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Abstract

A two-dimensional model of Al, Si ordering in alkali feldspar is formulated
and used to calculate accurately the configurational entropy for the model. For
this purpose, a new method called Independent Basic Unit or IBU is introduced.
To compare the results with the exact values, this method is applied to the one-
dimensional model of albite. The results given by IBU are found to be accurate
to the extent that the deviation in free energy is less than 0.8%. The reduced
configurational entropy is calculated to be 1.065 corresponding to 8.854 J K1
mol-! for the two-dimensional model. This value is within 6% of standard
values obtained by using approximate calculations for the same model.

Introduction
Al, Si ordering of albite and other alkali-feldspars
is analysed in its most simple form as a lattice-gas
model in which the occupancy of sites by Al is
mapped onto an Ising-type variable. Models of this
type go back to the 1970’s (e.g., Mazo, [1]; Andersen

and Mazo, [2]; Senderov, [3]) and yield reasonable -

approximations for the excess entropy as being
identical to the configurational entropy.

In this paper, the original approach of Andersen
and Mazo [2] of a 2D model is taken up again. An
improved technique is used to solve the statistical
mechanics of the Al, Si distribution under the usual
constraints of Al-Al avoidance and charge neutrality.
Within this model, an accurate solution can be found.
The difference between this work and previous
calculations (Andersen and Mazo, [2]; Rajabali, [4-5])
is that no explicit approximation will be made in this
work for the calculation of the configurational entropy
of the motlel. Such a difference is expected to have
only a minor effect on the entropy at low
temperatures, but it becomes important at high
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temperatures because of the aluminum avoidance rule,
and especially at intermediate temperatures because of
both the phase transition and the aluminum avoidance
rule. Before we present these solutions it is usefyl to
recall that the nearest-neighbor Ising models represent
only a rough approximation, even for the excess -
entropy; in other words, the model is approximate
even though the solution is accurate.

Na-feldspar shows a large elastic excess energy
due to the Al, Si ordering process, (Salje et al., [6]).
The coupling between the cation position is partly due
to lattice distortions. If such lattice distortions are
explicity taken into account, the effective Hamiltonian
related to such distortions can be written as [7]:

H=H0+';‘._‘£RA‘f(R-R')u"(R)u"(R')
-_;_ERR.Fi(R- R)u' R) SR

where A¥ is a dynamic matrix, R is a set of lattice
coordinates, F(R) is a set of spin-lattice forces, S is
the iso-spin (i.e. occupancy) and u is the strain
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coordinate which describes the displacement of an
atom from its ideal lattice site. Subject to constraints
for the translational and rotational invariance of the
lattice, the effective Hamiltonian can be written in
terms of a space-dependent exchange constant J(R)
[7]. Marais et al. [8] have argued that this Hamiltonian
is formally identical to an Ising Hamiltonian. Salje [7]
has shown that J(R) « 1/R3 in the case of zone-center
instabilities with an oscillatory behavior for small
values of R. In a classical Ising model, this effect is
effectively ignored and J(R) is replaced by one
average number which is chosen to reproduce the
experimental observations.

Parsafar

~To include the lattice distortions in the model of )

Na-feldspar, the long-range crystal interactions
(governed by Coulomb forces) have to be a function
of Al, Si ordering in the lattice (Mazo, [1]; Senderov,
{31). The exact function for the site preference energy
in terms of p (the fraction of T, sites occupied by Al
atoms) is not known. However, Senderov [3] assumed
a linear expression for such a function, and Mazo [1]
used a similar linearity to get a reasonable agreement
with the experiment. For such a function, we may
either use a linear expression or even some other
expressions that might give a better agreement with
the experiment. This task r}mams for the future.

Independent Basic Unit

In order to calculate the exact configurational
entropy of our model the following steps are taken:

(i) All sites are artificially divided into two
arbitrary, alternating groups of “solid” and “nonsolid”
in such a way that the nearest-neighbor sites of each
solid site are all nonsolid sites and vice versa.

(ii) A nonsolid site with its nearest-neighbor sites
is called a basic unit. Basic units are classified into
several groups. Each group belongs to a specific
configuration of solid sites of the basic unit.

(iii) The number of ways to distribute atoms
among solid sites is calculated. This is equal to the
number of ways for distributing independent basic
units. An independent basic unit is considered to be a
basic unit that has no common sites with other basic
units,

~ {iv) The number of ways to distribute atoms among
specific types of nonsolid sites is calculated; a specific
type of nonsolid site belongs to the basic units with a
‘specific configuration. The total number of ways to
distribute atoms on all sites is then calculated.

{v) The total number of distributions (on solid and

nonsolid sites), is used to calculate the configurational
entropy. ‘
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Application of IBU to Two-Dunensmnal Model- of
Na-Feldspar ‘ - '

We use a two-dimensional model of Na-feldspar -
which was introduced by Andersen and Mazo ([2]).
This model is simply a square lattice in which each
square has three identical sites denoted by “b” and
another site denoted by “a”. Each unit has one of four
different configurations A, B, C and D (Figure 1).
Local charge neutrality holds because only one
aluminum atom is allowed in each configuration

We now consider another square lattice in which
each site is occupied by an A, B, C or D unit. In the

Independent Basic Unit (IBU) approach, each site is

either “solid” or “nonsolid”. Therefore, from now on,

. by a site we mean a position which is occupied by an
. atom (Al or Si) and a “solid” (“nonsolid”™) site is a

position which is occupied by a unit (4, B, C, or D).
The basic unit contains four solid sites on its corners
and one nonsolid site in its center (Figure 2) with 44 =
256 possible configurations. Since solid sifes are not
nearest neighbors to each other, the aluminum
avoidance rule is always obeyed. As shown in Figure
2, a basic unit can have five different configurations,
2y, 2y, Z,, Z5 and Z,, excluding the configurations for -
its nonsolid site. If the Boltzmann probability for the
basic unit with Z; configuration is denoted by Q;,
where the subscript i shows the number of A units on
the solid sites of the basic unit, then there are L, Q,N/2
of basic units in the lattice with Z; configuration,
where A; is the multiplicity for Z; configuration. Note
that there are N/2 basic units in the lattice, where N is
the total number of units. All configurations for a
basic unit, along with their multiplicities and their
numbers in the lattice are shown in Figure 2.

Now we consider the configurations for the
nonsolid sites which are located at the centers of the
basic units. The nonsolid sites may also be occupied
by A, B, C or D units. In the distribution of units
among these sites, the aluminum avoidance rule is
taken into account. According to this rule, some units
are not allowed to be located on some nonsolid sites.
Let us first consider those basic units with the

Al Al :
@ e ¢ e

Al
A B c ™ Moy
Figure 1. Four different configurations for a unit. The
circles represent “a” sites and the other corners of squares
represent the “b” sites. The position of only the Al atom is
specified in each configuration, the other three corners are
the positions of Si atoms.
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configuration denoted by Z, in Figure 2. The nonsolid
sites belonging to this type of basic unit are not
available either for B units or for D units. Therefore,
_they may only be occupied by either A or C units. The
probability of having either B or D units on this type
of nonsolid site is set to zero, according to the
aluminum avoidance rule. This constraint is shown as

a brokeri line in Figure 3. A broken line connecting

- two units then means that such-a epnfiguration is not
counted. Similarly, the nonaccessibility to this type of
nonsolid site for D units is due to its interaction with
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the A unit located on the solid site on the bottom of the
basic unit. All allowed and disallowed configurations
and their multiplicities are tabulated in Figure 3 for Z,
configurations. A similar set is given in Figure 4 for

© Z3 configurations where disallowed configurations are

on the left side and the remaining allowed ones are on
the right side. Allowed and disallowed configurations,
along with their multiplicities, are shown in Figures 5,
6, and 7 for the basic unit Z,, Z, and Z, configuration,
respectively.,

Each unit on a nonsolid site gives disallowed

Basic Number of
unit Configuration® Multiplicity configuration
A
Z4 ' k“ = l Q4 Nirz
A A
A
. A
z “@‘ Ay=4x3=12 120, N2
I
A
z, : A Ay=6X3x3=54 540, N2
1
A
Z, I 1 A=4x3x3x3=108 | 1080, N/2
1
1
YA 1 @ 1 A=3x3x3x3=81 | 81Q,N/2
1

* The nonsolid unit sites are not occupied in this figure (see the other

figures),

Figure 2, All different configurations for a basic unit. Full circles are solid
sites and the open circle is a nonsolid site. Those units that are shown byl

can be any of B, C, or D units.
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Configuration Multiplicity
AA 1
A
A %--- A 1
A
&
A A
@ 1
A
A
A A i
1
L
i

Figure 3. Configurations and multiplicities for the basic
units with Z, configuration. The broken line that connects
two units represents an infinite repulsion between these
units, due to the aluminum avoidance rule,

configurations (due to the aluminum avoidance rule)
with two units which are located on the solid sites. For
instance, an A pnit on the nonsolid site of a basic unit
is not allow either the solid site on its top is
occupied by a D unit or if the solid site on its left-hand
side is occupied by a B unit (see the first row in Figure
4). Each of these disallowed cases has 4 x4 x4 X 1 =
64 configurations; where 1 is for the specific unit that
makes disallowed configurations with the unit on the
nonsolid site, and 4 is for the remaining solid sites that
may be occupied by any unit (A, B, C or D).
Therefore, it seems that each unit on the nonsolid site
of a basic unit results in 2 X 64 = 128 disallowed
configurations. However, these two groups of
configurations have 16 configurations in common.
Then, each unit on the nonsolid site of a basic unit
gives a total number of 128 - 16 = 112 disallowed
configurations. Therefore, the total number of
disallowed configurations, must be equal to 4 x 112 =
448. There is a 2, 22, 94, 186, and 144 disallowed

Parsafar

41

VYol 6 No. 1
Winter 1995

configurations, which are given in Figures 3, 4, 5, 6,
and 7, respectively. These numbers sum up to a total
of 448 disallowed configurations. There is a total of 45
= 1024 configurations for a basic unit, including the
configurations for its nonsolid site, of which 1024 -
448 = 576 are allowed. This number is the same as the
total number of allowed configurations given in
Figures 3 through 7.

Calculation of Configurational Entropy

In IBU, we have to specify the independent basic
units of the lattice. For our square lattice ‘model, they
are shown in Figure 8 as a set of connected lines. As
shown in this figure, these basic units have their own
sites, which are not shared with any other independent
basic units. There is a total of N/8 such basic units.
Since these basic units are not really different from N/
2-N/8 of the remaining basic units of the lattice, we
shall devote 25 percent of basic units with each
configuration to the independent basic units. The
number of distributions on solid sites , g(S), is actually
equal to the number of ways to distribute 25 percent of
basic units among the independent basic units, owing
to the fact that these basic units include all solid sites.
Since such basic units do not share any of their solid
sites, g(S) is simply given by:

N/

ge=—=r
TL [(Q:N/8)1T

1§

where the values for A, are given in Figure 2. There is
one exception, due to the aluminum avoidance rule,
that is A, = 106 (not 108) which will be discussed.

In IBU, the general approach for calculating the
number of ways for the distribution of units on the
nonsolid sites, g(IN), is to calculate the distribution on
each specific type of nonsolid site separately, exactly
in the same way as in the Extended Sequential
Construction Method (ESCM) approach given by
Parsafar ([91). The product of these individual terms
gives g(N). In order 1o use the IBU approach for this
specific case, the number of distributions on those
nonsolid sites belonging to Zy, Z,, Z,, Z;, and Z; is
calculated with g(N) = g;2;:¢,8:8, where g; is the
number of distributions on the nonsolid sites
belonging to the basic units with Z; configuration.

We start with the Z, configuration. There are 81
QoN/2 of basic units with Z, configuration (see Figure
2) and the same number of nonsolid sites belonging to
Z,. The fact that all of these nonsolid sites are not
available for occupation by all units is taken into

*account when the number of ways for the distribution

of the units among this type of nonsolid site, g, is
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Allowed
Nonallowed configurations Multiplicity | configurations Multiplicity
(remaining) ‘
0 a A
A, cn 2 a u 10
A a 1
C 1 A
@ ~. ) -. )
A a A ‘
A A a
€
A 0 A (:) A 2 A a 10
. A 8 [ o .
A a . A
I a C [] A L}
: 9 3
a a

Figure 4. Allowed and disallowed configurations and the multiplicities for the basic
unit with Z, configuration, The broken lines have the same meaning as in the previous

figure caption (/ = B, C, D).

calculated. For example, of the 81 QoN/2 such
nonsolid sites, only 36 Q,N/2 are available for A units
(Figure 7). The available nonsolid sites of this type are
54 Q¢N/2, 36 QuN/2, and 54 Q,N/2 for B, C and D
units, respectively (see Figure 7). The fact that not all
such nonsolid sites are available for the units is the

major difficulty for the calculation of g,, and of

course is due to the aluminum avoidance rule. It is
precisely because of this fact that the combinatorial
factor g, cannot be simply expressed as a multinomial
_coefficient. A

As shown in Figure 7, there are 36+ 54+36+54 =
180 allowed configurations for Z, These
configurations may be classified by the units allowed
on their nonsolid sites (Table I). The general
configuration of the basic unit is denoted by “KLMN”
in the second column of Table I, excluding the
configuration of the unit located on the nonsolid site,

where K, L, M, and N represent the unit located on the -

top, right side, bottom, and left side of the nonsolid

42

site, respectively. The numbers of such configurations,
Ay, are given in the third column. The units which are
allowed on the nonsolid sites of these configurations
are given in the last column. For example, as shown in
Table I, there are four configurations in the first row
(BBCD, BBDD, BCCD, BCDD) for which the
nonsolid sites may be occupied by A, B, C or D units.
Similarly, in each of the other rows of this table
different configurations for Z, are specified, for which
the allowed units on their nonsolid sites are given in
column 4. The number of allowed configurations is
denoted by 4; where i is the same subscript used for Z
and Q; (for this case i = 0), and j simply shows the row
in Table 1. The sum of the allowed configurations
must be equal to 180: '

15

Y ngido= 180 ¥))
=
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| Allowed
Nonallowed configurations Multiplicity | configurations Multiplicity
(remaining)
A
17 :. 37
4
A
30 " 24
1
A
17 la 37
1
A
1 N
30 24
1

Figure 5. Allowed and disallowed configurations and the multiplicities for the basic

unit with Z, configuration (/ = B, C, D)

where n,; is the number of allowed units on the
nonsolid site of each basic unit with special
configurations given in row j of this table, for
instance, ng; = 4, ngy = nys = Ry = ngs = 3. The
constraint (2) is consistent with Table I, because

4B +3@+5+4+12)+2(5+4+5+4+15+4) +

15+5+0+5)=180

The nonsolid sites belonging to Z, are then divided
into 14 different groups, based on the units which are
allowed to be located on the nonsolid site. There are
81 Q¢N/2 nonsolid sites belonging to the Z,
configuration, of which 4Q(N/2 are available for A, B,
C and D uaits (see the first row in Table I). Suppose
that the probability of such nonsolid sites being
occupied by A, B, C or D units is denoted by Ayy, By,
Cy; and Dy, respectively. There are then 4Q A, N/2
of A, 4Q0801N/2 of B, 4Q0C01N/2 of C and 4QODOIN/
2 of D units which must be distributed on 4Q,N/2 of

43

such nonsolid sites. The. number of ways for such a
distribution is given by g,,, where

goi= 4QoN/2)!
(4Q0A01N/2)!(4Q0801N/2)!(4Q0C01N/2)!(4Q00011‘(1§ )

There are 4Q,N/2 nonsolid sites belonging to Z, that
can be occupied by A, B, and C units (see j = 2 in
Table I). Suppose that the probability of these sites
being occupied by A, B, or C is denoted by Ay, By,
and Cy,, respectively, then the number of ways to
distribute the units among these nonsolid sites, gq,, is
given by

2= (4QoN/2!

= - 4
8 (4Q0AcN/DNEQ0BoaN/DNAQ0 CoaN/2)! @
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Allowed
Nonallowed configuration Multiplicity | configurations Multiplicity
(remaining)
' 1 a
1 s t 48 II 60
a 8 1
c 1 » A
x ‘ I ‘ 45 I l 63
1 I 1
A A A
lo 1 I 48 1 1 60
I 8 1
1 1 A
)
¢ 11 Cp T 45 1 1 63
A A 1

Figure 6. Allowed and disallowed configurations and the multiplicities for the basic

unit with Z, configuration (I = B, C, D)

Similarly, the number of ways to distribute the
allowed units on the nonsolid sites of basic units with
special configurations, given in each row of Table I, is
calculated. In general, the number of ways for the
distribution of allowed units on the nonsolid sites of
the allowed basic units given in the row j of Table 1,
&o;» is given by '

go=— LN )
T AgmyQaN/2)!

where each my; is the probability of such special

nonsolid sites being occupied by one of the special

allowed units. For the cases that only one type of unit

is allowed to be located on special nonsolid sites, there

is only one way to do such a distribution:

8012=8013=8015=1

44

The number of ways for the distribution of units
among all nonsolid sites belonging to the basic units
with Z, configuration, is given by g,, where

(AgQoN/2)!
Hm(AgmgQoN/2)!

go=Tligo;=IJ; )

Now we can calculate the number of ways for the
distribution of units among the nonsolid sites
belonging to Z;. We have to classify these nonsolid
sites into special groups, in such a way that each of the
special nonsolid sites is allowed to be occupied by
special units. This classification is shown in Table I,
in exactly the same manner as that for Z, in the
previous table. Note that each j (or row) in this table
corresponds to the same j in the previous table,
meaning that the same j represents the same allowed
units in both tables. For instance, j = 7 represents the
special configurations with their nonsolid sites
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Allowed
Nonallowed configurations Multiplicity | configurations | Multiplicity
(remaining)
1
! 1
< 1
1 J I 1
27 54
1 1
1 1 i
I
I" 45 x: 36
1 B 1
i 1
[4 1
6 27 ’* 54
b 1

Figure 7. Allowed and disallowed configurations and the multiplicities for the basic

unit with Z,, configuration

available for A and C units in both tables. This
correspondence is followed for the other tables as
well. Also note that there is one more row in this table,
j = 16. This row represents two configurations whose
nonsolid sites are not available for A, B, C or D units.
It means that the number of basic units with Z,
configuration is actually equal to 106Q,N/2. This is
due to the fact that 2Q0;N/2 of the nonsolid sites
belonging to such basic units (specifically those with
DABC and CDAB configurations) cannot be occupied
by any unit, because of the aluminum avoidance rule.

The number of distributions on all nonsolid sites
belonging to basic units with Z; configuration, g;, may
be calculated following similar arguments that led to
£o. The result is:

L L Q)
T (A ON/2)

45

where i = 1,2,3, and 4. The classifications of nonsolid
sites belonging to the basic units with Z,, Z,, Z,, and
Z, configurations are given in Tables II, III, IV, and
V, respectively.

The total number of distributions among the
nonsolid sites is then equal to g(N), where

g (MN)=gog1828384 ®

and the total number of distributions in the model
lattice is

g=(g081828384) g (S)
or

(A QiN/2)! N/8)! ©)

g= (I I
Tl (Rmii QNI 11, (0N /B T
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Figure 8. [llustration of the independent basic units of the
model. Independent basic units are shown by connected
lines. These basic units include all solid sites.

By knowing the combinatorial factor, g, the

configurational entropy can be readily calculated, by

using the Boltzman factor, S=k In g.

Order Parameter and Constraints

The order parameter of Al, Si ordering in Na-
feldspar is defined as Q,, (Salje [10]). We express this -

order parameter in terms of the @, and the mys.
Suppose that the probability of having aluminum
atoms on the “a” sites is equal to p. The number of A

units on all solid and nonsolid sites must then be equal .
to p N. The number of A units located on solid sites,

N,4(S), can be calculated by referring to Figure 2. It is
given by

4
Na =13 o (10)
: 4= 2

where the factor 1 is to avoid overcounting (each solid

site belongs to fgur basic units). Note that A, = 106,
not 108 as given in Figure 2. This is due to the fact
that two states with Z; configuration are not allowed
(see TableTl).

The number of A units on nonsolid sites is
calculated in terms of A;s and Q; by referring to
Tables I to V. Since (4; Q; A;) (N/2) is the number of
A units on the nonsolid sites of basic units with Z;
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1.5

S/NK

z T 5
-JKT

0.0

Figure 9. Reduced configurational entropy of the one-
dimensional model of albite given by IBU (dash curve) and’
the transfer-matrix method.(solid curve) versus the reduced
site preference energy, J/kT

configuration given in row j of the tables, the number
of A units on the nonsolid sites, No(N), is

4
NA @)= G, Y AiQiA) (1n

=0 j

where the first summation is taken over all tables (i =
0, 1, 2, 3, 4), and the second summation is taken over
those rows (j) of these tables, in which their nonsolid
sites are available for A units,

'The order parameter is given by:

4(NA(S) +NA(N)) 1
N

Qod= (12)
) (NA(S) +NA(N>) "
N
or, by using Egs. 10 and 11
4p-1 ‘
od=2 13
Qea 2p+1 (

where

4
p=13 n0i+ 13 T 20144 (14)
8 =0 275 _



Vol. 6 No. 1

J.Sci.I.R. Iran’ Parsafar Winter 1995
Table I. Classification of basic units with Z, configuration, based on
the allowed units on their nonsolid sites

J Allowed configurations Ao Allowed units

on nonsolid site

1 | BBCD, BBDD, BCCD, BCDD 4 .A, B,.C,D

.2 | BBCC, BBDC, BCCC, BCDC 4 | A B C

3 | BBBD, BCBD, BDBD,BDCD,BDDD.| 5 | A,B,D

14. CECD, CBDD, CcCCD, CCDD 4" | ACD

BBCB, BBDB, BCCB, BCDB, | S

5 | DBCB, DBCD, DBDB, DBDD 12 B,C,D
DCCB, DCCD, DCDB, DCDD

6 | BBBC, BCBC, BDBC, BDCC, BDDC 5 A B

7 [ cBCC, €BDC, CCcc, ccpe 4 | AcC

8 | CBBD,CCBD, CDBD, CDCD,CDDD | 5 A D

9 | DBCC, DBDC, DCCC, DCDC 4 B,C
BBBB, BCBB, BDBB, BDCB, BDDB

10 | DBBB, DBBD, DCBB, DCBD, DDBB 15 B,D

DDBD, DDCB, DDCD, DDDB, DDDD

11 | CBCB, CBDB, CCCB, CCDB 4 (o))

12 | CBBC,CCBC, CDBC,CDCC,CDDC | 5 A

13 | DBBC, DCBC, DDBC, DDCC,DDDC | 5 B

14 | o | ¢

15 | CBBB, CCBB, CDBB, CDCB, CDDB 5 D

The first constraint can be obtained based on the Ao1+Bo1+Co1+Do1=1 (16)

fact that the total number of basic units in the lattice
must be equal to N/2. Since there are Q4 N/2, 120,
N/2, 54Q, N/2, 106Q; N/2 and 81Q, N/2 basic units
with Z,, Z;, Z,, Z, and Z, configuration, respectively

04+12Q3+540,+1060Q: +81Q00=1 (15)

The remaining constraints are due to the fact that

~ the probabilities of each type of nonsolid site being

‘occupied by all allowed units must add up to one. For

instance, for those nonsolid sites belonging to Z,

which are available for A, B, C and D units (see j = 1
in Table I), we have

47

where Ay, By, Co; and Dy, are the probabilities that
these special nonsolid sites (j = 1) belonging to Z, (i =
0) are occupied by A, B, C and D units, respectively.
In general, such normalization relationships may be
written as '

17

2 mi=1

where each specific pair of i and j represents one
specific row in Tables I to V. Therefore, this
constraint must hold for each row in these tables, in
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Table H. Classification of basic units with Z, configuration, based on
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the allowed units on their nonsolid sites

j Allowed configurations Ay Allowed units
on nonsolid site
| ABCD, ABDD, ACCD, ACDD,

1 8 ABC,D
BBCA, BBDA, BCCA, BCDA
ABCC, ABDC, ACCC, ACDC, ’

2 8 A B C
BBAC, BBAD, BCAC, BCAD
ABBD, ACBD, ADBD, ADCD, ADDD,

3 10 A B,D
BBBA, BCBA, BDBA, BDCA, BDDA
BACD, BADD, CACD, CADD,

4 8 ACD
CBCA, CBDA, CCCA, CCDA
ABCB, ABDB, ACCB, ACDB

5 8 B,C,D
DBCA, DBDA, DCCA, DCDA
ABBC, ACBC, ADBC, ADCC

6 7 A B
ADDC, BDAC, BDAD
BACC, BADC, CACC, CADC,

7 8 AC
CBAC, CBAD, CCAC,CCAD
BABD, CABD, CBBA, CCBA,

8 7 A D
CDBA, CDCA, CDDA
BBAB, BCAB, DBAB, DBAC,

9 8 B,C
DBAD, DCAB, DCAC, DCAD
ABBB, ACBB, ADBB, ADCB, ADDB,

10 10 B,D
DBBA, DCBA, DDBA, DDCA, DDDA
BACB, BADB, CACB, CADB,

11 8 C. D
DACB, DACD, DADB, DADD

12 | BABC, CABC, CDAC, CDAD 4 A

13 | BDAB, DDAB, DDAC, DDAD 4 B

14 | CBAB, CCAB, DACC, DADC 4 C

15 BABB, CABB, DABB, DABD 4 D

16 | DABC, CDAB 2 -

48
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" Table IIL Classification of basic units with Z, configuration, based on

the allowed units on their nonsolid sites

j Allowed configurations Ay Allowed units
on nonsolid site

1 | ABCA, ABDA, ACCA, ACDA 4 A B.C,D
ABAC, ABAD, ACAC, ACAD,

2 6 A B C

' BBAA, BCAA

3 | ABBA, ACBA, ADBA, ADCA, ADDA 5 A B D
AACD, AADD, BACA, BADA,

4 6 ACD
CACA, CADA

5 0 B,C,D

6 | ADAC,ADAD, BDAA 3 A B
AACC, AADC, BAAC, BAAD,

7 8 AC
CAAC, CAAD, CBAA, CCAA

8 | AABD, BABA, CABA 3 A D

9 | ABAB, ACAB, BDAA, DCAA 4 B,C

10 0 B,D

11 | AACB, AADB, DACA, DADA 4 C,D

12 | AABC, CDAA 2 A

13 | ADAB, DDAA 2 B

14 | BAAB, CAAB, DAAB, DAAC, DAAD 5 C

15 | AABB, DABA 2 D

which the nonsolid sites can be occupied by more than
one unit. Specifically, there are 11, 11,9, 5 and 1 of
such normalization requirements for the nonsolid sites
belonging to Zy, Z;, Z,, Z; and Z, configuration,
respectively.

Results and Discussion

In the IBU approach we have actually assumed
that the distribution of N/8 independent basic units of
type Zy, Z,, Z,, Z3, Z, on the solid sites gives 3N/8
dependent basic units with the same probability for
each type of basic unit. In other words, we have
assumed that Q, is the probability that any basic unit
of the lattice will be in the state of Z,, with similar
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assumptions for other states of basic units. In order to
investigate the effect of these assumptions on the
configurational entropy, we applied the IBU on the
one-dimensional model of albite. The model is simply
a row of squares, in which every other square has a
sodium atom at its center. Subject to the aluminum
avoidance rule and local charge neutrality, the model
can be solved exactly by the transfer-matrix method
[11]. For the one-dimensional model, the appropriate
transfer-matrix is a 4x4 matrix, whose maximum
eigenvalue 4, is given by

L=x+3 + sz+2x+5
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Table IV. Classification of basic units with Z, configuration, based on
the allowed units on their nonsolid sites. Each j represents the same jin

all tables .
j Allowed configurations As; Allowed units
) on nonsolid site
2 | ABAA, ACAA 2 ABC
4 | AACA, AADA 2 ACD
6 | ADAA N 1 AB
7 | AAAC, AAAD, BAAA, CAAA 4 AC
8 | AABA 1 AD
14 | AAAB, DAAA 2 C

Table V. Basic unit with Z, configuration which belongs to j =7
(its nonsolid site is available for A and C units only)

j Allowed configurations

A

Allowed units
on nonsolid site

T | AAAA

A C

where x = exp (-J/kT) and J is the site preference
energy. The partition function A, can be used to
calculate the thermodynamic properties of the model
exactly. It is also a straightforward procedure to apply
IBU to the one-dimensional model of albite, in order
to obtain an expression for the free energy which has
to be minimized subject to appropriate constraints to
obtain the equilibrium propertiecs. We found that the
free energy given by IBU has a deviation of less than
0.8%. The calculated configurational entropy given by
IBU is compared with the exact value in Figure 9. We
may conclude from these results that the assumptions
used in IBU have a minor effect on thermodynamic
properties of the model lattice, and in fact IBU may be
considered to be an accurate approach for the
calculation of thermodynamic properties of the lattice
models of albite.

The equilibrium configurational entropy in the
high-temperature limit can now be calculated. At high
temperatures, the sites are occupied by Al and Si
atoms with equal probabilities (Q,, = 0). In this case,
the equilibrium state is expected to, be that in which all
possible configurations have equal probabilities. Thus:

Ain=B)=C;=D;= %(i=0, 1,2
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A= Bi2=Ciz=§(1=O, 1,2,3)

A =Bi3=Di3= %(i=0, 1,2) -
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Aia=Cis=Dis= %(1 =0,1,2,3

Bis=Cs=Dis=3(=0,1)
Ais=Bis= 3 =0,1,2.3)
An=Cn=3(=0,1234)
Aig=Da=3(=0,1,23)
By=Cs=3;(=0,12)
Bio = Din = %(i =0,1)

" Gu=Di= % i=0,12)
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If we minimize the free energy subject to con-
straint 15, and use the values given above for my; , for
T — o we get,

S —1.065
Nk

It is interesting to compare this result with the

values of 1.12 from the quasi-chemical method given

by Andersen and Mazo [2], 1.043 from the SCM
approach [12], 1.007 from the IPS method [4], and
1.032 from the MSCM approach [5], which are
calculated and reported for the reduced configurational
entropy of a two-dimensional model of albite at high-
tempErature limit. Actually, the last three numbers are
not for the high-temperature limit, that is J/kT = 0, but
for J/KT = -1/3 , so that the values of entropy given by
these methods must be higher than these values (but
insignificantly). The reason is that at such a high tem-
perature the entropy almost does not change with J/
kT see the appropriate figures in the above-mentioned
references. Therefore, even at the high-temperature
limit the values given by different approximate calcu-
lations for the configurational entropy are different
from the accurate value of 1.065 given by our ap-
proach. However, such differences are less than six
percent. If there were no aluminum avoidance rule,
these methods would all give S/Nk = 1n(4) = 1.386,
because solid and nonsolid sites would be available
for all units (4, B, C, D) with equal probabilities. The
differences in entropy at the high-temperature limit are
due to the aluminum avoidance rule only. However, at
intermediate temperatures, where the order-disorder
transition occurs, such differences are expected to be
more significant.
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