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Abstract 
Permeability is one of the most important characteristics of hydrocarbon 
bearing formations. An accurate knowledge of permeability provides 
petroleum engineers with a tool for efficiently managing the production 
process of a field. Formation permeability is often measured in the 
laboratory from cores or evaluated from well test data. To carry out this 
study, 34 core samples from a carbonate oil field located in the south 
west of Iran have been considered. The Permeability of samples was 
measured using a PDPK™ apparatus, the porosity of each sample was 
measured and CT slices were taken in constant intervals across the 
samples. Thin sections in the horizontal and vertical directions were 
prepared from the end pieces of the samples and were analyzed by using 
the optical microscope. CT numbers corresponding to each slice were 
exported in the form of a spreadsheet. All such spreadsheets that belong 
to the ith sample, together with porosity and PDPK™ average 
permeability were called "ith data set". All data sets were considered as 
training examples of a back propagation artificial neural network, whilst 
the target was permeability. Validation of the network results was 
achieved by leaving out some of the data sets and comparing their 
measured permeabilities with calculated ones. To decrease calculation 
time, up scaling was applied on CT data by scales of 2:1, 4:1, 8:1, 16:1 
and 32:1 and results were compared with each other. A better 
understanding of the relationship between volume percentage of 
minerals, porosity, CT scan data and permeability of carbonates is 
developed from this study. 
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Introduction 
Acquiring knowledge on formation permeability in carbonate 
reservoirs has remained one of the fundamental challenges to 
petroleum engineers. This important piece of information about 
porous rock provides engineers with the ability to design and manage 
efficient processes in the development of oil and gas fields. Using 
coring tools and bringing samples of the pay zone to the surface and 
measuring their permeability under simulated downhole conditions is 
one of the oldest practices for estimating the formation permeability. 
Coring every well in a large field can be very expensive. It is 
necessary and inevitable to core some wells no matter how small or 
large a field. On the other hand, trying to get a representative sample 
from every single well, especially in fields with hundreds of wells, 
requires a large amount of capital. In a heterogeneous field where 
permeability values tend to change rapidly with spatial coordinates, 
such practices (coring every well), although expensive, would provide 
valuable information. Having a representative value for permeability 
in different locations, especially where wells (injection or production) 
are drilled could be used effectively in reservoir simulation studies. 
 Oil and oil service companies began using CT and MRI imaging 
technologies in the mid-1980s. The Oil industry uses X-ray 
Computerized Tomography (CT) and Magnetic Resonance Imaging 
(MRI) to characterize rock samples (cores) taken from wells 
(Wellington et al., 1987). The industry is interested not only in 
topological issues concerning the structure of the rock samples or 
fluid boundaries; but, it is also essential to quantify the three-
dimensional distribution of properties such as density and effective 
atomic number. CT scan data is widely used to calculate porosity and 
build 3D models of rock matrix in carbonates, but in this study we 
illustrate a method to use these data together with conventional 
laboratory measurements for estimating permeability of carbonate 
rocks. 
 During the past several years, the number of successful applications 
of neural networks to solve complex problems has increased 
exponentially. Considerable attention has been devoted to the use of 
neural networks as an alternative approach to interpolation and 
extrapolation, pattern recognition, statistical, and mathematical 
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modeling (Murray, 1995). For example, back-propagation neural 
networks were used to develop process models as substitutes for 
complicated empirical and mathematical models (Nikravesh, 1994). 
These models can be used as an alternative to statistical and time 
series analysis. Neural network analysis, unlike regression, does not 
require specification of structural relationships between the input and 
output data. However, identification using neural networks is more 
useful when large amounts of data are available. Some CT data 
volumes may consist of 1000×1000×1000 pixels (or voxels) and 
artificial neural networks could significantly help geoscientists to 
identify relationships between different types of core properties and 
CT data (Herman, 1978). 
 
Procedures 
Sample Description 
This study is carried out on 34 core samples that have been taken from 
Sarvak Formation in the four exploration wells located in the south 
west of Iran. The limestones of the overlying Sarvak Formation 
(Albian – Turonian) formed during the high stand. A major sea-level 
fall at the Cenomanian– Turonian boundary exposed carbonates of the 
Sarvak Formation. However, the uppermost portion of the Sarvak 
Formation was deposited during an early Turonian sea-level rise, and 
was subsequently exposed due to a minor sea-level fall. Major 
diagenetic alterations occurred along the Cenomanian - Turonian 
unconformity. Meteoric processes resulted in karstification, generation 
of porosity and permeability, and dolomitization, forming good 
reservoir quality strata in the Sarvak Formation. Burial diagenesis 
affected all units, in some cases increasing porosity and permeability 
and in others decreasing them (Kayvani et al., 2002). Investigating 
correlations between permeability and other petrophysical properties 
in carbonate rocks is not as straightforward as in sandstones. For 
example different types of porosity in carbonate rocks such as vugs, 
micro-fractures, intragranular and intergranular porosity, results in 
permeability variations for the same porosity. Therefore considering 
other types of available data to estimate permeability in carbonates 
could increase accuracy of the results. 
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The depth of sampling was determined based on petrophysical and 
geological logs in the four exploration wells. The samples were 
prepared as cylindrical shape plugs; these samples are plugged 
vertically and are 1.5” in diameter and 2.5” in length (Figure 1). After 
preparation of samples, precise physical measurements were taken, 
(including mass, diameter and length) and then the porosity and 
permeability of samples were determined. Densities were achieved by 
calculating mass/volume ratios for each sample, porosities were 
determined using an ASC300 porosity meter and permeability 
measured by a pressure decay profile permeametry (PDPK™) 
apparatus. To measure permeability of samples they were located in 
the specific place of apparatus and pressure decays were measured in 
two orthogonal directions (as shown in Figure 1) in 1cm constant 
intervals along the sample’s main axis. Average of all measured 
values for each core sample is called “Average Horizontal PDPK™ 
Permeability” of the sample. 
 

 
 

Figure 1. Sample photo-montage of core plugs. 
 
Scanning Procedure 
An Xforce Toshiba CT scanner (third generation) was used in this 
study. The scanner consists of a mainframe, rotational elements, and 
scanner electronics. The mainframe houses the X-ray source, detector 
array, and beam shaping elements. The scanner assembly consists of a 



Effect of CT Data Upscaling on Permeability Estimation of Carbonate … 
___________________________________________________________________ 

67

support table for positioning the core. The generator group is 
responsible for generating the X-rays. The control panel consists of a 
video console, an interactive keyboard for viewing, initiating image 
generation, and for image manipulation. The computation unit 
performs sequencing, interprets instructions, and executes them. The 
Image Processing System accepts image information in digital form 
and converts it to the image seen on the viewing monitors. Processed 
images including digital data have been stored in appropriate storage 
media such as magnetic disks (Hounsfield, 1972).  
 The cores were initially cleaned, dried and then scanned at room 
pressure and temperature at an energy level of 120 keV and a field 
size of 18 cm. A small field of scan was used to obtain better spatial 
resolution, as the number of pixels available remains constant. Slices 
were taken in 2 mm constant intervals along each sample as it is 
displayed in Figure 2. Table 1 shows the CT value of representative 
minerals. 
 Slice thickness was made as small as possible, i.e., 1 mm (it varies 
from 1-10 mm), in order to minimize errors and maximize resolution. 
Greater slice thickness results in greater measurement error. The size 
for each CT slice is 112×112, and each pixel represents a volume of 
0.35 mm×0.35 mm×1 mm. The average CT value within each pixel 
has been considered as CT value of the pixel. Figure 3 shows a series 
of CT images obtained for each core sample. 
 
 

 
 

Figure 2. Schematic of the CT slices along the sample. 
 
 
 
 
 

2 mm 
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Table 1. Linear attenuation coefficients (µ) and CT numbers for some common 
mineral end-members. The tabulated values are calculated specifically for 
120keV X-ray energy (modified from University of Texas’s web site). 
 

Mineral 
Name 

Idealized 
Formula 

Mass Density 
(g/cm3) 

µ (cm-1) CT Number 
(HU) 

Quartz SiO2 2.65 0.448 1275 
Muscovite KAl3Si3O10(OH)2 2.83 0.490 1323 

Hedenbergite CaFeSi2O6 3.63 0.823 2005 
Calcite CaCO3 2.71 0.530 1384 

Dolomite CaMg(CO3)2 2.87 0.513 1357 
Microcline KAlSi3O8 2.56 0.452 1279 

Rutile TiO2 4.25 0.955 2326 
Diopside CaMgSi2O6 3.23 0.601 1513 

Albite NaAlSi3O8 2.62 0.436 1266 
Fayalite Fe2SiO4 4.39 1.22 2993 

Magnetite Fe3O4 5.22 1.62 4000 
 

 
 

Figure 3. A series of CT images obtained for core samples. 
 
 
Data Set Arrangement 
CT data of a core sample consists of 32 matrices each of 112×112 size 
which in mathematical notation can be showed as CT(i,j) & i,j= 
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1,2,…,112. To reduce size of CT data and consequently calculation 
time, the average of each CT slice has been considered as 
representative of that slice. In this study we considered 6 data sets of 
different scales for each sample. First set consists of 32 CT slice 
averages together with porosity, depth of samples, bulk density and 
volume percentage of minerals as input , and permeability of samples 
as output part of data. The second, third, forth and fifth data sets 
consist of all information of first data set, but the difference is in scale 
of CT data. The number of CT averages has been reduced by scales of 
1/2, 1/4, 1/8 , 1/16 and 1/32 as shown in figure 4. 
Up scaling the CT averages is done using a simple averaging method: 
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Figure 4. Schematic of data sets. 
 
Neural Network Structure 
Known as sixth generation computing, neural networks are widely 
used in many disciplines from weather forecast to airport security 
devices. Neural networks are analog, distributive and parallel 
information processing methods that have proven to be powerful 
pattern recognition tools (Fausett, 1994). Since they process data and 
learn in a parallel and distributed fashion, they are able to discover 
highly complex relationships between several variables that are 
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presented to the network. As a model-free function estimator, neural 
networks can map input to output no matter how complex the 
relationship. There are several paradigms that can be used to generate 
neural networks. To achieve the goal of this study, a feed forward, 
back propagation neural network (which adopts a supervised training 
scheme) has been used. An artificial neural network is a system of 
several simple processing units known as nodes, neurons or 
processing elements. These processing elements are associated with 
one another through simple connections known as synaptic 
connections. The strength of the synaptic connections changes with 
attaching a weight to them. Figure 5 is a schematic diagram of a 
typical artificial neural network. 

 
 

Figure 5. Schematic of an Artificial Neural Network. 
 
 Neurons in a network are organized in layers. Each layer is 
responsible for a particular task. Typically there are three kinds of 
layers in an artificial neural network. Input layer is responsible for 
presenting the network with the necessary information from the 
outside world in a normalized manner. Hidden layers (there may be 
more than one hidden layer in a network, this is a problem dependent 
factor) contain hidden neurons that are responsible for the main part of 
the input to output mapping. These neurons are responsible for feature 
extraction from the input neurons and subsequently passing the 
information to the output neurons. Output layer contains output 
neurons that communicate the outcome of the neural networks 



Effect of CT Data Upscaling on Permeability Estimation of Carbonate … 
___________________________________________________________________ 

71

computation with the user. The back-propagation learning rule that is 
used in this study is introduced by Bishop (1996). 
A processing element of a feed-forward network transfers its inputs as 
follows: 
 

)())(( ][]1[][][ s
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j

i

s
ji

s
j IfXWfX =⋅= −∑        (2) 

where f is a transfer function. The function f can be any smooth 
function for a processing element. The sigmoid function is used as the 
transfer function in this study. After selecting neural network 
structure, samples for training and testing the network are collected as 
described in Figure 5. During the supervised training, it was necessary 
to provide the network with the correct permeability value for each 
example. The network will converge to the correct permeability value 
by back propagating the error between its prediction and the actual 
permeability value. 
 
Results 
Figure 6 shows the relationship between sample permeability and CT 
average, depth, percentages of calcite, and dolomite, respectively. The 
scatter of these plots and low correlation coefficients (except for CT 
average that is a function of density) suggest no apparent relationship 
between these parameters and formation permeability.  
 Samples were divided into two sets, one set containing 22 samples 
for analysis or learning and another set of 12 samples for testing of the 
results. We performed multiple linear regressions on the analysis data 
set to achieve a general formula for calculating permeability using 
other available parameters of the samples as shown in Figure 7. The 
correlation coefficient is moderate. Figure 8 is a comparison between 
the actual permeability of test samples and calculated values. The 
correlation coefficient is good. The networks were trained and then 
tested to see if they were able to estimate/predict permeability values 
from the four wells in Sarvak formation. The 12 samples that were 
chosen randomly in this study for test purposes (and were never seen 
by networks during the training) included a wide range of 
permeabilities from 0.05 to 179.15 mD. This further indicates the high 
degree of heterogeneity of this formation. Figure 9 shows the actual 
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permeability values of test samples that were measured in the 
laboratory in comparison with the network's estimation/prediction for 
each sample. Although permeability values cover a wide range, the 
network is able to follow the trend very closely. This figure show’s an 
increase in accuracy of predictions as the number of CT averages (NN 
CT [#]) is increased, especially for the samples with low permeability. 
After plotting core measurements versus network predictions, one can 
see the divergence of the predictions from a perfect match, which is 
the unit slope line. Figure 10 displays effect of up scaling the CT 
averages on permeability prediction. Comparing the results presented 
in Figures 9 and 10 with that of Figures 8 and 7 reveals the power of 
artificial neural networks in pattern recognition. One might comment 
on the input variables that were used in this study in the following 
fashion: CT numbers are related to the density, topology and structure 
of medium and consequently are related to the fractures that have 
doubtless influence on permeability. Depth of the formation is an 
indication of reservoir pressure that might affect permeability. 
Percentage of minerals cause changes in wettability which has a direct 
impact on permeability. 
 

Figure 6. Relationships between permeability with other data of samples. 
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Figure 7. Comparison between measured with calculated permeability 

values of 22 core samples obtained from multiple linear regression. 
 
 

 
Figure 8. Cross plot of measured and calculated permeability values of 

12 test samples obtained from multiple linear regression. 



     Hassanzadeh, E., and Ghadirian, H.A..                                 IIJS, 5 (Geol.), 2004 
___________________________________________________________________ 
74

 
Figure 9. Comparison between results of ANNs containing different 

numbers of CT averages. 
 
 

 
Figure 10. Effect of CT data Upscaling on Permeability prediction. 

 
Discussion 
The results presented here are based on data of 34 samples taken from 
four exploration wells. A few points about these results need to be 
mentioned. Our experience with the design and development of neural 
networks for permeability prediction/estimation has shown that it is 
essential to have enough data to train the network properly in order to 
see acceptable, as well as repeatable, results. The questions of how 
much data is enough and whether there exists a threshold below which 
neural nets will not be effective are currently under investigation. The 
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results are as good as the data available. With proper data more can be 
done with neural networks than any other tool. 
 
Conclusions 
This study showed that neural network estimation of carbonates 
permeability using other laboratory data is a feasible methodology. 
Artificial neural networks that are capable of predicting/estimating 
carbonate permeability using other available data, were presented. It 
was shown that the trained networks were able to predict/estimate 
permeability comparable to that of actual core measurements. 
Availability of reliable core data for training process proved to be 
essential. At this point, this type of study is capable of producing lab 
specific results, however, additional data on seize and distribution of 
fractures and also porosity type, could help us to find relationships 
between CT data scale and permeability. Adequate knowledge on 
fundamental theories and practices of artificial neural networks are 
required to achieve acceptable and repeatable results. 
 
 
Nomenclature  
µ              =  linear attenuation coefficient, L-1, cm-1 
CT        =  Computed Tomography number 
HU        =  Hounsfield unit 
R             =  linear correlation coefficient 

][s
jX        =  output state of jth node in layer s 

][s
jiW        =  connection weight joining ith node in layer (s-1) to jth node in layer s 
][s

jI         =  weighted summation of inputs to jth node in layer s 

f             =  transfer function 
NN CT[i] =  set of neural net predictions using i number of CT averages 
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