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INTRODUCTION

In today’s world, air pollution has emerged as one of the most critical environmental 
challenges, particularly impacting human life quality, especially in developing countries 
(Kazemi Garajeh et al., 2023). With the rapid pace of urbanization, it is projected that by 2050, 
over half of the global population will reside in urban areas (UNDESA, 2018; Sun et al., 2020; 
Wang et al., 2021; Nasehi et al., 2023). This urban growth has driven significant changes in 
land use and cover, along with a sharp increase in energy consumption (Wang et al., 2021; 
Zheng et al., 2017). Urban areas, as the primary hubs of population density, experience the most 
substantial shifts in land use, resulting in higher emissions of air pollutants (Huang et al., 2021). 
Air pollutants alter urban atmospheric conditions through complex physical and chemical 
processes, leading to issues such as acid rain, ozone layer depletion, damage to ecosystems 
and agricultural crops, as well as economic and aesthetic impacts (Zhu et al., 2019; Wang et 
al., 2021). These pollutants originate from various sources, including industries, urban traffic, 
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Air pollution is a major environmental challenge, exacerbated by urban and industrial expan-
sion, with significant impacts on human health and climate change. This study, using advanced 
remote sensing technology and Sentinel-5 satellite data, examines the relationship between sev-
en land cover types and air pollutants in Iran for the years 2022 and 2023. Pearson correlation 
analysis was applied to assess these relationships. Standardized pollutant concentration maps 
were generated using combination operators such as "AND," "OR," "SUM," and “GAMMA 0.5" 
within Arc Map software to identify high-risk pollution areas. The results indicated that Tehran, 
Karaj, and Isfahan had the highest nitrogen dioxide concentrations, while Ahvaz, Bandar Ab-
bas, Bushehr, and Arak recorded the highest sulfur dioxide levels. Aerosol concentrations were 
highest in Zahedan, Yazd, and Qom, while Tehran, Bandar Abbas, and Ahvaz showed elevated 
carbon monoxide levels. Northern cities like Ardabil, Urmia, and Rasht had the highest ozone 
concentrations. Findings revealed a negative correlation between tree density and aerosol levels, 
and a positive correlation between barren lands and aerosols. There was also a direct correlation 
between industrial and built-up areas and pollutants such as sulfur dioxide, carbon monoxide, 
and nitrogen dioxide. However, no specific relationship was found between ozone concentra-
tions and land cover types, suggesting that ozone levels are more geographically influenced. 
The combined maps highlighted Tehran and industrial cities as high-risk areas for air pollution, 
emphasizing the importance of increasing dense vegetation and proper land use management as 
effective strategies for mitigating air pollution.
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and fossil fuel combustion, each posing distinct threats to human health and the environment 
(Ghannadi et al., 2022; Zabalza et al., 2007; Flemming et al., 2005). 

For instance, sulfur dioxide (SO₂) primarily originates from power plants, heavy industries, 
and urban traffic, and its levels are rising due to increased energy consumption and economic 
growth (Castelhano, 2019; Fuladlu & Altan, 2021). Carbon monoxide (CO) is produced 
through the incomplete combustion of carbon-containing fuels, with its main sources being 
industrial processes and motor vehicles (Brunelli et al., 2007; El-Fadel & Abi-Esber, 2009). 
Nitrogen dioxide (NO₂) is generated from the combustion of fossil and biomass fuels, while 
ozone concentrations tend to peak in the summer as another significant pollutant (Krotkov et 
al., 2016; Xue et al., 2020; Gharibi & Shayesteh, 2021). Additionally, particulate matter enters 
the atmosphere from both natural sources, such as dust storms, and human activities, including 
transportation and industrial operations (Ghannadi et al., 2022; Nasehi et al., 2023). 

Monitoring and measuring these pollutants is essential for managing and controlling critical 
environmental conditions. Although air quality monitoring stations provide some of the most 
accurate measurements, their coverage is limited to nearby areas, and their high costs restrict 
widespread application (Filonchyk et al., 2018). In this context, high-resolution remote sensing 
emerges as a viable alternative. Sentinel satellites, including Sentinel-5, are equipped to detect 
and monitor pollutants such as ozone, methane, aerosols, sulfur dioxide, nitrogen dioxide, and 
carbon monoxide. They offer valuable data for environmental management and the monitoring 
of climate change and air pollution (Kazemi Garajeh et al., 2023; Lin et al., 2022; Naboureh et 
al., 2021).

Research has demonstrated that land cover significantly impacts air quality. For instance, 
Zhu et al. (2019) found a positive correlation between the concentration of pollutants such as 
ozone, carbon monoxide, and sulfur dioxide and the expansion of agricultural land in China. 
Conversely, an increase in forested areas was associated with a decrease in these pollutants. 
Other studies have also indicated that regions characterized by low vegetation and high urban 
development density typically exhibit elevated concentrations of pollutants (Weng & Yang, 
2006; Zheng et al., 2017; Gheshlaghpoor et al., 2023). 

The primary objective of this research is to develop and present an innovative approach 
for analyzing the spatial distribution of air pollutant concentrations in relation to land cover 
on a macro scale in Iran. To achieve this, the study employs a novel combination of advanced 
remote sensing technologies utilizing Sentinel-5 satellite data, statistical analyses, and 
Geographic Information Systems (GIS). This research uniquely utilizes composite operators 
within the ArcMap environment and the Python API to generate standardized maps of pollutant 
concentrations and identify areas at high risk of air pollution. Additionally, the precise 
categorization of land cover into seven classes, along with a comprehensive examination of the 
effects of each land cover type on pollutant concentrations, represents another innovative aspect 
of this study. This comprehensive approach facilitates a more accurate assessment of the spatial 
distribution of air pollution at a macro scale.

MATERIALS AND METHODS

The area of study is Iran, a country situated in West Asia and at the heart of the Middle East. 
It covers an approximate area of 1.64 million square kilometers and is positioned between 
latitudes 25 to 40 degrees north and longitudes 44 to 64 degrees east (Figure 1).

In this study, satellite images from the Level 3 TROPOMI sensor aboard the Sentinel-5 
satellite, with a spatial resolution of 1,000 by 1,000 meters, were used to assess air pollutant 
concentrations during the period from January 1, 2022, to December 30, 2023. For each pollutant, 
a specific set of bands was utilized as outlined in Table 1. To accomplish this, JavaScript coding 
was employed in the Google Earth Engine environment to extract the average concentration of 
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air pollution data for the area under investigation.
Subsequently, the final map of average pollutant concentrations was transferred to Arc Map 

for analysis. In this stage, statistical data related to the average concentrations of pollutants 
were processed and analyzed using SPSS. To examine the spatial distribution of each pollutant 

 
Fig.1. study area 

  

Fig. 1. study area

Table 1. Sentinel-5 Product Specifications for Analyzed Pollutants 

Description/Unit/Band Dataset Product Pollutant Name 
CO_column_number_density/ 
mol/m2/ Vertically integrated CO 
column density. 

COPERNICUS 
/S5P/NRTI/L3 _CO 

Sentinel - 5P NRTI 
CO: Near Real -Time 
Carbon Monoxide 

Carbon Monoxide 

absorbing_aerosol_index/ - / A 
measure of the prevalence of aerosols 
in the atmosphere, calculated by this 
equation using the 354 /388 
wavelength pair. 

COPERNICUS 
/S5P/NRTI/L3 
_AER_AI 

Sentinel - 5P NRTI 
AER AI: Near Real -
Time UV Aerosol 
Index 

Aerosol 

NO2_column_number_density/ 
mol/m2/ Total vertical column of NO2 
(ratio of the slant column density of 
NO2 and the total air mass factor) 

COPERNICUS 
/S5P/NRTI/L3 _NO2 

Sentinel - 5P NRTI 
NO2: Near Real -
Time Nitrogen 
Dioxide 

Nitrogen Dioxide 

O3_column_number_density/ 
mol/m2/ Total atmospheric column of 
O3 between the surface and the top of 
atmosphere, calculated with the 
DOAS algorithm 

COPERNICUS 
/S5P/NRTI/L3 _O3 

Sentinel - 5P NRTI 
O3: Near Real -Time 
Ozone 

Ozone 

SO2_column_number_density/ 
mol/m2/ SO2 vertical column density, 
calculated using the DOAS 
technique. 

COPERNICUS 
/S5P/NRTI/L3 _SO2 

Sentinel - 5P NRTI 
SO2: Near Real –
Time Sulphur Dioxide 

Sulphur Dioxide 

 

  

Table 1. Sentinel-5 Product Specifications for Analyzed Pollutants
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in relation to land cover, a land cover map for 2022 was generated using satellite imagery 
from Google Earth Engine. The classification of land cover was based on the Stewart and Oke 
model and was divided into eight categories: built-up areas, rocky industries, dense tree cover, 
scattered trees, shrub land, scrubland, sparse vegetation, and bare soil or sand (Table 2). After 
creating this map, it was converted into vector layers to facilitate more detailed analyses, and a 
land cover density map was developed in Arc Map. 

Next, the spatial distribution of each pollutant was analyzed in relation to land cover density 
using regression analysis. This analysis was based on 6,606 sampling points, allowing for a 
more precise understanding of the relationship between pollutants and land cover. To generate 
a comprehensive map of total pollutant concentrations, the spatial distribution maps for each 
pollutant were standardized to a scale of zero to one. Subsequently, these standardized data 
were combined in Arc Map using fuzzy operators such as AND, OR, SUM, PRODUCT, and 
GAMMA 0.5. Each of these operators was specifically designed to identify areas with varying 
pollution risk levels. These combined methods are particularly effective for pinpointing regions 
at high risk of pollution, providing policymakers with accurate scientific data to make more 
informed decisions regarding air quality management and pollution reduction strategies.

RESULTS AND DISCUSSION
Spatial distribution of pollutants concentration

Figure 2 illustrates the spatial distribution of the concentration of main air pollutants in Iran for 
2022 and 2023: AI, NO2, SO2, CO and O3. In terms of NO2 pollution, Tehran (0.000692), Karaj 
(0.000405), Isfahan (0.000266), Mashhad (0.000247), Qom (0.000191), Shiraz (0.000184), 
Tabriz (0.000181) and Rasht (0.000173) mol/m2 respectively have the highest values. They 
are big cities with heavy traffic on the main roads that have increased the concentration of 
this pollutant. The cities of Zahedan (1.061896), Yazd (0.86996), Qom (0.747929), Birjand 
(0.738589), Bushehr (0.7179) and Bandar-Abbas (0.71568) have the highest absorbing aerosol 
index. The highest concentration of aerosols is in the southern, eastern, and central regions 
of Iran. Conversely, the northern cities of Iran have the lowest concentration of this pollutant 
due to dense vegetation. The cities of Tehran (0.036146), Bandar-Abbas (0.034399), Rasht 
(0.034325), Ahvaz (0.033867) and Bushehr (0.032976) mol/m2 respectively have the highest 
average concentration of CO pollutants. The concentration of this pollutant is higher in densely 
populated cities with heavy traffic and industrial areas. The cities of Ardabil (0.137973), Urmia 
(0.137964), Rasht (0.137851), Tabriz (0.13761) and Gorgan (0.135844) mol/m2 also have 
the highest amount of ozone pollutants. In general, the northern regions of the country have 
higher concentrations of ozone pollutants, while the southern regions of the country have lower 
concentrations of this pollutant.

Land cover classes 
Land cover classes were classified into 8 classes including Built-up areas, Heavy industries, 

dense trees, scattered trees, Bush, scrub, Low plant, bare soil or sand and water in Iran. In 
addition Figure 3 illustrates that dense trees cover an area of 33,719.30 square kilometers. 
This type of cover is predominantly found in the northern and northwestern regions of the 
country. Additionally, scattered trees covering 176,811.15 square kilometers are present in 
various parts of the country, particularly in the mountainous and semi-mountainous regions 
of the western areas. Also, bush, scrub are found in different regions of the country, especially 
in arid and semi-arid areas. This type of land cover plays an important role in preserving soil 
and preventing desertification, covering an area of 815,265.19 square kilometers. Herbaceous 
plants or crops /Low plant span an area of 264,280.48 square kilometers. Barren lands, covering 
321,949.73 square kilometers, are also prevalent in arid and semi-arid regions. Most of these 
lands - are located in the central plateau of the country. Lastly, built-up lands occupy an area of 
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9,506.80 square kilometers. These lands include both urban and rural areas, accounting for a 
small percentage of the country’s total land area. 

Spatial assessment of Land cover density
Figure 4 displays the spatial distribution map of land cover density. The density map of 

industries in Figure 4 is prepared using statistical data related to the number of industrial units. 

Table 2. Description of land cover classes (stewart & oke, 2012) 

Explanation Land cover classes 

Urban and rural built-up areas 

 
Built-up areas 

Industrial zones 
 

Heavy industries 

Heavily wooded landscape of deciduous and/or evergreen trees. 
Land cover mostly pervious (low plants). Zone function is natural 

forest, tree cultivation, or urban park.   
Dense trees 

Lightly wooded landscape of deciduous and/or evergreen trees. 
Land cover mostly pervious (low plants). Zone function is natural 

forest, tree cultivation, or urban park.  
Scattered trees 

Open arrangement of bushes, shrubs, and short, woody trees. Land 
cover mostly pervious (bare soil or sand). Zone function is natural 

scrubland or agriculture.  
Bush, scrub 

Featureless landscape of grass or herbaceous plants/crops. Few or no 
trees. Zone function is natural grassland, agriculture, or urban park.  

Herbaceous plants or crops /Low 
plant 

Featureless landscape of soil or sand cover. Few or no trees or plants. 
Zone function is natural desert or agriculture. 

 
Bare soil or sand 

Large, open body of water such as seas and lakes 
 

water 
 

  

Table 2. Description of land cover classes (stewart & oke, 2012)
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Fig.2. Spatial distribution of pollutant concentration over Iran in 2022 and 2023 

  

Fig. 2. Spatial distribution of pollutant concentration over Iran in 2022 and 2023

 

Fig. 3. Land cover classes in Iran 

  

Fig.  3. Land cover classes in Iran
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Notably, cities such as Tehran, Ahvaz, Bushehr, Bandar Abbas, Arak, Isfahan, and Tabriz exhibit 
a high density of industrial units.

Relationship between the type of land cover and the concentration of air pollutants
The aerosol absorption index, derived from Sentinel-5 satellite imagery using Google Earth 

Engine, reveals a clear link between land cover types and aerosol absorption levels in the 
atmosphere) Figure 5(. The index generally records its lowest values in areas with vegetation, 
such as dense trees (-0.001), shrubs (0.03518), and low plant (0.29). In forested regions, the 
negative value of the index indicates cleaner air, with fewer light-absorbing particles. This 
suggests that there is little to no absorption of light by suspended particles in these areas.

In contrast, the index reaches its highest value (0.73) in sparsely vegetated areas, such as 
bare land, indicating higher levels of light absorption by aerosols and consequently, greater 
air pollution. Urbanized areas, with an average index of 0.457349, and heavy industrial zones, 
averaging 0.389364, also significantly contribute to elevated aerosol levels, primarily due to 
construction and industrial activities that release particulate matter directly into the environment.

Vegetation, particularly trees and shrubs, helps lower the aerosol absorption index in 

 

Fig.4. Land cover density maps 

  

Fig. 4. Land cover density maps
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surrounding areas by capturing airborne particles, aligning with the findings of Nowak et al. 
(2006) on the role of vegetation in particulate matter removal. Conversely, barren lands act as 
major sources of aerosol pollution.

An analysis of the relationship between sulfur dioxide concentrations and land cover types, 
based on average values, reveals that different land covers have distinct impacts on SO₂ levels 
(Figure 6). Heavy industrial areas exhibit the highest SO₂ concentrations, with an average of 
0.000411 mol/m². This elevated concentration indicates significant pollution sources, which 
can have serious consequences for air quality and environmental health.

Carmichael et al. (2002) emphasize that industrial facilities, particularly those burning fossil 
fuels such as coal and oil for energy production, are among the primary contributors to SO₂ 
emissions. This correlation highlights the critical role of industrial activities in the release of 
this pollutant. Built-up areas, with an average SO₂ concentration of 0.000197 mol/m², rank 
next in terms of emissions. These areas are significant SO₂ sources due to traffic, construction 
activities, and local factories. The elevated SO₂ levels in these regions underscore the necessity 
of implementing control measures in urban planning and resource management.

In contrast, vegetated areas, such as dense trees (with an average SO₂ concentration of 
0.000157 mol/m²) and scattered trees (0.000119 mol/m²), function as natural filters that can 

 
Fig. 5. Aerosol over different land cover classes over Iran in 2022 and 2023 
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Fig. 6. SO2 over different land cover classes over Iran in 2022 and 2023 
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absorb a portion of pollutants. Research has shown that these types of vegetation play an 
important role in reducing SO₂ concentrations.

However, brush and scrubs (with an average SO₂ concentration of 0.000117 mol/m²) and 
herbaceous plants or agricultural crops (0.000129 mol/m²) still experience pollution, and their 
absorption capacity is more limited. This suggests that simply having vegetation is insufficient; 
the type and density of plant cover are also critical factors to consider.

Bare land and exposed soil, with an average SO₂ concentration of 0.000116 mol/m², lack 
the ability to absorb SO₂ due to the absence of vegetation and may serve as sources of dust and 
other pollutants. The absence of vegetation in these areas leads to the loss of natural pollutant 
absorption capacities, which can exacerbate air quality issues.

In conclusion, heavy industrial and urban areas have the most significant impact on increasing 
sulfur dioxide concentrations, emphasizing the need for strategies to expand vegetation cover 
and green spaces in these regions to reduce pollution and improve air quality. These findings 
clearly demonstrate that land cover types, particularly in relation to sulfur dioxide, play a key 
role in air pollution management, and enhancing vegetation cover can be an effective strategy 
for mitigating pollutants.

Figure 7 illustrates the relationship between CO concentrations and various land cover 
types, highlighting that different land covers exert distinct influences on CO levels.According 
to the data, build up area and heavy industry exhibit the highest average CO concentrations, at 
0.029504 and 0.028879 mol/m², respectively. This suggests that urban and industrial areas, due 
to human activities such as traffic, industrial production, and fossil fuel consumption, are the 
primary sources of CO emissions. Zhang et al. (2017) also found a positive correlation between 
building density and CO pollutants.

Bare land and exposed soil, with an average CO concentration of 0.028294 mol/m², indicate 
that these areas can also contribute to increased CO levels, as the lack of vegetation can create 
unfavorable conditions for air quality.

In contrast, vegetated areas, such as dense and scattered trees, as well as shrubs and 
herbaceous plants, naturally have lower CO concentrations compared to other land cover 
types, demonstrating their ability to absorb and reduce pollutant levels. For instance, dense and 
scattered trees, with average CO concentrations of 0.027166 and 0.025939 mol/m², respectively, 
can serve as positive elements for improving air quality. Zhu et al. (2019) similarly confirm the 
negative relationship between forest cover and dense trees with CO concentrations.

 
Fig. 7. CO over different land cover classes over Iran in 2022 and 2023 
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These findings suggest that the presence of dense vegetation in urban areas can significantly 
reduce CO concentrations. Therefore, proper environmental planning and management to 
increase green spaces and vegetation cover is essential. This highlights the need for policies 
and strategies aimed at protecting and expanding these natural resources to mitigate pollution 
and enhance air quality.

According to Figure 8, heavy industry and built-up areas exhibit the highest NO₂ 
concentrations, with averages of 0.000171 µg/m³ and 0.000168 µg/m³, respectively. This 
indicates the significant impact of industrial activities and urban development on increasing 
NO₂ levels. Activities such as the burning of fossil fuels in industries and heavy traffic in urban 
areas are identified as the primary sources of NO₂ emissions.

In comparison to natural land covers, dense trees and scattered trees show lower NO₂ 
concentrations, with averages of 0.000086 µg/m³ and 0.000071 µg/m³, respectively. This 
suggests that vegetation can help absorb and reduce pollutants, playing an important role in 
improving air quality. These results are consistent with the findings of Rodríguez et al. (2016), 
King et al. (2014), and McCarty & Kaza (2015).

According to Figure 9, the O₃ pollutant does not appear to have a significant correlation with 

 
Fig. 8. NO2 over different land cover classes over Iran in 2022 and 2023 
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Fig. 9. O3 over different land cover classes over Iran in 2022 and 2023 
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different land cover types on a macro scale. However, the northern regions of the country show 
higher concentrations compared to the southern regions. Huang et al. (2017) confirm that the 
annual average ozone levels vary depending on geographical longitude and terrain conditions, 
and are mainly influenced by regional factors.

Table 3 illustrates the relationship between land cover types and air pollutants. Each cell 
in this table displays the correlation coefficient between the density of a specific land cover 
type and the concentration of a particular pollutant. The numerical correlation coefficient 
ranges from -1 to 1. A positive correlation coefficient indicates that the pollutant concentration 
increases with higher land cover density, while a negative correlation coefficient signifies that 
the pollutant concentration decreases as land cover density increases.

The density of all land cover types, except barren lands, built up area, industrial areas, Brush 
and Scrubs, exhibits a negative relationship with the concentration of aerosols. In other words, 
as vegetation and trees increase, the aerosol concentration decreases. Additionally, dense trees 
are negatively correlated with aerosol concentration, indicating their effective role in absorbing 
aerosols and purifying the air. Interestingly, there is a positive relationship between barren lands 
and bare lands and the concentration of aerosols. The density of all land cover types, except 
built up area and industrial areas, shows a negative relationship with the concentration of sulfur 
dioxide. However, there is a positive correlation between this pollutant’s concentration and 
industrial areas. This research demonstrates a positive relationship between this pollutants and 
built up areas, while other land cover types exhibit a negative relationship. In other words, as 
urban development increases, so does the concentration of carbon monoxide. Conversely, areas 
with different land covers show lower CO concentrations. The density of all land cover types, 
except barren lands, built up areas, industrial zones, scrubland and cultivated/agricultural lands 
(low plant area), negatively correlates with nitrogen dioxide concentration. Notably, built up areas 
exhibit a strong positive correlation with NO2 pollution. Additionally, the positive relationship 
between agricultural and crop lands and NO2 pollutant is attributed to pesticide and fertilizer 
use (Almaraz et al., 2018; Berihun et al., 2019). Interestingly, there is no specific relationship 
between land cover and ozone pollutant concentration. Zhang et al. (2017) concluded that the 
correlation between land use and ozone pollution is weak (Zheng et al., 2017).

Analysis of distribution maps of air pollutants using operators
In the figure 10, the map of Iran is displayed, with each corresponding to an operator in Arc 

Map. These operators include AND, OR, SUM, PRODUCT, and GAMMA (with a factor of 
0.5). Each of these maps is derived from the combination of five pollutant maps: CO, SO2, NO2, 
AI, and O3, all standardized within the range of 0 to 1.

AND map displays the ranges where all five pollutants are present simultaneously. In other 
words, these areas have the highest cumulative concentration of pollutants. OR map shows 
the ranges where at least one of the five pollutants is present. In other words, these areas have 

Table 3. The relationship between air pollutants with land cover 

Landcovers 
 

                       Pollutants 

Dense 
trees 

Scattered 
trees 

Brush, 
Scrubs 

Herbaceous 
plants/Crops 

Bare land 
soil or sand 

Build 
up 

Heavy 
industry 

AI -.351* -.091* .116* -.220* .556* .104* .031* 
SO2 -.135* -.117* -.281* -.157* -.227* .113* .392* 
CO -.333* -.322* -.559* -.074* -.038* .039* .009* 
NO2 -.165* -.041* .058* .122* .379* .534* .326* 
O3 .228* -.029* -.065* -.003* -.087* -.017* -.018* 

*. Correlation is significant at the 0.01 level (2-tailed). 
 

Table 3. The relationship between air pollutants with land cover
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moderate levels of pollutant concentrations.
SUM map illustrates the total values of all five pollutants at each location. It can be used to 

identify areas with the highest levels of air pollution. Essentially, this map represents the overall 
concentration of pollutants in each area and indicates the pollutant amount in those regions.

PRODUCT map displays the product of the values of all five pollutants at each location. It 
can be used to identify areas at risk of cumulative effects from pollutants. In other words, this 
map shows how pollutants interact with each other, potentially having harmful effects on human 
health and the environment. GAMMA0.5 map shows the square root of the product of the values 
of all five pollutants at each location. It can be used to identify areas at risk of nonlinear effects 
from pollutants. The presented maps reveal significant differences in pollutant concentrations 
across various regions of Iran. Metropolises and industrial centers exhibit the highest pollutant 
levels, while areas with vegetation and rural landscapes have lower concentrations. Notably, 
Tehran, as a major metropolis, consistently displays high pollution levels in all composite maps, 
making it a critical focal point for air quality management in Iran.

The findings of this research indicate that land cover plays a crucial role in determining 
air quality. Based on these results, more effective and targeted management programs can be 
developed to reduce air pollution in Iran. Such programs should be tailored to the specific 
conditions of each region, taking into account various factors, including land cover types, 
industrial activities, and climatic conditions.

The results demonstrate that an increase in dense tree cover and forested areas significantly 
enhances air quality, whereas industrial development and urban expansion exacerbate air 
pollution. For sustainable urban development, greater emphasis must be placed on forest 
conservation, and urban planning should be conducted in a way that maintains a balance among 
different land uses. Based on this research, industrial cities and large urban areas are among the 
regions with the highest air pollution risk. Metropolitan areas like Tehran, Karaj, and Isfahan, 
due to heavy traffic and industrial activities, exhibit the highest concentrations of nitrogen 

Fig. 10. Distribution maps of air pollutants using AND, OR, SUM, PRODUCT, and GAMMA 0.5 operators
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dioxide. Industrial and refinery hubs such as Ahvaz, Bandar Abbas, and Bushehr experience 
elevated levels of sulfur dioxide due to their extensive industrial operations. Southern, eastern, 
and central regions of Iran face high concentrations of Aerosol, especially due to dust storms and 
industrial activities, with cities like Zahedan, Yazd, and Qom being particularly affected. Large 
cities and industrial centers such as Tehran, Bandar Abbas, and Rasht show high levels of carbon 
monoxide because of heavy traffic and industrial emissions. Interestingly, northern regions of 
the country display higher ozone levels, likely due to their unique geographical conditions. To 
improve air quality in Iran, the following actions are essential: re-purposing contaminated land 
for lower-risk uses, creating green belts, and increasing vegetation in urban and industrial areas. 
Implementing stricter standards for industries, advancing pollution control technologies, and 
preventing the destruction of forests and grasslands are also critical. Restoration of degraded 
areas and tree planting in urban and industrial zones should be prioritized, alongside reducing 
traffic in major cities by expanding public transportation. Strict monitoring of polluting 
industries, enforcing stringent environmental regulations, promoting clean technologies, and 
developing low-carbon industries are necessary steps. Additionally, measures to combat dust 
storms, such as stabilizing moving sand dunes, increasing urban and industrial green cover, 
establishing a comprehensive network of air quality monitoring stations, and raising public 
awareness about the importance of air quality are crucial. By implementing these strategies and 
fostering interdepartmental collaboration, significant improvements in air quality and public 
health can be achieved. Furthermore, conducting additional research on the impacts of climate 
change on air pollution, along with the development of more accurate pollution forecasting 
models, will support the creation of more comprehensive and effective action plans.

CONCLUTION

Air pollutant concentrations are measured by ground-based monitoring stations with high 
accuracy but limited to specific points. Due to the restricted coverage of these stations, estimating 
pollutant levels over larger distances is not feasible. The spatial distribution of pollutants, as 
observed through remote sensing imagery, indicates that to effectively identify polluted areas 
on a macro scale, continuous satellite data that measure atmospheric pollutants daily must be 
utilized. In this study, air pollution in Iran was monitored using Sentinel-5 satellite imagery 
and the Google Earth Engine platform over the years 2022 and 2023. The findings revealed 
a negative correlation between tree density and aerosol concentrations, while a positive 
correlation was observed between barren land areas and aerosol levels. A direct relationship 
was also identified between the density of industrial and built-up areas and the concentrations 
of pollutants such as SO₂, CO, and NO₂. No significant correlation was found between O₃ levels 
and land cover types, suggesting that ozone concentration is more influenced by geographical 
factors. The analysis of different operator maps highlighted significant variations in pollutant 
concentrations across Iran, with the highest levels concentrated in major cities and industrial 
zones. Tehran emerged as one of the most critical hotspots for air pollution. To enhance air 
quality monitoring, it is recommended to strengthen monitoring networks in key areas and 
utilize satellite data to identify the need for new stations. Policymakers should implement 
pollution reduction measures, such as planting vegetation and enforcing stricter regulations, 
particularly in highly industrialized and polluted regions. Supporting greening initiatives and 
expanding urban green spaces is also essential. The development of air quality forecasting 
models and long-term research is advised for more effective pollution management. Future 
studies should incorporate additional parameters, such as Digital Elevation Models (DEM), 
wind patterns, and population data, to inform better planning and policy decisions.
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