J.Sci.I.R Iran

Vol. 1, No. 5

A SUPER ZERO-REST-MASS-EQUATION
N. Gerami and Y. Bahrampour

Department of Mathematics, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman Islamic Republic of
Iran

Abstract

Various authors have considered the Zero-rest-mass equation and the contour
integral representation of its solutions. Ferber generalized these equations to
supertwistor spaces with 2N odd components so that with N=0 we get the standard
ungraded twistors of Penrose. In this paper we use the Batchelor theoremto construct
the natural super Twistor space with coarse topology with underlying standard
twistors. We also introduce a Super zerorest-mass equation (S. Z. R. M) whichsatifies
the standard non- graded Z. R. M. equation when an augmentation map eis applied. It
has been shown that the contour integral defined by Rogers can be used to represent a
solution for these equations and these solutions reduce to standard solutionswhenone

Autumn, 1990

applies the e-map.

Introduction

1) An algebra B is called a 2, - graded algebraif B can
be written as adirect sumof linear subspacesB=B,e B,
such that BB;=B,,; (mod 2).

An element b in B, is said to be homogeneous of
degree i. Let 1al denote the degree of a homogeneous
element 2. An element beB, is called even and if beB,
then b is called odd. The algebra B is said to be graded
commutative if ab= (-1)‘*’"bI ba.

For any of the graded commutative algebra B
defined above there is a unique algebrahomomaorph-
ism £: B—— € given by sending the odd generators to
zero, € is the set complex number, £ is called
augementation map,

In this paper we consider the Grassmann algebras
over complex numbers €, with a finite generators |1, 8;,
0,,..., 6, for graded algebra B.

Let M; denote the set of finite sequences of positive
integers u= (g,..., ) with 1<y, <...< p, L. M,
includes the sequence with no elements, denoted ¢.
then if for each p in My, 6,:= 6P“1 Oﬂk &6,:=1,a
typical element beB may be expressed as

b=%b"9,
wEM,
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where the coefficient b* are complex numbers.
With the norm on B defined by ||bj]]= = b*, B is
reM

Banach algebra. And B has a topology given by the
Bananch space structure on B, [5].

However there is another topology, the coarse
topology:
Say aset U=BisopenincoarsetopologyonBif U= e!
(V) for some open set V in C, this topology is not
Hausdorff, [2].

For each pair of positive integers r and s let E™*
denote the cartesian product of r copies of the even part

of B and s copies of the odd part;

i.e, E¥= (B,)" X (B,)’. E™ is called supereuclidean
space.

If B has a topology, B, and B, have a topologies as
subspaces of B, and E™*hasthe topology of a product of
topological spaces.

Using the coarse topology for B, thismeans thataset
U= E™* is open in coarse topology if and only if U=¢"!
(V) where V is an open set in C" and &: E™* —C"is
givenby & (x,,..., X;, 0y,..., 8) = (e (Xy),..., £(X,)), [2].

2) Let S denote a choice of a definition of super
euclidean space together with a topology and asmooth
structure. Define an S supermanifold to be a topologi-
cal space X together with anatlas {U,,, ¢,}of S-smooth
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hommomorphism from U, to an open set in some
supereuclidean space E™* such that

P00 @ (U,NUG) — ®a (U, NUp) is S-smooth,
[2].

3) A complex two-dimensional vector space S with
elements a® on which SL (2,Q) acts, is spin- space and
the elements are spinors. The complex conjugate
vector space S=S’ has elements 84" and we also have
the two dual space S*, S’* with elements v,, 8,..

We may develop the spinor algebra by analogy with
the tensor algebra.

Higher valence spirors are elements of tensor
products:

¢*BA-CC . DE'...F'&Se...0565'e...65'e...65*
©...05"8S'* 8...05'*,

We considerbasicspace of spinors S= (€2, I', whereT'is
a skew- symmetric nondegenerate complex bilinear
form.

Let M, be Minkowski space, i.e., {R* equipped with
aflat Lorentz metric of signature (+, —, —, =) }andx=
(x% x!, x2, x*) be coordinates for M. Also let {x*A'}be
1

the spinor coordinates of M,, where x*'= iz (x+
x), x!0= 1 (x*— ix3), x%'= - (x*+ ix?) and
212 12
xIl'= 1 - x1)
212
Define V,, =2 yan=_9 _
JxAA [12.9V%

where x4 o+ are dual variables expressed by
— BB’
Xaa= X" TpaTgar

The differential equation on real or complexified
Minkowski space

vAA! @apc..p= 0, Vil Yap. p=0

are the zero-rest-mass field equations, where @ gc -
Ya-p-_p are symmetric spinors with 25 indices, s=1/2,
1,32,...[7].

4) A Twistor space II is, by definition, a complex
vector- space of dimension 4 with an Hermitian form ¢
of signature ++——.

Define the flag manifoldlFy 4 as follows:

Fy  a,:= {(L,...,L): Li=...<L, is a sequence of
Linear subspaces of I with dim ¢L;= d;}.
The setslP: =IF, =[P;(C), M: =IF, = G, ,(C) andF: =
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F, are called the projective twistor space, the
compactified complexified Minkowski space, and the
correspondence space between P andM, respectively.
These compact complex manifolds are naturally linked
by the double fibration.

M

where u(L;,L;)=L;and (L;,L,)=L,.
The twistor correspondence is the set- valued
mapping (or set- theoretic assignment).

rZeP——Z":=v(u' (Z2))=M,
7:ZeM —L:=p (v' (z))=P.

We recall that the basic diagram

is called the Penrose correspondence [4, 7].
Section 1. ‘

In this section we use Batchelor Supermanifolds, [2].
Let F=B*" - {#€B*" | ¢ (w)= 0}, where ¢ being
augmentation map. Fisanopensetin coarse topology.

We define Sp (3)= F/~ where the equivalence
relation ~ is given by - Aw for any invertible element
AeB,, i.e, e(A)=0, and it is called super projective
twistor space.

The topology of F induces the quotient topology on
Sp (3). Thus SU=Sp (3) is openifIT" (SU)isopeninF,
where II: F—-» Sp (3) is a projection, i.e, I (w)= [w].

Proposition 1. Sp (3) is a (3, n) dimensional
supermanifold. And underlying body manifold of SP
(3) is biholomorphic with the P; (C).

Proof. If
SU;= {[b,, b,, b3, by, 8,,..., 8,] / [b;, by, bs, by, 8,,...,
6,]J€ Sp;(3)and e (b)) = 0},i € {1,2,3,4}. ThenSp(3)

4
=USU,
i=1

Every SU; is an open set. i.e, II' (SU)= ¢! (V)
where V;is an open set in €*. Indeed, I (SU))= {(x,,
Xy, X3, Xy, 0y,..., 0,) / € (x;)) # 0}, i€ {1, 2, 3,4}, now if
V,={(C,,C,,C;,C,) € ¢*/C,#0}. Then V,issubset of
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F,and hence I" (SU)= ¢ (V),i {1, 2, 3, 4}.
We define S, SU; — B>" such that
S‘Pl ([bl, bz; b3, b47 01,..-, on])

=(b,/b,, by/by, b/, 6i/b,,..., 6,/b,)
S‘PZ ([bl’ b29 b3’ b4’ 01’“" onD
=(b1/b2, b3/b2, b4/b2, ol/bl,..., on/bl),

and similarly S¢, and S¢,.
And S¢,08¢,": S, (SU; N SU,) — S¢,(SU,N SU,)is
defined by S¢,08¢," ((b,, bs, by, 6,,..., 6,))= (1/b,,
bi/b,, by/b,, 6/, ,..., 8,/b,) is supersmooth, and
similarly for every invertable even element. Then
every (SU;, S¢;) is a chart and the set {(SU,, S¢,)}*._, is
an atlas for the supermanifold Sp (3).
Suppose X=S8p (3)/~where the equivalence relations..«
is defined by: p-q if and only if there exists a chart (SU,
S¢) of Sp (3) such that p & & SU and £0S¢ (p)= £0S¢
(@).

Then X has complex manifold structure and it is the
underlying body manifold of SP (3), [1 & 5].

Structure Xis{(U,, 6),i=1,2,3,4}where U;= {[[p]]]

[pl€SU;}and 8: U;— ¢ by 6, ([[p]])= 0S¢; [p,].
And 6,00, ": 6, (U;1U;) — 6, (U, 1 U,) is defined by
6,00, ((C,, C,, Cy))= (1/C,, G,/C,, C,/C)) is
holomorphism map and similarly 6;06," and... .

Let {(W;, a;)}*,; be the atlas for P, (¢ ) where W,=
{[C,, C,, C;, C))| C; # 0} then the function f: X— P,
(X) defined by f ([[p]])= [& (p)] is well defined and is a
biholomorphism, with inverse function f! ([C, ,...,
Ci)= [[P]], where [ (P)]= [(C, ..., C,)].m

Definition 1. Two members V and W of F are called
linearly independent if for all « & B& B, such that aV+
BW s non- invertible, a & B are non- invertible, & (a)=
0& e(B)=0.

Lemma 1.V & W are linearindependent if and only if
€ (V) & ¢ (W) are linear independent in q*.

Proof. Suppose V & W are linear independent. If

ag (V)+be (W)=10
Then we have

e(a)e(V)+e(B)e(W)=
e(aV)+e(BW)=
e(aV+BW)=0,

where a=¢(a) and b=¢(B) for some a, B €B,,

Thus by linear independence of V & W we have ¢
(a)=0and&(8)=0,i.e,a= b=0, therefore e(V)and e
(W) are linearly independent.

Conversely, suppose ¢ (V) and & (W) are linearly
independent and aV+ BW is non- invertible, i.e, &
(aV+ BW)= 0 thisimplies £ (a)e (V) + & (8) £ (W)=0.

Gerami and Bahrampour

391

Vol. 1,No. 5
Autumn, 1990

Then by linear independence of (V) & e (W), we have
£ (a)= 0 and & (B)= 0; that is, @ and B are non-
invertible. Therefore V and W are linearly indepen-
dent by defintion 1.m

Definition 2. Let
S,w={aV+BW|aeB, & Be By, where V and W are
linearly independent}
andSG,={S, ,| Ve F,and We F,},i.e, SG, isasetof
subspaces of By* generated by two linearly independent
vectors of F,, that F is even part of F.

We say that SG= SG, x B,"is asuper Grassmannian
manifold.

Suppose SP,G= {(SL,, SL,) ' SL, is subspace of SL,
where SL, & SP (3) & SL,& SG}.

As in standard case, we can show like wise SG; &
SP;G are supermanifolds, that SP;G is flag super-
manifold.

Now we have the following natural diagram

SP,G

>N
SP(3) SG

where Sa(SL,, SL,)= SL, and S8 (SL,, SL,)= SL, are
natural projections.

Using Sa and SB we can define a correspondence
«ST» between SP (3) and SG, which is a set valued
mapping,

SP,G

SP(3) SG.

Wedefine set valued ST by ST (P)= SB (Sa’! (P)) and
ST (q)= Sa (SB (q)). The above diagram is called
super Penrose correspondence, and we call SP (3) a
projective super twistor space and the set valued map
ST, super twistor correspondence:

Theorem 1. If we apply an augmentation map e toa
super Penrose correspondence, we get a standard
Penrose- correspondence. In other words, the follow-
ing diagram commutes:

SP,G
y l \QE *)
€2
SP(3) SN SGl
PS( a ) G2,4( a )’
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where &, ([P])=[e (P)], &,(Sy s, 01 ».-., 6):= <&(V), ¢
(W) >, space generated by e (V) & (W) and e, ((SL;,
SL,))= (&, (SLy), &, (SLy)).

Proof. By proposition 1, g, is defined by ¢, ([P])= [e
(P)], for every [P] € SP (3).

By Lemma 1, the set of all two dimensional spaces
generated by independent vectors e (V) & € (W)is G, 4
(g ), where S, € SG;. G,, (@) is Grassmanian
manifold of a two dimensional vector space of C*.

Let (SL,, SL,) & SP,G, then SL,= [P], for some
PeFandSL,= (S, ., 6, ,..., 8,), where Visevenpartof
P,ie.,Py=V.

Since ¢, (SL;)= [e¢ (P)] and ¢, (SL,)= < £ (P), e(W)
>, and we alsoknow that [ (P)]issubspace of < &(P), &
(W) >, therefore the set {(¢, (SL,), &, (SL,)) / (SL,,
SL,) € SP;G} is P;G, complex flag manifold.

Hence, when augmentation map is applied on SP
(3), G and SP;G, we obtain P; (¢ ), G, 4(@ ) and P;G,
that these spaces have the Penrose correspondence
property.

Now we show that the diagram (*) conunutes:

Let (SL,, SL,) € SP;G, then we have:

“03127((3141, SL,))= a((&, (SLy), &, (SL,))= &, (SLy),
on other hand, (§5)
€108a((SL,,SL,))= €, (SL,;) 2
(1) & (2) implies aoe,= £,0Sa.

Also we have £,058 ((SL;,SL;))=«, (SL;), and

Bogy, ((SLy, SL;))=B(e;(SL; , &,(SLy))= &,(SLy)),
hence £,0SB8= Boe;,. Therefore the diagram (*)
commutes.®

Further geometric properties of supertwistor’s and
super Penrose correspondence and comparing our
approach with other approaches will be given
elsewhere.

Section 2.

In this section we use Roger’s definition of super
smooth functions.
We denote by F( By3x B,” )thesetoffunctionf(u,{)
over By’x B,", i.e, f (u, {): B’ % B,"—=B where u=
(u;, u,, u3, u,) are even coordinates and {= ({*,..., {")
are odd coordinates.

Every function f (u, {) is explained by

=t @+ L)+ +E 12 e, ()

wherefo (W)=2f, , i, (X) “l u; u;’u': and g (u)=x.
Tabaydydy

f,and g ,... are similarly found.
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Definition 3. For everyi&{1,2, 3, 4} we define the

derivative operator D;= d L +K 2 T where K is

an linear odd valued functlon.
Proposition 2. For every function f(u, {) €F (B>

B,), e[D, (f(u, O)]= Ta;feof(u, O)wheres(u)= X,
]

j=1,..., 4. In other words we have eoD;= 7:;-— o€.
j

Proof.

eoD; (f(u, )

_eoD [t (w)+ X €°F, fo(w) +.. + B ELERE, o
()]

=goD; (f, (u))+ eoD; [}: E%f,(u) +..+EM . E™

fy,. ,,n(n)]
However
eoD; (fy(v))
=eoD;( I £, . (Xu'uluud)]
ky,kp,k3,0y
=g 9 3 szm(X)ullu?u?u:‘)]
an; kg dnky
“3 Kk
=g[ b3 kf (X)u g ]
ky .k, kg, kg 4 k2k3k4 ! ‘
= 3 K f, x)x L xhToxke (1
Kok kg i kyky kel () 1 ()
We have

D, & f,@)=2D,¢" . (w)

_ n 0 nt . ]
'aér[(EKj'+ K20'0f) (¢ £, (u)]

a=1

=3[ 5t + KO, )]

Hence £oD; ( :Elf f, (u))= 0. We can similarly prove

thateoD;[ 3 E*6,(w)+..+ ™. £™f

e (1)1-0.(2)
(1) & (2) imply
eoD; [f (u, £))=

3 kf x)x"
j"l"!“t!‘ﬁ( ) !

~1 k4 .
XX
kol k.0 ' ,

On the other hand we have
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aL (eof(u, )

=2 fefy (u)+ e[ 3 E%fy(u) ..o B0 E% L E®
§ a=i

fo o, (W]}
=9 (efy (u)+ 0)
dx

i

-0 $ K

== (g . kzzks . I‘l,‘mk“(X)u, Lag)

_9 . ook

axj ( kl,kf_ka,h fklk2k3k4(x)xl "x4 )
= 3 k -1 kg * %
Kf, o COX XL X0

Ky ,kp,k3, kg

Therefore (*) isequalto(**), thatis, goD;= 9 oefor
je{1,2,3,4}.n Xi

Lemma 2. if f(u, ¢{) is noninvertible, then for every
(w, 6) such that & (u, )= ¢ (w, 6), f (w, 8) is also
nonivertible.

Proof. f(u, {) is non- invertible, i.e, &f (u, {)= 0. But
gof (u, )

_g[fo(u)+2 (W) + + BV ERLER (W)
=¢of, (u)
=€

k
) Ekl By (X0 .--U}‘l) where & (u)= x
] seem

3 By (XD E(y, ). e (u)"
kphooly

= fgklkz,,,q(X)e(m,)*l..z(wg“'[(e(u)-e(m))]
P .
=¢f, (w)+0
=¢fy (w)+ eZ E%f () +...
=gof (w, 0).

Hence eof (w, 8)=0. We conclude that f (o, 0) is
noninvertible.®

Definition 4. Let A= {(w, 8) / g (w, ) is noniverti-
ble}. If for every pair (w,, 6,) € A and (,, 6,) = A we
have ¢ (w;, 6,)= ¢ (w,, 6,), then A is called the
singularity set of function h (u, {)=f(u, {}/ g (u, {).

Definition 5. The singularity set A={}, {}is an open
set, is called an m-fold pole set of function F if
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i) F is analytic (i.e, has a power series expansion)
over J-A m

ii) There exist b,,..., b, € B such that F (p)- X ——
—, is analytic for every asA. = (P -a)

Proposition 3. Suppose f has an m-fold pole setin ¢!
(b), then eof has a pole of order m at the point b.

Proof. Suppose g (p)= f(p)- 2 (b— —wherea e¢’!

(b). By definition 5, g (p) hasaseriesexpansion anditis
analytic. Therefore eg (p)= g, (e (p)) is analytic.
Since bis asingularity point of gof and eg (p) = eof (p)

-3 —i —isanalytic, therefore bispole of order m of
=1 (g(P-a))’

the function gof.m
In this paper, we use Roger’s definition of «contour
integrals» in a one- dimensional even superspace, [6].
Lemma 3. £§, du/u= 2ui where v is a closed path
surrounding the singularity set of 1/u. u is an even
coordinate.

(X0, BOSO
Proo. Jydute= i~y 1= B(t)+S(t)
_g2e B(Ddt ,. S'®
b B(t)+S() o B0+

where y(t)= B(t)+S(t).
Here B(t) is the body and S(t) is soul of (t). Since
B(t)+ S(t) is invertible, it has an inverse; i.e, there

exists Bl) + C(t) such that (B(t)= S(t)) (——— 3 (t))
C(t)= 1. Therefore

of, dutu= efyr S O% _ fan Ly e
dt B(t)+S(t) B(t)

=gf,2 BO g4 e[y C(t) B’ (t) dt= e (2mi)+ 0=
2aim B

Propositiond. Let A;,j=1,2,..., mbesingularitysets
of fand y be a closed path such that f is analytic over
Y and ¥ surrounds singularity sets.
e$,f(u) du= §,,, eof (u) dx where a; € A, and b, B,.
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Proof. By definition g(u) is an analytic function.
Hence by the Generalised Cauchy theorem [6] we have
§.8 (u)du=0.

This implies that §. f(u) du= 2 § ——a;— du

]

du
_Elbj j_,—;_—a—j—-.
But by Lemma 4 we have
' (t)dt T(t

f, du _ ef 7 Y () = gf (1) dt=2i,

u-a; Nt)-a; I'(t)
where y(t) -a;= I'(t). Therefore
$, f(u)du= sZ b f, g

= 2 & (b;) (2mi)

j=1
=24i3 ¢ (b). 1)
j=1

On the other hand, we know that &f(u) has a finite

number of singularity points £(a;), j=1,...,m, and ef(u)
$_eb) _
,21 0)-@) € g(u) is analytic. Hence §,,, eof (u)d
_ eb)
(ef,u»_ borkisureay
E )fe(u)e(a) 2m25(b) 2

(1) & (2) imply $, f(u) du=§,,, £ f(u)dx.m

Lemma 4. If y be a closed path surrounding the
singularity set of f—liln—, n>2, then e§, &=

Proof. We have

P10
" OOy
_ Ioz,ws ®

[B(t)+ S(t)]"
= ef2" B’(t)dt
B+ S(t)]"

= el 8 O (o

= gfpr Wt ?BE‘;‘;} - £(0)=0

Where ¥(t)= B(t)+ S(t), B(t) is the body and S(t) is the

dt

Ef dll

+C(1)) dt
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soul of y(t) and (—=——+ C(t)) is the inverse of (B(t)+

seulot 0 and (g 5

Proposition 5. Let the even function f have an m-fold
pole set A= ¢! (b), then

e$, f(u)du= [, eof(u) dx

Where vis a closed path surrounding A.
Proof. By definition 5, the function g(u)= f(u) 2

is an analyticfunctionforeveryaeA, and by

(u-a)*

Lemma3and 4 we have:

of, f(u)du= 3 e(by) f, —Q‘l)— =

e(by) 5’-, u-a + 2 (b @ -a)"

2 (g(by)) + 0= 27 (e(b,)). 1)

On the other hand, we know by proposition 3 that
eof(u) has a pole b of order m, thus

e(by)

(e(u)-b)*

eof(u)—% = gog(u) is analytic.

k=1

Hence §,,, eog (u)dx= 0, where x= ¢ (u).
Therefore

froye0f (5= 0 by) fu, (" ol
=g(b,) ?wy( b) 5( W) feo'y (X- )k
= &(b,) (2i). @

(1) and (2) imply &4, f(u) du= {,,, eof (u)d (& (u)).®

Section 3.

In this section, we use section 2 to introduce Super-
Zero- Rest- Mass equations, a solution of which will be
represented by contour integral.

2
AA’

Let VA = + KE( +—9 ), where
doaA’

aoA

A and A’ {0, 1} and K is an linear odd valued
function.
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If _a 2 (

Ses. b= 08D+ Oua 05 b+ O4a Oha ¢ sc.p t
ot and

n —+K S

B 61 .. Oup @'8%c DM [5v 0" 2(‘70 )]( ¢)= [0“’ 00
and

S =5 p + Opa @™y p ot r=0,1,...,2s-1and A & A’ € {0, 1}.

12..nA If we put S@o= Seon._0> S®1 = Se100...05

olA' oZA' ree onA' ‘pB'C'...D' S(P2= S¢110_"0, cae g S(P25= S‘plll...l Where ¢ABC._.K has 2S

(Summation Convention assumed)

where ¢5_p & ¢**5 p & ... are standard symmetric
spinor fields and a, B,..., €{1, ..., n} and other index
are0,1. Wesay S¢,p p and Sg, - p are superspinor
fields.

_Definition 6. Equations

VAN Spus p=0and VAL Sp,p o =0
(summation convention assumed.) are called Super-
Zero- Rest- Mass equations, (S. Z. R. M).

By proposition 2 we have & V= Ve.Thereforeifwe
apply an augumentation map ¢ to Super- Zero- Rest-
mass equations, we get standard Zero- Rest- mass
equations.

Also we have the following theorem:

Theorem 2. Let f be an analytic, choose a non-
negative integer 2s and for r= 0, 1,..., 2s put for every
ae{l,...,n} Se=

1 '
—ZﬂTfA f(A,ut Ay, w+ Av,eao— By 10, - By, 5

eal - 6,0, ,eao- Oal,) di

where AeB_ and u, y, w,vareevencoordinatesand §, -
0, , are odd coordinates. The contour Surrounds
Singularities Sets of f and varies continuously withu, v,
w,Y, 0 s Oayr Oy Then S¢, is solution of the Super-

Zero- Rest Mass equationsand e(S¢,) issolution of the
standard Zero- Rest- Mass equations.

Proof. We have

- [__— +K3
do"A' a=1

a s ( @
2+ K3 (52 +
ay a=1 doaA

indices and is symmetric: S@apc. x= S®(anc..x), and
the spinor notation ugy = v, uy-= -y, u;p=-wandu,;.=
u are used, then we have:

-~

V4 Spanc.p= V¥ Seugc.p+ V' Seipc.p=
0 )
2 + S +
0 Ugy Ka—l[doao 3 94\] [Seosc...o]
2312+ | (sene ol
a Uy a=] 0 0"] F) ono 1BC...D.
9 2
1|[Se:]+
| 9V 10 0 .
+K S 0,by (1
\_ "W a?lldoal 00 [ ‘Pr+1] Y( )

And also 6A1’S¢ABC 5=0,by(2).
Therefore VA% S, nc p = 0, this implies that

Se, = §A f (A, u+ Ay, w+ Av, 0, -6,

o Oy ..)dAis

solution of the (S. Z. R. M) equations.
By proposition 5 we have

1 r _
sS¢,=—§;§(eA) gof (A, u+Ay,w+Av, 0, 8,,»---)db

= —2—1— $b7 £, (b, x, + Ax;, X, + Ax;)db, where g(A)=b, &
i

(u)=X,. e(y)= x,, £ (V)= x;and & (W)= x,, andfyis the
body of function of f. If eS¢, = ¢;, then we have seen
that ¢, is solution of the Zero- Rest- Mass equations
[3]-m
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