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Abstract
In this paper, the estimation of a scale parameter T under a new and bounded loss
function, based on a reflection of the gamma density function, is discussed. The best
scale-invariant estimator of 7 is-obtained and the admissibility of all linear functions
of the sufficient statistic, for estimating T in the absence of a nuisance parameter, is

investigated.

Introduction
Alossfunction L (8,6) represents theamount by which
astatistician is penalized when 0is the true state of nature
and §is the statistician's action. In the literature, L (6.0)is
usually taken to be convex in § and even in (8 - 6). For
example, let X, ..., X be arandom sample of size n from

a density %-f(’?‘.) . where f is known and 7 is an unknown

scale parameter. In this case, the commonly used quadratic
loss is given by

L 5 1) =(§- 1y (1.1)

This loss function has been criticized by some

researchers (e.g., Rukhin and Ananda [11), Day, Ghosh

and Srinivasan [5], Akaike [1,2]). They motivated an

asymmetric loss function for estimating an unknown
scale parameter in the form,

L) =( 8- ing-1), (1.2)
which is called the entropy loss function. It has been
considered by various authors (e.g., James and Stein [9],
Haff [6,7], Ighodaro, Santner and Brown [8], Yang [13)),
but this loss function, with its infinite maximum value, is
not appropn'ate in describing, for example, the loss
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associated with a product. In practice, the maximum loss
canbeafunctionof many things (e. g., production resources,
scrap or rework) but generally it is finite.

Spiring [12] employed a bounded loss function, by the
name of reflected normal loss function, for a location
parameter estimation. It is constructed by a normal density
and given by :

2

L(8,9)=k{ 1 -e.xp(-(a_g))}
2y?
where y> 0 is a shape parameter and £ > 0 is the maximum
loss parameter. Similarly, fora scale parameter estimation,
we use a simple transformation of the gamma density to
have a desired loss function. The general form of this loss
function, whichis called the reflected gamma loss function,
is

L2(8,t)=k{ 1- (iiT.)Y2 e P& 1)} (1.3)

Where y>0 is a shape parameter and k> 0 is the maximum
loss parameter. The curve of this loss function is given in
Figure 1. Note that we can write L, as a monotone function
of the entropy loss function L, in the following way:
Ly (5) =k { 1- ¢PEuEn)
=k{1- e-'Yle(G.ﬂ}

This can be approximated by k YL, (6,7), for small values
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Figure 1. A reflected gamma loss function

of ¥, which is a multiple of the entropy loss.

In this article, we study the problem of estimation of a
scale parameter, using a relfected gamma loss. In Section
2, we introduce the best invariant estimator of the scale
parameter T under the Loss L,. In Section 3, we consider
a subclass of the exponential family and obtain the Bayes
estimates of T under the loss L,. In Section 4, we discuss
the admissibility of all linear functions of the sufficient
statistic in the subclass of Section 3, for estimating the
scale parameter T, in the absence of a nuisance parameter.

Best Scale Invariant Estimator

‘Considerarandom sampleX , ..., X from %l-f(%.) ,where

f is aknown function and T is an unknown scale parameter.
Itis desired to estimate T under the loss function L,. Lety
be a group of transformations in the form
¥ =1{gs8. (&, . x) = (cX; s cx), >0}
It is known (see Lehmann [10], pp 175-179) that the loss
function L, and the decision problem are invariant under'y
and the class of all scale-invariant estimators of 7 is of the
form,
8(X) = 3,()W (2),

where 8, is any scale-invariant estimator, X = (X, ..., X,),

andZ=(Z,...Z) with Zi=%Xi; i=1,..,n-1,Z,= Xz
Xn el
. Moreover the best scale-invariant (minimum risk
equivariant (MRE)) estimator 6° or T is given by
' (X) = §, X)/w* (2),
where w * (Z) is a function of Z which maximizes

Eray (—-—)D[”2 exp { y? (——C[)- DHZ=:z
w(z w(z)
In the presence of a location parameter as a nuisance
parameter, the MRE estimator of 1 is of the form
8(X) =8, (Y)w* (2),
where 8 (Y) is any finite risk scale-invariant estimator of
tbasedonY=(Y,,...Y ), withY =X -X_ i=l,..,n-1,
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Z2=(Z,..2 )Zi=Yi ;i=1,..,n2, andZ, = LoL
Yn-ll

nl

and w'(Z) is any function of Z maximizing
Bt | OO ep {42 &L 1) )12 =2
w(z) w(z)

Tn many cases, when T = 1, we can find an equivariant
estimator §,(X) ord,(Y) which has the gammadistribution
with known parametes v and is independent of Z.

Tt follows that” = ii is the MRE estimator of T where
w

w* is a number which maximizes

g(w)=J
[\

_mvet Iv+y)

Hv)sz (n + ‘_Ivi)w P

NP g MYy vigns
TR v

=c(n,V, Yd —_—y
aw + ¥

and ¢ is a function of 73 7, . Now we can easily show that
w' =% maximizes the function g. Hence, we have the

following result:
Theorem 2.1. If 3,(X) is a finite risk scale-invariant
estimator of T which has the gamma distribution with

known parameters ¥, 7} when T=1. Then the MRE
(minimum risk equivariant) estimator of T under the

reflected gamma loss function, is 5’ X) =% & (X).

Example 2.1. (Exponential)
LetX,, ..., X, be a random sample from E (0, A) with

density % ¢ ;x>0,and consider the estimation of A under

the loss (1.3). 8o(X) = XiiX; is an equivariant estimator
which has Ga(n,1)-distribution when A=1 and it follows
from Basu's theorem that 8 isindependent of Z. Hence, the

MRE estimator of A under the loss L, is §'X) = '17 i Xi

Example 2.1. (continued)
Suppose that X , ..., X, is a random sample of E (X))
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with density i— e*9)/2 x> 0,and consider the estimation

of Awhen @isunknown. Weknow that(X ¢, i (X - X 1))
is a complete sufficient statistic for (6, A) . It follows that

8(Y) = 220X - Xyhas Ga (n-1, 1)- distribution, when
2

A=1, and from the Basu's theorem, 5 (Y) is independent of

Z and hence, 6 (X ) = _1—1- 32 (Xi - X @) is the MRE
n -
estimator of A under the loss (1.3).

Example 2.2. (Normal variance)
Let X, ..., X, be a random sample of N (0, 0°) and

consider the estimation of 62. & (X) = 51 X7 is afinite
risk scale-invariant estimator of 62and is independent of

Z, and when 62=1, § (X) has Ga (g , .;_)-distribution and
hence, 8’ (X) = % " X7 is the MRE estimator of 62

Example 2.2, (Continued)
LetX , ..., X be arandom sample from N (g4, 6%), with
a nuisance parameter pt. In estimating 6 under the loss

(1.3),itfollows that 8 (Y)= ;. | (X -X)*isindependent of
Z and when 0=1, the distribution of ,(Y)is Ga (&1, L).
2 2

Therefore, 8 (X )=—1— %2 (X;-X ) is the MRE
n -
estimator of o®.

Example 2.3. (Inverse Gaussian with zero drift)
Let X, ..., X be a random sample of IG (e, A) with
density

A

FA)=¢
2nx

12 .
3)2(:'5 if x >0,

and consider the estimation of 1.&(X)=X7, X ! has

Ga(%, ;—)-dislribution and is independent of Z and hence,
8'X) = %ZLIX {!is the MRE estimator of A.

Remark 2.1. It can be shown that the MRE estimators of
the scale parameter T in examples 2.1-2.3 dominate the
MRE estimators of T under the loss (1.1) and (1.2), relative
to the reflected gamma loss function.

The Bayes Estimators
Inthis section, we consider the Bayesian estimation of
the scale parameter T in a subclass of one-parameter
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exponential families in which the complete sufficient
statistic 8 (X) has Ga (v,%)-distribution, where v>0,11>0
are known.

Assume that the conjugate family of prior distributions
for f= % is the family of Gamma distribution Ga (e, £).

Now, the posterior distribution of B is Ga (v + o, & +
119,(x)) and the Bayes estimate of Tis a function 8(x)which

maximizes the function E [ ( 5 Y eP @b x

(@) 18X) + 9™ I g+ P11, B &by

T'yv+o)
or the function,
72
& (8) = : vea+ P2
€ + 18 X) + &7?)

& is obtained from the relation dgfdg):o. Hence, the

function g is maximized at

55(X) = § + n8uX)

Vv +0

&

v+o

where '(X) = 1 8(X).

Y _§'(X),

+ o

+

\4

Remark 3.1. All estimators of the form ¢&(X)+d with
0 < ¢ < 1.d> 0 are also B ayes estimators.

Example 3.1.
Inexamples 2.1, 2.2 and 2.3, all estimators of the form
£3°(X)+d, where 5°(X) is the MRE estimator of T, are Bayes
estimators of the scale parameter T, when0<c < 1,d>0.

Admissibility and Inadmissibility of c6°(X)+d
In this section, we consider the question of admissibility
of the linear estimators of the form ¢8§*(X)+d, relative to
the reflected gamma loss function (1.3), with ¥ =1. First,
the class of inadmissible linear estimators is exhibited by
Theorem 4.1 and then by Theorems 4.2 and 4.3, we obtain
all linear admissible estimators.

Theorem 4.1. Under the assumptions of Section 3, the
linear estimators ¢3°(X)+d, under the loss function (1.3)
with y =1, is inadmissible whenever one of the following
conditions hold;

() c<0or d<0

(ii)c>1d20

Gii)0 £ c1d=0
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Proof.
First, note that the risk function of c8'(X)+d is

-

R, c8'K)+ = k\w[("s(x)"

=k {1-g(cdp) @1

where B=% and

gcdp= e P! [ + ap -
€+ n* &+
d
=P ___(“T/E)C il (4.2)

v+l
&+ 1)
In case (i), c6°(X)+d takes on negative values with
positive probability; therefore, c6"(X)+d is dominated by
max (0; c6"(X)+d).
To see (ii), note that the function g is maximized at
c=c", for any givend 2 0 and > 0, where

v+1
=_1_-£E=1-_v_d£
1+id.é. 1+£
\% v

Since c" < 1, for any 42> 0, > 0, we conclude that the
estimator ¢8"(X)+d is dominated by 8"(X)+d.

Similarly, with condition (iii) we can show that the
estimator & *(X) dominates ¢ 8 *(X).

Before we present the admissibility theorems, we need
the following results.

Lemma4.1. (Berger [3] P 545) H©® cR™and L (8,a) is
abounded function, whichiscontinuousin @ foreach ac A.
Suppose also that X has a density function which is

continuous in @for each x € X. Then all decision rules have
continuous risk functions.

Lemma 4.2. (Berger [3] P 254) Assume that R (8, ) is
continuous in @ for all decision rules § and the prior I
gives positive probability to any open subset of ©. Then a
Bayes rule w.r.t. II is admissible

‘Theorem 4.2. Under the assumptions of Theorem 4.1,
¢&°(X) +d is admissible for any choice of 0 <c < 1,d >0.

Proof.

By using Remark 3.1, any linear estimator ¢3°(X) +d
with 0 < ¢ < 1,d>0 is a Bayes e stimator and by Lemmas
4.1 and 4.2, we conclude that c8"(X) + d is admissible
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forany 0 <c <1,d >0. Wecan also easily show that any
estimator 8(X) =d _is admissible, where d > 0.

The only case not covered yet is whenc=1andd 20,
which we consider in the following theorem.

Theorem 4.3. Under the assumptions of Theorem 4.1, for
any d >0, the estimator §*(X) +d is admissible with the loss
function (1.3).

Proof.
 We use the Blyth's technique [4] to prove this theorem.
Suppose that 8°(X) +d is inadmissible, then there exists an
estimator §, such that
R(7,8)<R (7,8(X) +d) v1>0,
with strict inequality for some 7. Since R (1, §)) is a
continuous function of T (See Lemma 4.1), there exists
&0, 0<1,<7, such that
R(1,8) <R (1,8"(X) +d)- & Ve (1,1,)
Let/\ bean Inverse Gamma prior with parameters o> 0,
& 1 for 7. Consider the following risks
=Bayesrisk of §, wrt. A,
= Bayes risk of 5‘(X) +dwrt. /\,
= Bayes risk of the Bayes solution w.r.t. /\,.

Then, with ﬂ:i-, Bo=
there exists an o>0 and an ¢, >0 such that

.

for all o < o and therefore,

._,ﬁ1=1_,wecanshow that
0

ra(B)dB> €

A
To- e 2 ej Aa (B)dP
A

2 EE Vo< og
Now, it can be easily shown that (by the relations (4.1) and

4.2))

k- e @D+ d+ax| |,
{ &+ ) a+ ™ [ v ]}
=kft-— e |,
L+ !
v+

and hence,

ra-ra—0as o — 0

or

* b d
flacle 340 a8 a0
rg-la
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Thus, there exists a number o, > 0 such that ra, < re, which
contradicts the fact that r,,  is the Bayes risk of the Bayes

solution w.r.t. Ag,.

Remark 4.1. By using the relations (4.1) and (4.2), we can
find the risk function of 6°(X) as

R@,8X)=k[1-—&

(Vl"" 1)v+1
which is a constant number. Since &°(X) is admissible with
a constant risk function, hence, 8°(X) is minimax.
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