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Abstract
In most production-inventory systems, the products are transferred from the
production centre to the inventory (warehouse) in subbatchs rather than one at a
time. In this paper, mathematical models of such systems for both deterministic
and stochastic cases of demand are developed and analysed. Comparison of
these new models with the EBQ model shows a considerable loss when apply-
ing the rules of EBQ model to the batch transferring systems.

Introduction

One assumption usually made in the construction
of Economic Batch Quantity (EBQ) models for pro-
duction-inventory systems [5, 6] is that the items are
transferred from the production centre to the inventory
(warehouse) one at a time and as soon as they are
produced. Also in line with this assumption, the actual
transferring cost is ignored. This assumption is realis-
tic only for systems in which the production centre
and the main inventory are located in the same build-
ing and there is no cost involved in moving the items.
Frequently, the produced items are transferred in
group or subbatchs such as truck-loads, boxes, etc. In
some systems, the production centre and the ware-
house are so far from each other that it is very costly
or impossible to move the items in units and as soon
as they are produced. Instead, the products are accu-
mulated up to a specified level then transferred to the
warehouse as a subbatch of production batch quantity.

Regarding the above considerations, we developed
mathematical models for the mentioned batch transfer-
ring production-inventory systems. In section 2, the
case of deterministic demand is considered and
analysed for minimisation of the cost function. Section
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3 includes the case of random demand. In both cases,
we assume that there is no interruption to production
during the production cycle and the products are all
good enough to meet demands.

Throughout this paper, we denote the unit holding
cost per unit time at the production centre and the
inventory respectively by ¢ and ¢, the unit shortage

cost per unit time and back order cost per unit by 7t
and m respectively and set-up cost by A.

Deterministic Demand

Suppose the size of a subbatch is ¢ units and dur-
ing each production cycle a batch of size 0 =ng, where
n is a positive integer, is produced. The products are
held at the production centre until one subbatch is
completed. Then the subbatch is transferred into the
inventory with the cost of ¢ monetary units. As soon
as the n subbatches (or Q units) are produced, the
production process is stopped until the time when the
inventory position reaches the re-order level (end of
cycle). Suppose that the production rate is y and
products are demanded at the constant rate of A with a
uniform pattern. Let r be the re-order level and b the
maximum back-orders allowed. Figure 1 illustrates the
inventory position and stock level at the production
centre.

Let the time taken to produce the j# subbatch of a
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cycle be called production period j, 1 < j < n. The

lengths of all these periods are the same and equal 4,

The time elapsed between the arrival of the n** group
into the inventory and the crossing of the re-order
level is called the n+ 1" period. Let the inventory posi-
tion at the beginning of the j* period be denoted by / ;
forj=12,...,n+1.

Inventory Position

(a) Inventory position during one production cycle (when

n=6 and r=<0)
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sequently, we get the total system cost per unit time as

K(q,b,n)=-ﬂg-+ﬂ+c.ﬁ+?uaﬁ+m&+ﬂ (5)
q nq nq nq hqg 2y

To determine C,, C,, C,, Figure 1 indicates that

when /. £ 0 there will not be any stock on hand in the

j™ period and hence there will be only shortage costs

incurred. /. < 0 implies j<1+ Yo A Letm=|1+4¥2.4
j
&g & oq 6

where [x] is the largest integer less than or equal to x.
Thus, for periods j=1,2,...,m all demands are back-
logged. Now if 1 < n < m the system will be in short-
age mode throughout every cycle. Hence, hereafter we
take n>max. {1, m}. A quick calculation shows that

a
G +Cuy =I;+l

2
Prctiet
22

©)

and o
)
C '+C,=b

Now consider the inventory position in the other
periods. If there exists an integer j < n such that / > 0
and G-%(O, then there will be both carrying and

shortage costs incurred in the j* period. These in-
equalities imply

=3
(b) Stock level at the production centre during one
production cycle (n=6)
Figure 1. Inventory position
It is easy to show that
_ . 0g .
lf—q-b+(1-2)7 j=12..,n+1 (1)

where d= y-A and number of back orders incurred in
the j* period respectively. Then the total amount of
holding, shortage and back orders, during one
production cycle, will be

n+l

c=x¢" @
j=
n+l @

CG=2G 3)
=l
n+l a

C=Y G~ )
J=l

Since exactly ng units of the items have been de-
manded during the cycle, the cycle length is % Con-

M

1 +ﬂ-&<j< 1 +Y_bi.
6 & bq
Since, when 1 +'§§ is integer and j = 1 +'§;l there will be

zero shortage costs in the period j, for the simplicity of
computations we extend (7) to

1+5W2--&< j<i1 +...V’f_

8
. 50 ®)

If 1,--’1_‘;1>0 there will only be holding costs in the j*

period. If we let k=[1 +'§] then we get

0 1<j<m
0 2
G'={ L m<j<k ©)
24
21;-2
@hi-pa v k<j<n
2y
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K, ()= AA (n3-n) glan ”;)("2 n) g
1 a3
(%'21j)q 1<j<m which is non- ncgatwe and confirms the unimodality of
2\// B Kq(n).
o - ) Now if the system is such that the number of items
G = J m<j<k (10) per subbatch, ¢, is pre-specified and hence unchange-
22 able, then the only variable to decide on is n. The
optimal value of n, n* say, in this case is equal to the
0 k<j<n smallest positive integer n satisfying
K;(n+1)-K;(n) 20 (18)
and or
N | nn+ 1224 (19)
e & 1<j<m ¢
! v For the other systems, where g is to be decided on
=l M. mejsk (1D
J i J= oK,
1\ v as well, by solving —%2 -0 we get
0 k<j<n 9
2Ap(na+A) |1
Consequently, using (2)-(4), we get = {—_n c (:,6(+ D+ c)"}t] k2 20)
12+1 k Ijz (yj-"v‘?)q Then g* and n*, the optimal values of g and r, are
G =—;7+ ‘ TR v (12) determined by using (19) and (20) iteratively until two
jemax{2m+1} jmkel v consecutive values of g obtained are equal. Of course,
g .20)q k (1.-2)2 to start this process an initial value for n is needed. It
C=2+3Y Y T 4 Jv (13) can be any natural number, but a close choice to n*
24 2 2y jemaz2mely 27 will decrease the number of iterations needed for
m k convergence. For many cases, whatever initial value
Cy=b+Y, A, Y (ﬁ.-lj) (14) for n was chosen the number of iterations did not
=2 Jemax {2m+1) exceed 5.

which completes the cost expression of the model.

For the systems in which back orders are not per-
mitted, the cost function takes a very simple form. In
such systems, the maximum number of back orders
allowed, b, is zero and as aresult m = 0 and £k = 1.
Using (12)-(14) we have

Kig.nm) =2 + 24+ S (ng4 2)+ M. (15)
9 " 2y 2y
Model Optimisation
To obtain the optimal values of the decision
variables of the models, the annual cost function K is
minimised with respect to the variables under control.

To do this, for the no backlog model we first show that
for a given value of g, K(g, n) denoted by Kq(n) is a
unimodal function of n.

Let n,, n, and n, be any triple of positive integers
such that n; < n, < n,. The connecting line between

(n, kq(nl)) and (n,, kq(n3)) is

Yo=K, (n)+ 2L

sofem-kim| 09

and
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Minimisation of K(g, b, n), the annual cost func-
tion of the model with back orders, is not so straight-
forward. According to the relation that holds between
n, m and k, some terms of the expressions in (12)- (14)
may vanish and the explicit form of K changes. That
is, for different values of g, b and n we have different
explicit forms of the cost expression. Once these
forms are known, then numerical methods can be ex-
ploited to obtain the best values for g, b and n in each
case.

It is clear from the definition of m and & that m < k.
With regard to the assumption of m < n, made earlier,
the possible relationships between m, k and n are as
follows:

(a) Case of m < 1 < k < n. These conditions are
equivalent to:

b <q,
yb< (n-1)dq,
2 £n

The terms of the cost function in this case become

8q°

29,24 q(q b)n+52q k
22y

2y A ey

l=
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54 3,5yl <‘5Q‘1 D47 2
2w 2y v
5 q 0. 59 (6q+b)k + L (‘52(/ 34 g Yk (22)
and

C=-99 42+ SL 4 bk 23)
y 2y

(b) Case of 1 < m <k < n. In this case we have

C_5q n +q(q b)n+6q (>~ m3)

24y 2 A 6Ay?
%1 S pre (.—-W'3/lq+b)m2
2/111/ 2y 20y 2y

1(6(1 5bq+b)k 1 V;+13/1 821// 2 (24)
21 oy Y 2/1 6y’

gy

+—1Zl3—bq+b2)m+_1_(b

8¢ U -m3- 5‘1 (5‘1+ byk+ 99 (‘/’ 3A g+ bym?

W 22 2y
L1 (5q g, p3¢. 1 _(wz+13x BV 2 (95
22 6y v 6y
Y32 0 bYme Lp -2y
AT q+ )rn+u( l//)’
and
Co=-9 1% Oy by S 2 32 by
2 2y 2y
b-24, 26
+( V/) (26)

The constraints on m, k and n are, in this case,
equivalent to
g <b
wb < (n-1) éq
3 <n
(c) Case of m < 1 < n £ k or equivalently

b<gqg
(n-1)dg< wb

1< n

Here the components of the annual cost function are:

2
C1=5q PN dq (A+u/q byn + (5+6}u// 2 /1+y/bq
6yt 24y 2y ./ v
+b?)n, (27
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and

O 3 oq (5q+b) 2,1 (6.;12 6I$+b2)n (28)

20y 2y 2

C3='6—qn2+(.51+b)n 29)
2y 2y

(d) Case of 1 < m < n<k. In this final case we get
Ci= 5 q (- m3)+ 6q (2.+ Y byn+ L @+6/1uf
6Ay” 2y 20 6y

/1+qu+1, )n+ 5q (‘I/ 3A’q+b)m2
v 2% 2y

(‘l’ 24+13A° -84y 2+‘I"3A-bq.ﬁbz),m._l_(b.ﬂ)2
2 6y2 4 v

Co= ¢ -m)- 5‘1(‘1+) +1(6vq,2+&‘;,q+b)n

6Ay”

+94 &4 3'1q+b)m
2/11// 2y 22

(30)

2 1 (v/2+13/1 811/1 2 w-3/1

6y’ v

+b2)m+L(b-i€.)2 31)

=942, 0% 1 pyn+ 89 > (‘/’ 3A 4+ bym+b- M
2y 2y 2y

2y
(32)
The constraints on ¢, b and » in this case are
qg <b
wb-q) <(n-1)dq
(n-1d8q £ ywb
2 £n

Now for a given set of a system’s specifications
(data) we have four constrained minimisation
problems; we seek to minimise k(q, b, n) with
different terms and constraints for the cases (a)-(d).
For each case, when the related objective function is
minimised, we get the best value of ¢, b and n
satisfying the relevant set of constraints. The optimal
values for the decision variables are those which yield
the lowest annual cost value amongst the four cases.

It is worth stating the minimisation numerical
method applied to the problem. As was mentioned,
minimisation is a problem in the field of non-linear
mixed-integer programming. In 1967, an approach
based on the interior penalty concept was introduced
by Gellatly and Marcal for general non-linear prob-
lems [2]. Gisvold and Moe [3] later applied this
method to solve some design problems in the field of
non-linear mixed-integer programming. Rao [8] has
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explained the method and suggested the range of con-
stants and initial values used in the method. The
method adds two penalty terms to the objective func-
tion, one for violating the constraints and one for non-
integrality of the integer variables. Then it minimises
the new function in which variables are unconstrained.

The data in Table 1 were used to illustrate the nu-
merical results of the model applying the above
minimisation method. The resulis in Table 2, where &
= k(qo,bo, ng) show that any one of the four cases, (a)-
(d), raised upon the systems parameters, may happen
to be optimum. In fact, if shortage costs are relatively
high, then either case (a) or (¢} becomes optimum.
This happens because in these two cases the number of
production periods in which all demands are back
ordered (m) is none or at most one (data set no. I and
IT). That is, for high shortage costs the optimal ¢ and b
are such that the inventory builds up quickly after each
production cycle starts. For low costs of shortage
either case (b) or (d), in which the number of periods
without any stock on hand is greater than one,
becomes optimum, which means more shortages are
allowed to occur during a cycle.

Table 1. List of four different sets of data

Set. Data

No. A v C C =©m 7 A a
I 40 45 60 52 50 45 25 10
1 125 200 03 02 015 027 10 6.0
11 90 110 7.0 7.0 05 03 60 4.0
v 16 20 100 100 1.0 05 40 05

Now consider a system in which the batch
transferring procedure is in action but the optimal
values of the decision variables are determined
according to the EBQ model’s formulae. That is, the
batch quantity which is to be produced during a
production cycle, Q, and the maximum number of
shortages permitted, b, are determined as

Q*=[22'V’A_ (A‘/’) )(c+7ff)]15

€O c+m) A

and
- O(cO*-An)

w(c+7)
but the products are transferred to the inventory in
subbatch of size g such that ng = Q*. Of course the
cost of such a system depends on how n and g are
chosen. In fact, although the product of n and q is

b*
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fixed to Q*, but the system’s cost and hence the loss
made due to the deviation from optimality varies a lot.
In some systems the variation or the loss may even
exceed 400 per cent. Table 3 shows these variations
and loss percentages for the systems I and II of Table

1. The %inc. in the table is equal to 100x[ﬂ"_"%".)'_"°_]

where k, is the optimal annual cost of the system
shown in Table 2.

Table 2. Optimal and sub-optimal values for ¢, b and n and
the related annual cost value in different cases and systems

Data Set | Case 9 b, ny k,

I a* 11.080 4924 7 71.124*
b 8.408 8.408 21 125.295
¢ 14.687 4.897 4 102978
d 13.758  15.285 11 163.378

a a 58.709 33.331 5 34.1105
b 81.481 81.927 5 32.3065
c* 123.013 92.217 3 29.4041%
d 85.715 96.399 4 327177

I a 18.530 13.476 6 138.709
b 27.903 131.093 27 85.268
¢ 57.179 57.179 4 92496
d* 33.368 115.045 18  81.006*

v a 4377 3502 6 52.1005
b* 3.766  22.960 32 29.094*
c 17.140 17.140 3 385671
d 6361 20.781 16 294166

-* optimal casef/optimal cost value

The interesting point is that even if the number of
subbatch per cycle, n, is set to its optimal value when
Q* is used, there will still be a considerable loss, e.g.
9.7% in system [ and 7.6% in system II.

Random Demand

For this case we assume that the production and
transferring processes of the items have the same
properties as the deterministic case of demand. But
here the number of items demanded during any
defined period of time is random. Let the probability
that x units will be demanded in a period of length ¢ be
flx; H)dx in the continuous case and p(x; ¢) in discrete
cases and the expected rate of demand be A. Also
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assume that demands in different periods are
independent and identically distributed and that the re-
order level, r, is non-negative.

Table 3. The effect of applying the rules of EBQ model to
the group transferring systems

System [ System II
Q* = nq =74.286 * = ng = 206.332
n
b* =26 b* = 28.38

q k(g, b*, n)| % inc. q k(q, b*, n)| % inc.
1|74.28 | 391.65 450.6 ((206.33 56.25 313
2137.14 | 134.63 89.21/103.166] 30.62 4.1
3124.76 | 105.93 489 || 68.77 31.66 7.6
411857 88.22 23.8 |1 51.58 33.72 14.6
5114.875] 84.73 19.1 || 41.26 36.58 24.4
6]12.38 83.70 17.6 || 34.38 40.18 36.6
7]10.61 78.08 9.7 || 29.47 43.81 49.0
8| 9.28 80.91 13.7 {} 25.79 47.21 60.5
9] 8.25 83.97 17.9 ] 22.92 50.94 73.2
10} 742 86.94 22.2 || 20.63 54.71 86.0
12] 6.19 89.87 263 (| 17.19 61.99 {1108
14] 5.30 92.99 30.7 | 14.73 69.28 | 135.6
16| 4.64 96.39 35.51(| 12.89 76.63 | 160.7
181 4.12 | 107.27 509|| 11.46 83.99 |185.6
20] 3.71 | 111.62 56.9 1 10.31 91.27 (2104
25| 3.09 | 12745 79.2 8.25 | 10950 |2724

Here again we define the j** production period as
the time interval taken to produce the j* subbatch of
items. The length of each period is %/.

Clearly

I =1
lj=r+(]'—1)q-Xw,v j>1 1
v
where X(.1q is the demand during j — 1 production
v
periods of total length (’_J,)" Since the lengths of all

production periods are equal and demands are i.id.,

the distribution of X¢.1 will be £V (x;3),(j- 1)-fold
na

convolution of f(x;2). Therefore, if we let cj(i) be the

average cost of holding stock and incurred shortages
in the j** (j > 1) production period, given that the
starting inventory position of the period is i, = r + (j -
1)g - x, then the contribution to the averagje cost per
cycle from period j is

fP @D ¢ dx
| e

1<jsn+l  (34)

where F *(0;2)=1and £ (x;) =0, x>0.
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First the average unit years of storage is evaluated.
At any time point 10 < t < J) during the j* period
inventory on hand is equal to

so

[ (if-x)f(x,t)dx+[ (-Dfhde=i- A
0 if

+ I G- pfxndx (35)

Consequently, the expected unit years of storage
incurred in the j* period (j > 1) becomes

oo

(c-§) fx; Ddx}de (36)

q
v

= f (- Ao+
0

i
The average unit years of shortage in the j** period
is
1
a_|"Y .
G = (- i) fCx; ) dxdt (37
0 1y
And finally the expected number of back-logged
units at the end of the j* period is

¢ [ - fees e (38)

J
Having found the expected number of unit years of
storage and the average number of back orders for the
j* period, C (i) can be written as

. (D @ &)
Cliy=c-C; +2C; +7-C

<o

=c. (l,-M)q+(C+7A!)J J (- foc; Hedr (39)

07

+7rJ @-pfo;Dydx, 1<j<n
i v

For the first production period, since we have as-
sumed that A<y, the starting inventory position on
average is r. Thus, if we let i, = r then C () will be
the contribution cost from the first period.

For the n + 1°* period, things are different. Since it
has been assumed that r, the re-order level, is non-
negative, there will not be any shortage cost in this
period. There are holding costs only if 7, > r and in
this case the average number of unit years of storage is

12

2 ) . Hence, the contribution to the expected cycle
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cost of carrying stocks and shortages from the last pe-
riod in a cycle is
L )
. 2\ A
im0 Dyde
0 4
Now in order to express the average annual cost of
the system, it remains to determine the expected cycle
length. The total length of the first n production
periods is exactly "_‘;’. The length of the n + 1° period is

(/n+1=L

(40)

a random variable dependent on / ., and the demand
in that period. Since the demand is uniform over time,
it can be evaluated as

Elner-rl _nq 1 prxna="4..29
v 1'4

A A A
Thus, the expected cycle length becomes %7. There-

(41)

fore, the average annual cost is

_M A D d\ i
K(q,n,r)—7 W+nq [Zl: (x,w)q(t)dx
+C, ) +SM. 42)
2y

For discrete cases of demand with the same argu-
ment we have

Kg.n.n=2+24+ L > rve ALl

J=1 x=0

+Cril +M (43)
2y
Here the cost function is differentiable, in both

cases, with respect to ¢ and r, but it is so complicated
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that it is impossible to evaluate g or r from

Oor_=0 Therefore, to find the optimal values of

the decmon variables, a numerical method such as the
one used for the deterministic cost has to be exploited.
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