M. T., Mehrzad, J., & Nejati, A. (2019). Investigation of persistent infection of bovine viral diarrhea virus (BVDV) in Holstein dairy cows. Tropical Animal Health and Production, 51(4), 853–858. [DOI:10.1007/s11250-018-1765-6] [PMID] González Altamiranda, E. A., Kaiser, G. G., Mucci, N. C., Verna, A. E., Campero, C. M., & Odeón, A. C. (2013). Effect of Bovine Viral Diarrhea Virus on the ovarian functionality and in vitro reproductive performance of persistently infected heifers. Veterinary Microbiology, 165(3-4), 326–332. [DOI:10.1016/j.vetmic.2013.04.007] [PMID] Garoussi, M. T., & Mehrzad, J. (2011). Effect of bovine viral diarrhoea virus biotypes on adherence of sperm to oocytes during in-vitro fertilization in cattle. Theriogenology, 75(6), 1067–1075. [DOI:10.1016/j.theriogenology.2010.11.015] [PMID] Gaschler, M. M., & Stockwell, B. R. (2017). Lipid peroxidation in cell death. Biochemical and Biophysical Research Communications, 482(3), 419–425. [DOI:10.1016/j.bbrc.2016.10.086][PMID] Ghorbanian B, Mohammadi H, Azali K. (2017). [Effects of 10-weeks aerobic training with Rhus coriaria. L supplementation on TAC, insulin resistance and anthropometric indices in women with type 2 diabetes (Persian)]. Complementary Medicine Journal, 7(1), 1805-1815. [Link] Gupta S, Finelli R, Agarwal A, Henkel R. (2021). Total antioxidant capacity-Relevance, methods and clinical implications. Andrologia, 53(2), e13624. [DOI:10.1111/and.13624] Jiang, Y., Shi, H., Liu, Y., Zhao, S., & Zhao, H. (2021). Applications of melatonin in female reproduction in the context of oxidative st Oxidative Medicine and Cellular Longevity, 2021, 6668365. [DOI:10.1155/2021/6668365][PMID] Kagawa, S., Hiraizumi, S., Bai, H., Takahashi, M., & Kawahara, M. (2022). Cattle production by intracytoplasmic sperm injection into oocytes vitrified after ovum pick-up. Theriogenology, 185, 121–126. [DOI:10.1016/j.theriogenology.2022.03.022] [PMID] Katakwar, P., Metgud, R., Naik, S., & Mittal, R. (2016). Oxidative stress marker in oral cancer: A review. Journal of Cancer Research and Therapeutics, 12(2), 438–446. [DOI:10.4103/0973-1482.151935] [PMID] Khazaei M, Aghaz F. (2017). Reactive oxygen species generation and use of antioxidants during in vitro maturation of oocytes. International Journal of Fertility & Sterility, 11(2), 63-70. [DOI:10.22074/ijfs.2017.4995][PMID] Li, Z., Zhang, Y., Zhao, B., Xue, Q., Wang, C., Wan, S., et al. (2024). Non-cytopathic bovine viral diarrhea virus (BVDV) inhibits innate immune responses via induction of mitophagy. Veterinary Research, 55(1), 27. [DOI:10.1186/s13567-024-01284-z][PMID] Lira Ferrari, G. S., & Bucalen Ferrari, C. K. (2011). Exercise modulation of total antioxidant capacity (TAC): Towards a molecular signature of healthy aging. Frontiers in Life Science, 5(3-4), 81-90. [DOI:10.1080/21553769.2011.635008] Liu, Y., Liu, S., He, B., Wang, T., Zhao, S., & Wu, C., et al. (2018). PD-1 blockade inhibits lymphocyte apoptosis and restores proliferation and anti-viral immune functions of lymphocyte after CP and NCP BVDV infection in vitro. Veterinary Microbiology, 226, 74– [DOI:10.1016/j.vetmic.2018.10.014] [PMID] Meyer, G., Combes, M., Teillaud, A., Pouget, C., Bethune, M. A., & Cassard, H. (2021). Vaccination of sheep with bovine viral diarrhea vaccines does not protect against fetal infection after challenge of pregnant ewes with border disease virus. Vaccines, 9(8), 805. [DOI:10.3390/vaccines9080805][PMID] Oguejiofor, C. F., Thomas, C., Cheng, Z., & Wathes, D. C. (2019). Mechanisms linking bovine viral diarrhea virus (BVDV) infection with infertility in cattle. Animal Health Research Reviews, 20(1), 72–85. [DOI:10.1017/S1466252319000057] [PMID] Pinior, B., & Köfer, J. (2016). The effect of bovine viral diarrhoea virus on fertility in dairy cows: Two case-control studies in the province of Styria, Austria. Berliner Und Münchener Tierärztliche Wochenschrift, 129(3/4), 103-110. [Link] Rahimian, E., Amini, A., Alikarami, F., Pezeshki, S. M. S., Saki, N., & Safa, M. (2020). DNA repair pathways as guardians of the genome: Therapeutic potential and possible prognostic role in hematologic neoplasms. DNA Repair, 96, 102951. [DOI:10.1016/j.dnarep.2020.102951] [PMID] Rajput, M. K., Darweesh, M. F., Park, K., Braun, L. J., Mwangi, W., & Young, A. J., et al. (2014). The effect of bovine viral diarrhea virus (BVDV) strains on bovine monocyte-derived dendritic cells (Mo-DC) phenotype and capacity to produce BVDV. Virology Journal, 11, 44. [DOI:10.1186/1743-422X-11-44][PMID] Reed, L. J., & Muench, H. (1938). A simple method of estimating fifty per cent endpoints. American Journal of Epidemiology, 27(3), 493-7. [DOI:10.1093/oxfordjournals.aje.a118408] Schweizer, M., & Peterhans, E. (1999). Oxidative stress in cells infected with bovine viral diarrhoea virus: A crucial step in the induction of apoptosis. The Journal of General Virology, 80 (Pt 5), 1147–1155. [DOI:10.1099/0022-1317-80-5-1147] [PMID] Stringfellow, D. A., Riddell, K. P., Brock, K. V., Riddell, M. G., Galik, P. K., & Wright, J. C., et al. (1997). In vitro fertilization and in vitro culture of bovine embryos in the presence of noncytopathic bovine viral diarrhea virus. Theriogenology, 48(2), 171–183. [DOI:10.1016/S0093-691X(97)84065-4] [PMID] Szarka, A., Lőrincz, T., & Hajdinák, P. (2022). Friend or foe: The relativity of (anti)oxidative agents and pathways. International Journal of Molecular Sciences, 23(9), 5188. [DOI:10.3390/ijms23095188][PMID] Talebkhan Garoussi, M., Haghparast,. AR., & Rafati, M. S. (2011). The prevalence of bovine viral diarrhea virus in persistently infected cows in industrial dairy herds in suburb of Mashhad- Iran. International Journal of Veterinary Research, 5(4), 198-203. [Link] Veysi, S., & hajibemani, A. (2020). [A review on the disease and prevalence of bovine viral diarrhea virus in Iran (Persian)]. New Findings in Veterinary Microbiology, 3(1), 96-108. [DOI:10.22034/nfvm.2020.132768] Villalba, M., Fredericksen, F., Otth, C., & Olavarría, V. (2016). Transcriptomic analysis of responses to cytopathic bovine viral diarrhea virus-1 (BVDV-1) infection in MDBK cells. Molecular Immunology, 71, 192–202. [DOI:10.1016/j.molimm.2016.01.009] [PMID] Wang, Y., & Pang, F. (2024). Diagnosis of bovine viral diarrhea virus: An overview of currently available methods. Frontiers in Microbiology, 15, [DOI:10.3389/fmicb.2024.1370050][PMID] Zhou, Y., Ren, Y., Cong, Y., Mu, Y., Yin, R., & Ding, Z. (2017). Autophagy induced by bovine viral diarrhea virus infection counteracts apoptosis and innate immune activation. Archives of Virology, 162(10), 3103–3118. [DOI:10.1007/s00705-017-3482-2] [PMID] | ||
مراجع | ||
Abdelsalam, K., Rajput, , Elmowalid, G., Sobraske, J., Thakur, N., & Abdallah, H., et al. (2020). The effect of bovine viral diarrhea virus (BVDV) strains and the corresponding infected-macrophages' supernatant on macrophage inflammatory function and lymphocyte apoptosis. Viruses, 12(7), 701. [DOI:10.3390/v12070701] [PMID] Alfadda, A. A., Sallam R. M. (2012). Reactive oxygen species in health and disease. BioMed Research International, 2012, 936486. [DOI:10.1155/2012/936486][PMID] Al-Kubati, A. A. G., Hussen, J., Kandeel, M., Al-Mubarak, A. I. A., & Hemida, M. G. (2021). Recent advances on the bovine viral diarrhea virus molecular pathogenesis, immune response, and vaccines development. Frontiers in Veterinary Science, 8, 665128. [DOI:10.3389/fvets.2021.665128][PMID] Asadi, , Bahmani, M., Kheradmand, A., & Rafieian-Kopaei, M. (2017). The impact of oxidative stress on testicular function and the role of antioxidants in improving it: A review. Journal of Clinical and Diagnostic Research, 11(5), IE01–IE05. [DOI:10.7860/JCDR/2017/23927.9886][PMID] Barrozo, L. G., Paulino, L. R. F. M., Silva, B. R., Barbalho, E. C., Nascimento, D. R., & Neto, M. F. L., et al. (2021). N-acetyl-cysteine and the control of oxidative stress during in vitro ovarian follicle growth, oocyte maturation, embryo development and cryopreservation. Animal Reproduction Science, 231, 106801. [DOI:10.1016/j.anireprosci.2021.106801] [PMID] Böhm, E. W., Buonfiglio, F., Voigt, A. M., Bachmann, P., Safi, T., & Pfeiffer, N., et al. (2023). Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biology, 68, 102967. [DOI:10.1016/j.redox.2023.102967][PMID] Dabiri, M., Talebkhan Garoussi, M., Mehrzad, J., Tajik, P., & Barin, A. (2021). [The effects of cytopathic and non-cytopathic biotypes of bovine viral diarrhea virus on sperm vitality and viability of holstein dairy bulls in vitro (Persian)]. Iranian Journal of Veterinary Medicine, 15(2), 197-206. [DOI:10.22059/ijvm.2020.305268.1005103] da Silva Cardoso Pinto, V., Alves, M. F., de Souza Nunes Martins, M., Basso, A. C., Tannura, J. H., & Pontes, J. H. F., et al. (2017). Effects of oocytes exposure to bovine diarrhea viruses BVDV-1, BVDV-2 and hobi-like virus on in vitro-produced bovine embryo development and viral infection. Theriogenology, 97, 67–72. [DOI:10.1016/j.theriogenology.2017.04.028] [PMID] Dayal, R., Singh, A., Pandey, A., & Mishra, K. P. (2014). Reactive oxygen species as mediator of tumor radiosensitivity. Journal of Cancer Research and Therapeutics, 10(4), 811–818. [DOI:14103/0973-1482.146073] [PMID] Dontha S. A. (2016). Review on antioxidant methods. Asian Journal of Pharmaceutical and Clinical Research. 9(2):14-32. [DOI:10.22159/ajpcr.2016.v9s2.13092] Garoussi, M. T., Mehrzad, J., & Nejati, A. (2019). Investigation of persistent infection of bovine viral diarrhea virus (BVDV) in Holstein dairy cows. Tropical Animal Health and Production, 51(4), 853–858. [DOI:10.1007/s11250-018-1765-6] [PMID] González Altamiranda, E. A., Kaiser, G. G., Mucci, N. C., Verna, A. E., Campero, C. M., & Odeón, A. C. (2013). Effect of Bovine Viral Diarrhea Virus on the ovarian functionality and in vitro reproductive performance of persistently infected heifers. Veterinary Microbiology, 165(3-4), 326–332. [DOI:10.1016/j.vetmic.2013.04.007] [PMID] Garoussi, M. T., & Mehrzad, J. (2011). Effect of bovine viral diarrhoea virus biotypes on adherence of sperm to oocytes during in-vitro fertilization in cattle. Theriogenology, 75(6), 1067–1075. [DOI:10.1016/j.theriogenology.2010.11.015] [PMID] Gaschler, M. M., & Stockwell, B. R. (2017). Lipid peroxidation in cell death. Biochemical and Biophysical Research Communications, 482(3), 419–425. [DOI:10.1016/j.bbrc.2016.10.086][PMID] Ghorbanian B, Mohammadi H, Azali K. (2017). [Effects of 10-weeks aerobic training with Rhus coriaria. L supplementation on TAC, insulin resistance and anthropometric indices in women with type 2 diabetes (Persian)]. Complementary Medicine Journal, 7(1), 1805-1815. [Link] Gupta S, Finelli R, Agarwal A, Henkel R. (2021). Total antioxidant capacity-Relevance, methods and clinical implications. Andrologia, 53(2), e13624. [DOI:10.1111/and.13624] Jiang, Y., Shi, H., Liu, Y., Zhao, S., & Zhao, H. (2021). Applications of melatonin in female reproduction in the context of oxidative st Oxidative Medicine and Cellular Longevity, 2021, 6668365. [DOI:10.1155/2021/6668365][PMID] Kagawa, S., Hiraizumi, S., Bai, H., Takahashi, M., & Kawahara, M. (2022). Cattle production by intracytoplasmic sperm injection into oocytes vitrified after ovum pick-up. Theriogenology, 185, 121–126. [DOI:10.1016/j.theriogenology.2022.03.022] [PMID] Katakwar, P., Metgud, R., Naik, S., & Mittal, R. (2016). Oxidative stress marker in oral cancer: A review. Journal of Cancer Research and Therapeutics, 12(2), 438–446. [DOI:10.4103/0973-1482.151935] [PMID] Khazaei M, Aghaz F. (2017). Reactive oxygen species generation and use of antioxidants during in vitro maturation of oocytes. International Journal of Fertility & Sterility, 11(2), 63-70. [DOI:10.22074/ijfs.2017.4995][PMID] Li, Z., Zhang, Y., Zhao, B., Xue, Q., Wang, C., Wan, S., et al. (2024). Non-cytopathic bovine viral diarrhea virus (BVDV) inhibits innate immune responses via induction of mitophagy. Veterinary Research, 55(1), 27. [DOI:10.1186/s13567-024-01284-z][PMID] Lira Ferrari, G. S., & Bucalen Ferrari, C. K. (2011). Exercise modulation of total antioxidant capacity (TAC): Towards a molecular signature of healthy aging. Frontiers in Life Science, 5(3-4), 81-90. [DOI:10.1080/21553769.2011.635008] Liu, Y., Liu, S., He, B., Wang, T., Zhao, S., & Wu, C., et al. (2018). PD-1 blockade inhibits lymphocyte apoptosis and restores proliferation and anti-viral immune functions of lymphocyte after CP and NCP BVDV infection in vitro. Veterinary Microbiology, 226, 74– [DOI:10.1016/j.vetmic.2018.10.014] [PMID] Meyer, G., Combes, M., Teillaud, A., Pouget, C., Bethune, M. A., & Cassard, H. (2021). Vaccination of sheep with bovine viral diarrhea vaccines does not protect against fetal infection after challenge of pregnant ewes with border disease virus. Vaccines, 9(8), 805. [DOI:10.3390/vaccines9080805][PMID] Oguejiofor, C. F., Thomas, C., Cheng, Z., & Wathes, D. C. (2019). Mechanisms linking bovine viral diarrhea virus (BVDV) infection with infertility in cattle. Animal Health Research Reviews, 20(1), 72–85. [DOI:10.1017/S1466252319000057] [PMID] Pinior, B., & Köfer, J. (2016). The effect of bovine viral diarrhoea virus on fertility in dairy cows: Two case-control studies in the province of Styria, Austria. Berliner Und Münchener Tierärztliche Wochenschrift, 129(3/4), 103-110. [Link] Rahimian, E., Amini, A., Alikarami, F., Pezeshki, S. M. S., Saki, N., & Safa, M. (2020). DNA repair pathways as guardians of the genome: Therapeutic potential and possible prognostic role in hematologic neoplasms. DNA Repair, 96, 102951. [DOI:10.1016/j.dnarep.2020.102951] [PMID] Rajput, M. K., Darweesh, M. F., Park, K., Braun, L. J., Mwangi, W., & Young, A. J., et al. (2014). The effect of bovine viral diarrhea virus (BVDV) strains on bovine monocyte-derived dendritic cells (Mo-DC) phenotype and capacity to produce BVDV. Virology Journal, 11, 44. [DOI:10.1186/1743-422X-11-44][PMID] Reed, L. J., & Muench, H. (1938). A simple method of estimating fifty per cent endpoints. American Journal of Epidemiology, 27(3), 493-7. [DOI:10.1093/oxfordjournals.aje.a118408] Schweizer, M., & Peterhans, E. (1999). Oxidative stress in cells infected with bovine viral diarrhoea virus: A crucial step in the induction of apoptosis. The Journal of General Virology, 80 (Pt 5), 1147–1155. [DOI:10.1099/0022-1317-80-5-1147] [PMID] Stringfellow, D. A., Riddell, K. P., Brock, K. V., Riddell, M. G., Galik, P. K., & Wright, J. C., et al. (1997). In vitro fertilization and in vitro culture of bovine embryos in the presence of noncytopathic bovine viral diarrhea virus. Theriogenology, 48(2), 171–183. [DOI:10.1016/S0093-691X(97)84065-4] [PMID] Szarka, A., Lőrincz, T., & Hajdinák, P. (2022). Friend or foe: The relativity of (anti)oxidative agents and pathways. International Journal of Molecular Sciences, 23(9), 5188. [DOI:10.3390/ijms23095188][PMID] Talebkhan Garoussi, M., Haghparast,. AR., & Rafati, M. S. (2011). The prevalence of bovine viral diarrhea virus in persistently infected cows in industrial dairy herds in suburb of Mashhad- Iran. International Journal of Veterinary Research, 5(4), 198-203. [Link] Veysi, S., & hajibemani, A. (2020). [A review on the disease and prevalence of bovine viral diarrhea virus in Iran (Persian)]. New Findings in Veterinary Microbiology, 3(1), 96-108. [DOI:10.22034/nfvm.2020.132768] Villalba, M., Fredericksen, F., Otth, C., & Olavarría, V. (2016). Transcriptomic analysis of responses to cytopathic bovine viral diarrhea virus-1 (BVDV-1) infection in MDBK cells. Molecular Immunology, 71, 192–202. [DOI:10.1016/j.molimm.2016.01.009] [PMID] Wang, Y., & Pang, F. (2024). Diagnosis of bovine viral diarrhea virus: An overview of currently available methods. Frontiers in Microbiology, 15, [DOI:10.3389/fmicb.2024.1370050][PMID] Zhou, Y., Ren, Y., Cong, Y., Mu, Y., Yin, R., & Ding, Z. (2017). Autophagy induced by bovine viral diarrhea virus infection counteracts apoptosis and innate immune activation. Archives of Virology, 162(10), 3103–3118. [DOI:10.1007/s00705-017-3482-2] [PMID]
| ||
آمار تعداد مشاهده مقاله: 306 تعداد دریافت فایل اصل مقاله: 204 |