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Abstract

A sufficient conditionis obtained for twoisometries tobe unitarily equivalent.
Also, a new class of M-hyponormal operator is constructed.

The aim of this article is to extend results due to Hoover
[5] about the equivalence of quasisimilar isometries and to
Clary [1] about the equality of the spectra of quasisimilar
hyponormal operators. For S ¢ B (H) and T € B (K), let
C(S5,T): B(K,H)—» B (K,H) denote the commutator of S
and T defined by C(S,T) A= SA - AT, where K and H are
separable Hilbert spaces. A linear transformation A is
Hoover [5] showed that if S and T are isometries, and if A
and B are quasiaffinities such that,

(1) C(S,T)A=0 and C(T,S)B=0,
then § and T are unitarily equivalent. Our Theorem 1
shows that Hoover’s result remains true if condition (1) is
replaced by the weaker condition

2) C(S,T)A=0 and C¥(T,S)B=0,
where n is a natural number. (Here C*(S,T) denotes n
times application of C(S,T).) (See also [3, pp. 217 —226].)

Also Clary[1]showed that if S and T are hyponormal and
A and B are quasiaffinities satifying (1), then o (S) =o (T).
In Theorem 2, we will show that the equality of spectra
remains valid if condition (1) is replaced by the following
condition

?3) lnim”C“(S,T)AHI/n = gm"C“ (T,S) B|| /= =0.

(Note that similar subnormal operators need not be
unitarily equivalent [4, Problem 156]; see also example
14.9 on page 220 of [3].) ’

In the proof of Theorem 2, hyponormality of S and T
are used only to prove that certain manifolds are closed
and for this, M-hyponormality is quite sufficient. Our
Theorem 3, introduces new examples of M-hyponormal
operators, and hence, extends Theorem 2 for a wider class
of operators.

To prove the main results we need the following
lemmas.  Throughout the remainder of this article Ey
denotes the resolution of the identity for a normal operator
N, and Dy denotes the domain of a linear transformation
T.

Lemma 1 (Colojoara-Foias [2, page 48]).
LetSe B (H), T ¢ B (K), and A e B (K,H) be such that
lim ICXS. T)AjM"=0. Let {:GCC—K be an

analytic function such that (z-T) f(z) = x for somex ¢ K
and let -
(4) g(z)=Z(=1Y'CYS, TIAI® (z)/n!

for z € G. Then (z - S) g (z) = Ax, and g is analytic on G.

The following lemma is well-known.

Lemma 2. Let S € B (H) and m be a natural number.
Then x € ker S™ if and only if there exist vectors aj, ..., a, €
H such that

(z—S)ay/z+8a,/22+... 48,/ Z")=x
forall z #0.

Lemma 3. Let N € B (H) be a normal operator and let x
€ H. Assume there exists an analytic function f:G —»H
such that (z- N) f(z) =x. Then Ey(G)x = 0.

The proof is well-known. It follows from the fact that if
o is any closed subset of Gand T:=N|Ey(0)H. then
Ex(0){(z) and (z—T)-'Ex(c)x together define an entire
function g such that (z—T) g(z)mEy (¢)x. Hence Ex(e)x=0
and thus Ey(G)x=0.

The following lemma extends a result of Conway (3,
page 222}

Lemma 4. Let S and T be subnormal and A and B be
quasiaffinities satisfying condition (3). Then S and T have
unitarily equivalent normal parts. Moreover, A (resp. B)
maps Dy (resp. Dy into Dy (resp. Dy), and AN=MA |Dy
(resp. BM=NB [D)), where M and N are the normal
parts of S and T, respectively.

Proof. Let A,;:Dy—D, and Y:Dy—D;be such that
Ax=A, x+Yx for all xeDy. Let S=M®S, and T=N@T,,
where S, and T, are the pure parts of S and T, respectively.
Then

1imIC*(M,N)A /%= lim]|C%S,,N) Y| /*=0.

By [10, Corollary 1}, S; |(YDy)- is normal and hence
Y=0. Thus A, is injective and again, by [10,Lemma 2], N is
unitarily equivalent to a reducing part of M. Similarly, M is
unitarily equivalent to a reducing part of N and hence M

~and N are unitarily equivalent [6]. The rest of the proof

follows from [10, Corollary 1].
Now, we are ready to prove our main results.
Theorem 1. Let S and T be isometries and let A and B
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be quasiaffinities satisfying condition (2). Then S and T are
unitarily equivalent.
Proof. By Lemma 4, S and T have unitarily equivalent
unitary parts M and N; moreover,
B:
BS ’

A A By
A= and B=
1] A, 0

where A,:D,;L -ij and B,:D,',L -oD: have dense ranges.
Let, up to unitary equivalence, W& and WO be respectively
the pure parts of S and T, where W is the simple unilateral
shift and k and j are finite or countable cardinalities. (W°
means the zero operator on the zero space). We have to
show that k =j.

Note that A"; and B, are injective and

C(W* D W*M)Ax =0, C(W* W*iI)BS =0,
Let m be any natural number and let x € ker (w'®)™, By
Lemma2, there exists a function f(z) =a;z'+... +a,z™
such that

(z—=W*'M)i(z)=x (z+0)
Now, Lemma 1 implies that (z-W'®) g(z)=A" ;x,where g(z)
=b,z +bz 2 +... +by,z ™" Thus A';xe ker (WD)mtn
and hence mk < (m+n)j. Letting m —— «, we see that
k <j. Similarily, j < k and hence k=j. Therefore, S and T
are unitarily equivalent and the proof is complete.

Theorem 2. Let S ¢ B(H) and T e B(K) be hyponormal.
Let A and B be quasiaffinities satisfying condition (3).
Then o (S) = o (T).

Proof. Since condition (3) is unaffected if S and T are
replaced by z-S and z-T respectively, it is sufficient to show
that S is invertible if and only if T is invertible. (Here z is
any complex number.)

Assume S is invertible and let D=D (0;r) be an open
neighbourhood of 0 contained in the complement of & (S).
Let x € H and f(z)=(z-S)'x for z € D. By Lemma 1, there
exists an analytic function g: D — K such that (z-T)
g (z)=Bx. Thus B maps H into the set My consisting of all
vectors y € K for which there exists an analytic function g:
D — K such that (z-T)g, (z) =y. Thus My is dense in
K. By [7, Proposition 1] the set M is closed and hence My
=K and ¢ (T) N D = ¢ [2, page 23]. Similarly, S is
invertible if T is so. The proof is complete.

As it is obvious from the proof, the hyponormality of S
and T is used only to show that Mg and M are closed. In
view of [9, Remark 3], these are closed if S and T are
merely M-hyponormal. An operator T is called M-
hyponormal if M is a positive constant and

(6) li(z=T)*xlI<MI(z— T)x||
for all zeC and all x e Dy. The following theorem gives new
examples of M-hyponormal operators and hence extends
Theorem 2 to a wider class of known operators. (See [14;
15] for previous known examples.)

Theorem 3. Let T ¢ B (H) be a weighted shift with
weights { a,, a,,...} such that 0 < a, < 1 (n=1, 2, 3,...).

2
Define b;=0and b, = max {o, az , 8 }
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Assumem
) 3, rb, <00

for some r € (0,1). Let a = lim inf a;. Then the following
assertions are true. -

(a) If a > r, then T is M-hyponormal.

(b) If a=0, then lim a, = 0 and T is not M-hyponormal.

Proof. (a) We first note that condition (6) is equivalent
with the following condition

@) TT*-T*T<(M*—1)z—T)*(z—T) (ZeC).

Let xeHbe an arbitrary unit vector. Let {e,, €,,...} be
the orthonormal basis such that Te, = a, e, (n=1,2,...).
If x= 3 t;e;, then
®) (TT*=T*T)x,x)< T i>1bilti* =g(x).
and
Wz —T)x|?= |zt,|’+z,y|a,_,t,_i-—zt,|’=f(x,z),
say. We will show that
o<p=inf{f(x,z)/g(x):xe H,||x|| =1, |z| >r, g(x)70).
Assume, if possible, that p=0 and let
(1= Y b r¥<1,
for some d>0. Choose x and z such that f (x, z) /g (x) <d?,
g (x) >0, ||xl|l=1. and |z| >r. Let g=g (x). Let
s=r"!, dy= |zt,|g"" and d,=|a,., t,-:—zt.lg'!/’
for i=2, 31, . Then 3 d? <d* and, by induction on i,
' /’lt,|<sd,+s’d,-, a1+ +s'dia g8,
for i > 2. Using Schwartz inequality and the fact that a; <
1, it follows that .
8~ LI<s st —1)" ",
for i > 2. Thus
8(x)= I bjt | < g(x)d* T br-*(1—1%)"
a contradiction. Hence p > 0 and
) gx)<p~' i(x,2),
for all x and z such that }x|l =1 and [z|> r. (The
inequality (9) trivially holds for g (x) = 0.) Now, it follows
from (8°) and (9) thatif |z|>r, then
(TT*-T*T)< (M?-1)(z-T)*(z - T), where M> -1 = p.,
Now, assume a > r and |z| < r. In view of [4, Problem
76], T is similar to a weighted shift S with weights {r;,
I3,...} such that
[r.J>(c+2)/2 for n=1,2,.. . Thus, if T=ASA™,
lz—T)xl| >HA7'(ISA™'x]} — |z| 1A™xi])

>1A= | lal ~(r+a)ra Jra-xi

2lAl-AT ! (a~r)/2=E>0,

for all x € H with ||x|| = 1 and all z with |z|< r. Hence
k (z-T)* (z- T) > kE? > TT* - T*T, where k=E? ||TT*-
T*TIl . In view of (8), the proof of (a) is complete.

(b) Assume a=0 and, if possible, s=lim sup a; > 0. Lete
= §*/3 and choose natural numbers k and N such that

k> N, EnzN b, < €, and

al>s?—e. Then a? »al—.;:b.>¢"—2=¢ for all i>ka
contradiction. Thus lim a; = 0 and T is a completely
nonnormal, compact, quasinilpotent operator. Such
operators cannot be M-hyponormal [12; 15]. The proof of
the theorem is complete.

Corollary (Thatte-Joshi [14], Wadhwa [15]). The
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weighted shift T with weights {a;, a,,...}is an M-
hyponormal operator if |a,|=]a. .} =[a.,.]=... for some
natural number n.

Examples. (i) Let a, = 1 and a,=(1 — z n= )2 k=2,

3,.... Then the weighted shift T with weights a,, a,,...
is M-hyponormal.

(ii) The weighted shift T with weights a, = (1/2)" is not
M-hyponormal (0< r <1). However, in view of [12; 13}, T
is dominant, i.e., for each z ¢ C there exists M, > 0 such
that

(z=T)*x{| <M A(z~T)x|| for all xeD,

(iii) The weighted shift T with weights a, =n™ is neither
M-hyponormal nor dominant.

(iv) The welghted shift T with weights
iz £ 27 2 22 K 2~ K 2 is similar to the simple unilateral

hift but is not M- hypo ormal. The similarity follows from
{4, Problem 76]. The fact that T is not M-hyponormal is
true for any T such that |T*T -TT* isinvertible. If Tis
M-hyponormal, then it follows from [8, Theorem 2] that

(z-T)* (z-T) > kK* |T*T-TT*| ?

for all z € €, where k is a constant independent of z. Now, if
|T*T-TT* is invertible, then ||(z-T) x||> ek forall ze
, where € = inf o ( |T*T - TT*| ). Thus T has no
approximate point spectrum, a contradiction.

Remarks, (i) We do not know whether or not Lemma 4
is true for hyponormal operators S and T. However, if S
and T are hyponormal (or even dominant), if C* (S, T)
A=0, and if C* (T, S) B=0 for some natural number n,
then S and T have unitarily equivalent normal parts. For a
proof, observe that, with the notation of the proof of
Lemma 4, C° (§,, N) Y=0. By [10, Theorem 1], Y=0. The
rest of the proof is the same as that of Lemma 4.

(ii) Assume S and T satisfy condition (3) for some
quasiaffinities A and B. It follows from [10, Lemma 2] that
S and T are unitarily equivalent if they are normal. We do
not know whether S and T are unitarily equivalent if they

are isometries. However, for general subnormal operators

S and T even their similarity need not imply their unitary
equivalence [4, Problem 156).

(iii) A revision of Theorem 2 reveals that if S is M-
hyponormal, if T is arbitrary and if A is a quasiaffinity such
that  lim [iC*(S.T)A!"* =0, then a(S)Co(T).

(iv) In Theorem 1, the proof of the unitary equivalence
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of the pure parts of S and T is based on a counting
argument. Therefore, it cannot be applied to operators S
and T satisfying condition (3). However, we can generalize
Hoover’s result in a different way. Assume
S=MgW™ and T=NGWY

where M and N are normal, and W® denotes the direct
sum of i copies of a cyclic subnormal operator W for some
countable cardinality i. Suppose S and T are quasisimilar,

- i.e., they satisfy condition (1) for some quasiaffinities A

and B. Then S and T are unitarily equivalent. The
equivalence of Mand N follows from Lemma 4 Let A, and
B, be as in the proof of Theorem 1. Then A% and B; are

injective and
C(W* AV *)AS =0, C(W*™, W) BS =0.
By [11, Theorem 1}, k=j and hence (VP ={y?,
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