THE ANALOGUE OF WEIGHTED GROUP ALGEBRA FOR SEMITOPOLOGICAL SEMIGROUPS

A. Rejali

Department of Mathematics, University of Isfahan, Isfahan, Islamic Republic of Iran

Abstract

In [1,2,3], A. C. Baker and J.W. Baker studied the subspace $M_a(S)$ of the convolution measure algebra $M_b(S)$ of a locally compact semigroup. H. Dzinotyiweyi in [5,7] considers an analogous measure space on a large class of C-distinguished topological semigroups containing all completely regular topological semigroups. In this paper, we extend the definitions to study the weighted semigroup algebra $M_a(S, \omega)$, where ω is a weight function on a C-distinguished semitopological semigroup S. We will show that this subspace is a convolution measure algebra. As a corollary, this answers in the affirmative a question raised by J.W. Baker and H. Dzinotyiweyi in [6].

Definitions and Preliminary Results

Throughout the paper, S [resp. X] will denote a Hausdorff semitopological semigroup [resp. topological space]. Let k_r denote the strongest topology on X which agrees with the original topology on the compact subset of X. The topological space X is said to be a k-space if $k = T_x$. By T_x we mean the weakest topology on X such that whenever a bounded real valued function which is continuous with respect to the topology k_x , then it is continuous with respect to T_{\star} . All notations and terminology in the subject of measure theory are as in [4] and [7]. We denote by K(X) [resp. B(X)] the set of all compact [resp. Borel] subsets of X. Also by $C_h(X)$ [resp. $C_h(X, k_r)$], we mean the set of all real-valued bounded continuous functions on (X, T_r) [resp. (X, T_r)] (k_{y})]. We note $C_{b}(X) \subseteq C_{b}(X, k_{x})$ and denote $||f|| \infty$: = $\sup \{|f(x)|: x \in X\}$, for $f \in C_h(X)$. If $C_h(X)$ separate

Keywords: Semitopological semigroups; Weighted; Convolution measure algebras

1991 Mathematical Subject Classification: 43A10, 43A60, 22D25

points of X, we say X is C-distinguished. Clearly, the family of C-distinguished spaces contain all completely regular spaces.

Let $M_b(X)$ [resp. $M_b(X, k_x)$] be the set of all bounded Radon measures on (X, T_x) [resp. (X, k_x)]. If $\mu = \mu^* - \mu^*$ be the Hahn decomposition of $\mu \in M_b(X)$, then we write $\widetilde{\mu} = (\mu^*)_t - (\mu^*)_t \in M_b(X, k_x)$, where $(\mu^*)_t$ is the unique extension Radon measure of μ^* on (X, k_x) which agrees on compacta, (see [4, p. 18]). We recall that $K(X, T_x) = K(X, k_x)$ and $B(X, T_x) \subseteq B(X, k_x)$, so $v_t(E) := \sup\{v(K): K \text{ is a compact subset of } E\}$, for $v \in M_b(X)$ and $E \in B(X, k_x)$.

In the following we give an alternate proof to a Glicksberg's result for general case, (see [9], [11]), noting that Glicksberg's proof can be modified, by using this method, to get this extended version.

For easy reference, we mention the following consequence of [4, p. 20-21].

(1.1) Lemma. Let X be a Hausdorff space and $f: X \to [0, +\infty]$ be an arbitrary function, Then,

(i) Let
$$A_{i,n} = \{x \in X : f(x) > \frac{i}{2^n} \}$$
 and $f_n = \sum_{i=1}^{\infty} \frac{1}{2^n} \chi_{A_{i,n}}$. Then

 $0 \le f_n \le f$ and f_n increases to f. In particular if f is lower semicontinuous function, then there exists a sequences $f_n = \sum_{i=1}^k \frac{1}{2^n} \chi_{A_{i,n}}$ of simple lower semicontinuous functions such that $f_n = f$.

(ii) If a net (f_{α}) of lower semicontinuous functions $X \to [0, +\infty]$ is increasing with $\sup_{\alpha} (f_{\alpha}) = f$ and $\mu \in M_b^{\dagger}(X)$. Then,

$$\int_{\mathbf{X}} f d\mu = \sup_{\alpha} \left\{ \int_{\mathbf{X}} f_{\alpha} d\mu \right\} = \lim_{\alpha} \int_{\mathbf{X}} f_{\alpha} d\mu.$$

(iii) Let $f: X \to [0, +\infty]$ be a Borel -measurable function and K(X) be directed by inclusion. If $\mu \in M_b^+(X)$, then

$$\int_{X} f d\mu = \sup \left\{ \int_{C} f d\mu : C \in K(X) \right\}.$$

(1.2) Theorem (Glicksberg's Extended Version). Let (X, T_x) and (Y, T_y) be Hausdorff topological spaces and $F: X \times Y \to IR$ be a bounded separately continuous function. If $\mu \in M_b(X)$ and $v \in M_b(Y)$, then (i) The map $x \to \int_Y F(x,y) \, dv(y)$ [resp. $y \to \int_X F(x,y)$, $d\mu(x)$] is k_x [resp. k_y] continuous.

(ii) $\int_X \int_Y F(x,y) dv(y) d\mu(x) = \int_Y \int_X F(x,y) d\mu(x) dv(y).$

Proof. Without loss of generality, we can assume that F, μ and ν are positive.

(i) Let \bar{x} denote the point mass at $x \in X$. Then by (1.1),

$$\int_{X} F(x,y) dv(y) = v(_{x}F), \text{ where }_{x}F(y) := F(x,y)$$

$$= \sup \left\{ \int_{D} {_{x}F(y)} dv(y) : D \in K(Y) \right\}.$$

But the map $x \to \int_{D} x F(y) dv(y)$ is continuous on each compact subset C of X, by the Glicksberg theorem, (see [9]). Hence the map $x \to \int_{D} F(x, y) dv(y)$ is k_x -continuous on X, for each $D \in K(Y)$. Since the family of functions

 $\{x \to \int_D F(x, y) \, dv(y) : D \in K(Y)\}$ is directed upward to $x \to \int_Y F(x, y) \, dv(y)$, so the map $x \to \int_Y F(x, y) \, dv(y)$ is K_x -lower semicontinuous, by (1.1) (ii).

Similarly, the map $x \to \int_{\gamma} (\|F\|_{\infty} - F)(x,y) dv(y) = \|F\|_{\infty} v(Y) - \int_{\gamma} F(x,y) dv(y)$ is k_x -lower semicontinuous. Therefore, the map $x \to \int_{\gamma} F(x,y) dv(y)$ is K_x -continuous.

By the same argument, the map $y \to \int_X \tilde{F}(x, y) d\mu(x)$ is k_y -continuous.

(ii) Since the family of K_x -continuous functions $\{x \to \int_D F(x,y) dv(y) : D \in K(Y)\}$ is directed upward to k_x -continuous map $x \to \int_Y F(x,y) dv(y)$, by (i), so $\{\int_c (\int_D F(x,y) dv(y)) d\widetilde{\mu}(x) : C \in K(X), D \in K(Y)\}$ is directed upward to the integral $\int_x (\int_Y F(x,y) dv(y)) d\widetilde{\mu}(x)$, by (1.1) (iii). But the measures $\widetilde{\mu}$ and μ are concentrated on a σ -compact set and $\widetilde{\mu}$ agree with μ on compacta. Hence

$$\int_{X} \int_{Y} F(x,y) dv(y) d\mu(x) =$$

$$\sup \{ \int_{C} \int_{D} F(x,y) dv(y) d\mu(x) : C \in K(X), D \in K(Y) \} =$$

$$\sup \{ \int_{D} \int_{C} F(x,y) d\mu(x) dv(y) : C \in K(X), D \in K(Y) \} =$$

$$= \int_{Y} \int_{X} F(x,y) d\mu(x) dv(y).$$

(1.3) Corollary [11]. Let X,Y be Hausdorff completely regular topological spaces and $F\colon (X,T_x)\times (Y,T_Y)\to \mathrm{IR}$ be a bounded separately continuous function. If $\mu\in M_b(X,T_x)$, $\nu\in M_b(Y,T_Y)$, then (i) The map $x\to\int_Y F(x,y)\,d\nu(y)$ [resp. $y\to\int_X F(x,y)\,d\mu(x)$] is T_x [resp. T_Y] continuous. (ii) $\int_X \int_Y F(x,y)\,d\nu(y)\,d\mu(x) = \int_Y \int_X F(x,y)\,d\mu(x)\,d\nu(y)$.

Weighted Convolution Measure Algebras $M_{b}(S, \omega)$

In [9], I. Glicksberg showed that $M_h(S)$ with the usual convolution is a Banach algebra, when S is compact. Later, C.J. Wong [18] studied the space $M_{k}(S)$, where S is a locally compact semitopological semigroup. Also, H. Kharaghani [12] considered $M_h(S)$ on Čech-complete spaces included in locally compact and complete metric semitopological semigroups S. It is to be noted that H. Dzinotyiweyi [5] showed that $M_{k}(S)$ is a convolution measure algebra on a large class of C-distinguished spaces containing all completely regular topological semigroups S. Finally, A. Janssen [11] proved M_h (S) need not be a Banach algebra with usual convolution under the assumption that S is a completely regular semitopological semigroup. In this section, we will introduce a convolution "*" for which $(M_h(S), *)$ be a (non associative) Banach algebra.

Let $\omega: S \to (0, +\infty)$ be a Borel measurable weight function, that is $\omega(st) \le \omega(s) \omega(t)$, where $s, t \in S$ for which $1/\omega$ is bounded on compacta. Various authors have considered the space of weighted measure algebra $M(\omega)$ consisting of all complex measures μ such that $|\mu| \omega \in M_b(S)$, (see for example [8], [14]). The space $M(\omega)$ need not be complete and the norm-algebra $M(\omega)$ is different

from $I_1(S, \omega) := \{ f : S \to IR | \sum_{s \in S} |f(s)| \omega(s) < \infty \}, \text{ where}$

S has discrete topology. For these reasons we have chosen a different definition for the weighted convolution measure algebra $M_h(S, \omega)$.

Let $C_b(S, \omega) = \{ f : S \to IRI \frac{f}{\omega} \in C_b(S) \}$. Then $C_b(S, \omega)$ with the usual addition and the following multiplication,

$$f.g(x) = \frac{f(x)g(x)}{\omega(x)}$$
, for $x \in S$ and $f, g \in C_b(S,\omega)$

with the norm, $\|f\|_{\omega} := \sup \{ |\frac{f}{\omega}(x)| : x \in S \}$, is a Banach

algebra. Also the map $f o \frac{f}{\omega}$ from $(C_b(S,\omega),.)$ onto $C_b(S)$ with pointwise multiplication is an isometric isomorphism. In [5], H. A. M. Dzinotyiweyi showed that $M_b(S) = C_\beta(S)$ as Banach algebra, where $C_\beta(S)$ is $C_b(S)$ with the strict-topology. In the following, we define $M_b(S,\omega)$ such that the identity $M_b(S,\omega) = C_\beta(S,\omega)^*$ holds.

Let $M_b^+(S, \omega)$ be the set of all Radon measures μ on S, that is inner-regular and finite on compacta, such that $\mu\omega \in M_b^+(S)$ where

$$\mu\omega(E) = \int_{E} \omega d\mu$$
, for $E \in B(S)$.

If $\varphi: M_b^+(S, \omega) \times M_b^+(S, \omega) \to C_b^-(S, \omega)^*$ be defined by $(\mu, \nu) \mapsto I_{\mu} - I_{\nu}$, where

$$I_{\mu} - I_{\nu}(f) = \int_{S} f d\mu - \int_{S} f d\nu$$
, for $f \in C_{b}(S, \omega)$.

In general, φ need not be injection. Following [15], let " \simeq " be an equivalence relation on $M_b^+(S,\omega) \times M_b^+(S,\omega)$ defined by,

 $(\mu, \nu) \simeq (\mu', \nu')$ if and only if $\mu + \nu' = \mu' + \nu$ and $[\mu, \nu]$ be the equivalence class of (μ, ν) , then we define,

$$M_b(S, \omega) = \{ [\mu, \nu] : \mu, \nu \in M_b^+(S, \omega) \}.$$

Let also $C_{\beta}(S, \omega)$ denote $C_{b}(S, \omega)$ with the ω -strict topology, in the obvious way. One can show that $M_{b}(S, \omega)$ with the norm $\|[\mu, \nu]\|_{\omega} := \|\mu \omega - \nu \omega\|$ and regard $M_{b}(S, \omega)$ as a norm space over IR is a Banach space isometric isomorphism to $C_{\beta}(S, \omega)^{*}$.

Let us turn our attention to make $M_b(S, \omega)$ into a convolution measure algebra. Since $(C_b(S, \omega), .)$ is a Banach algebra, thus one can define a multiplication on $C_{\beta}(S, \omega)^*$ and so $M_b(S, \omega)$ such that it be a Banach algebra. In the

following, we define a convolution "*" on $M_b(S, \omega)$, where S is C-distinguished semitopological semigroup, such that $\mu^* \nu(K) = \int_s \int_s \chi_k(xy) d\mu(x) d\nu(y)$, for each compact set $K \subseteq S$ and $\mu, \nu \in M_b^+(S, \omega)$.

Since $\frac{1}{\omega}$ is bounded on compacta and $\mu = (\mu \omega) \frac{1}{\omega}$, so each measure $\mu \in M_b^+(S, \omega)$ is σ -finite. Let $\mu, \nu \in M_b^+(S, \omega)$ and,

$$\lambda(C) := \int_{S} \int_{S} \chi_{C}(xy) d\mu(x) dv(y), \text{ for } C \in K(S).$$

Then the family of k-continuous maps $\{y \rightarrow \int_s f(xy) d\mu(x): f \in C_b(S), f \geq \chi_c\}$ is directed downward to the map $y \rightarrow \int_s \chi_c(xy) d\mu(x)$, by [7, p. 174]. Hence, the map $y \rightarrow \int_s \chi_c(xy) d\mu(x)$ is k-upper semicontinuous function on S. Thus the family $\{\int_s \int_s f(xy) d\mu(x) dv(y): f \in C_b(S) \text{ and } f \geq \chi_c\}$ is directed downward to $\lambda(C)$, see (1.1). In other words, $\lambda(C) = \inf\{I(f): f \in C_b(S) \text{ and } f \geq \chi_c\}$, where $I(f) = \int_s \int_s f(xy) d\mu(x) dv(y)$, for $f \in C_b(S)$. But I is a positive linear functional on $C_b(S)$. Thus by the same argument as is used in [4, p. 36], one can show that λ is a Radon-content, that is

 $\lambda(C_2) - \lambda(C_1) = \sup \{\lambda(C): C \text{ is a compact subset of } C_2 \setminus C_1\},$ where C_1 and C_2 are compact subsets of S such that $C_1 \subseteq C_2$. It is to be noted that,

$$\lambda\left(C\right) \leq \int_{s} \int_{s} \frac{1}{\omega} \chi_{c}\left(xy\right) d\mu\omega\left(x\right) dv\omega(y) \leq$$

$$\left\|\frac{1}{\omega}\right\| C \cdot \left\|\mu\right\|_{\omega} \left\|v\right\|_{\omega}.$$

is finite, for each $C \in K(S)$.

Therefore, the Radon-part λ_i of λ is a Radon measure, by [4, p. 18]. We define,

 $\mu^* \ v(E) := \lambda_i(E) = \sup \{\lambda(C) : C \text{ is a compact subset}$ of $E\}$ and μ . $v(E) := \int_{S} \int_{S} \chi_E(xy) d\mu(x) dv(y)$, for $E \in B(S)$.

(2.1) **Definition.** Let $[\mu, \nu]$, $\{\mu', \nu'\}$ $M_b(S, \omega)$ and $\lambda \in \mathbb{R}$. Then

(i)
$$[\mu, \nu] + [\mu', \nu'] = [\mu + \mu', \nu + \nu']$$

(ii) $[\mu, \nu] * [\mu', \nu'] = [\mu * \mu' + \nu * \nu', \mu * \nu' + \mu' * \nu]$

(iii)
$$\lambda$$
. $[\mu, \nu] = \begin{cases} [\lambda \mu, \lambda \nu] & \text{if } \lambda \ge 0 \\ [-\lambda \nu, -\lambda \mu] & \text{otherwise.} \end{cases}$

It is easy to show that $M_h(S, \omega)$ is a vector space.

Let $\{G_{\alpha}\}$ be a family of open sets directed upward to G. Then the family of k-lower semicontinuous maps $\{y \rightarrow | \chi_{G_0}\}$ $(xy)d\mu(x)$ is directed upward to the k-lower semicontinuous map $x \rightarrow \chi_G(xy)d\mu(x)$, by (1.1). Hence, by (1.1) (ii), the family $\{\mu.\nu(G_n)\}$ is directed upward to $\mu.\nu(G)$, that is $\mu.\nu$ is a τ -smooth measure. In general $\mu.\nu$ is not Radon measure, by [11], so $\mu.\nu \neq \mu * \nu$. But $\mu*\nu$ is the maximal Radon measure on S coincide $\mu.\nu$ on compacta. If S is Čech complete space, that is S is G_s -set in the Stone Čech compactification of S, then every τ -smooth measure is Radon-measure, see [13]. In particular, if S is either a locally compact or complete metric space, then the innerconvolution "*" is equal to the usual-convolution ".". In the following we give an alternative proof for the equality of "*" and ".", in this case, without using the Stone Cech compactification.

(2.2) **Theorem.** Let S be either a locally compact or complete metric semitopological semigroup. Then $(M_b(S,\omega),.)$ is a convolution measure algebra.

Proof. (i) Suppose S is a locally compact space. Then for each $x \in S$ there exists a relatively compact neighborhood V_x , say. Let g be the family of all finite union of these V_x , where $x \in S$. If $G = \bigcap_{k=1}^n V_{x_k} \in g$, then $\overline{G} = \bigcup_{k=1}^n \overline{V}_{x_k}$ is compact. Let μ , $\nu \in M_b^+(S)$. Then,

$$\mu.\nu(S) = \sup \{ \mu.\nu(G) : G \in g \}$$

$$\leq \sup \{ \mu.\nu(\overline{G}) : G \in g \}$$

$$\leq \sup \{ \mu.\nu(C) : C \in K(S) \} \leq \mu.\nu(S).$$

Thus $\mu.\nu(S) = \mu *\nu(S)$. Let $\mathcal{E} = \{E \in B(S) : \mu.\nu(E) = \mu *\nu(E)\}$. One can show that \mathcal{E} is a σ -algebra containing closed sets, so $\mu *\nu = \mu.\nu$. Since each measure in $M_b^+(S, \omega)$ is σ - finite, so it is easy to show that $\mu *\nu = \mu.\nu$, for all μ , $\nu \in M_b^+(S, \omega)$.

(ii) Suppose S is a complete metric space. Then for each $n \in IN$, define \mathcal{G}_n be the family of all finite unions of open balls $B(x, \frac{1}{n})$, where $x \in S$. Then it is clear, $\mathcal{G}_n \nearrow S$, so μ . $\nu(S) = \sup \{\mu.\nu(G) : G \in \mathcal{G}_n\}$. Hence for each $\varepsilon > 0$ and $n \in IN$, there exist $G_n \in \mathcal{G}_n$ such that μ . $\nu(S \setminus G_n) < \varepsilon/2^n$.

Put
$$G_0 = \bigcap_{n=1}^{\infty} G_n$$
. Then,

$$\mu.\nu(S\setminus \overline{G}_0) \le \mu.\nu(S\setminus G_0) \le \sum_{n=1}^{\infty} \mu.\nu(S\setminus G_n) \le \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} = \varepsilon.$$

Also G_0 is totally-bounded, so $\overline{G_0}$ is compact. Hence,

$$\mu. \ \nu(S) = \sup \{\mu. \nu(C): C \in K(S)\} = \mu * \nu(S).$$

Therefore "*" coincides with ".". The rest of the proof is routine.

We now state the main theorem of this section.

(2.3) Theorem. Let S be a C-distinguished semitopological semigroup such that either

(i) K^2 is compact, for each compact K in S, or

(ii) $x^{T}K$ and Kx^{T} are compact, for each compact $K \subseteq S$. Then $(M_{b}(S, \omega), *)$ is a convolution measure algebra.

Proof. (i) By a similar argument as is used in [7, p. 6-7] is immediate.

(ii) Let $\mu, \nu, \eta \in M_b^{\dagger}(S)$ and $K \subseteq S$ be compact. Then,

$$(\mu * \nu) * \eta (K) = \int_{s} \int_{s} \chi_{k} (az) d\mu * \nu (a) d\eta (z)$$

$$= \int_{s} \mu.\nu (Kz^{-1}) d\eta (z)$$

$$= \int_{s} \int_{s} \int_{s} \chi_{k} (xyz) d\mu(x) d\nu(y) d\eta (z)$$

$$= \int_{s} \int_{s} \chi_{k} (xb) d\mu(x) d\nu. \eta (b)$$

$$= \int_{s} \nu * \eta (x^{-1} K) d\mu(x)$$

$$= \mu * (\nu * \eta) (K).$$

By inner-regularity, $(\mu * \nu) * \eta = \mu * (\nu * \eta)$. Thus "*" is associative.

Let $k = \sum_{i=1}^{n} a_i \chi_{k_i}$, where $a_i \in \mathbb{R}^+$, $n \in \mathbb{N}$ and K_i be compact subset of S, for $1 \le i \le n$. Let also $\mu, \nu \in M_b^+(S, \omega)$. Then,

$$(\mu * \nu) (\omega \chi_c) = \sup \{ \int_s k d\mu * \nu : k \le \omega \chi_c \}, \text{ see } [4, \text{ p. 36-37}]$$

$$= \sup \{ \mu. \nu(k) : k \le \omega \chi_c \}$$

$$\le \mu. \nu(\omega \chi_c) = \int_s \int_s \omega \chi_c(xy) d\mu(x) d\nu(y)$$

$$\le \|\mu\|_{\omega} \|v\|_{\omega}, \text{ for each compact } C \text{ in } S.$$

Therefore $\|\mu^* \mathcal{U}\|_{\omega} \le \|\mu\|_{\omega} \|\mathcal{V}\|_{\omega}$. The rest of the proof is easy.

(2.4) Corollary. Let S be a C-distinguished topological semigroup, or semitopological group. Then $(M_b(S,\omega), *)$ is a Banach algebra.

The following example shows that the measure algebra $M(\omega)$ is not complete.

(2.5) Example. Let S = (IN, +) with the discrete topology and $\omega(x) = e^{-x}$, for $x \in S$. Then $M(\omega) = I_1(IN)$ $\mathcal{O}_1(IN, \omega)$ is not complete.

Proof. Let $\lambda_n = e^n / n^2$, for $n \in IN$, and $f_k(n) = \begin{cases} \lambda_n & \text{if } n \le k \\ 0 & \text{otherwise.} \end{cases}$ Then (f_k) is Cauchy in $(M(\omega), \|.\| \|\omega\|)$, which is not convergent [for, if $f_k \to f$, then $f = (\lambda_n)$ and

$$\sum_{n=1}^{\infty} |f(n)| = \infty, \text{ so } f \notin I_1(IN)].$$

The following example shows that "*" need not be associative.

(2.6) **Example.** Let S, μ' , ν' , be as in [11, p. 77] and $\eta' = \overline{e}$, where $e := (e_{\alpha})$ and $e_{\alpha} : [0,1] \rightarrow (0,1]$ be defined by $e_{\alpha}(x) = 1$, for $x \in [0,1]$. Then,

(i) Let $C = \{e\}$. Then $(\mu' * \nu) * \eta' (C) = \mu'' * \nu' (S) \neq \mu' \cdot \nu' (S) = \mu' * (\nu' * \eta') (C)$.

(ii) Let $I(f) = \int_{S} \int_{S} f(xy) d\mu'(x) dv'(y)$, for $f \in C_b(S)$. Then I is not strictly continuous, (c.f. [7], p. 6-7).

Weighted Convolution Measure Algebra $M_a(S,\omega)$

A.C. Baker and J.W. Baker in [1,2,3] introduced and studied the convolution measure algebra $M_a(S)$, absolutely continuous measures, analogous to the group algebra $L^1(G)$, for a locally compact topological semigroup S. Later, several authors studied this algebra, for example [5] and [16]. In particular, in [6] Dzinotyiweyi asked whether $M_a(S)$ can be made into a convolution measure algebra, whenever S is a semitopological semigroup.

In this section, we give an affirmative answer to this question and show that this space has the advantage that if $\mu \in M_b(S)$ and $v \in M_a^l(S)$, then $\mu * v = \mu.v$. For a suitable definition of $M_a^l(S, \omega)$ analogous to $M_a^l(S)$, see [7]. Also $M_a^l(S, \omega)$ is a solid and left ideal of $M_b(S, \omega)$.

Let $\eta = [\mu, \nu] \in M_b(S, \omega)$. Then $\eta \omega := \mu \omega - \nu \omega \in M_b(S)$, so by the Hahn decomposition theorem, there exist unique ξ^*, ξ in $M_b(S)$ such that $\eta \omega = \xi^* - \xi$ and $\xi^* \perp \xi^-$. Put $\eta^* = (\xi^*)^{\frac{1}{\alpha}}$ and $\eta^* = (\xi^*)^{\frac{1}{\alpha}}$. Then $\eta = [\eta^*, \eta^*]$ such that $\eta^* \perp \eta^*$. Let $|\eta| := \eta^* + \eta^*$ and $A \subseteq M_b(S, \omega)$. If A satisfies the following conditions, then A is called (weighted) convolution measure algebra.

- (i) A is a norm-closed subalgebra of $M_h(S,\omega)$.
- (ii) A is solid, that is if $\eta \in M_b(S,\omega)$ and $\xi \in A$ such that $|\eta| \ll |\xi|$ implies $\eta \in A$.

We define, $M_a^l(S, \omega) = \{ \eta \in M_b(S, \omega) : |\eta| \omega \in M_a^l(S) \}$, where $M_a^l(S) = \{ \mu \in M_b(S) : \text{The map } x \to |\mu| (x^{-1} C) \text{ is continuous for each } C \in K(S) \}$. Similarly, one can define $M_a^l(S, \omega)$ and $M_a^l(S, \omega) := M_a^l(S, \omega) \cap M_a^l(S, \omega)$.

Throughout this section, S is a C-distinguished semitopological semigroup endowed with the k_s -topology (or k-topology).

(3.1) Lemma. Let $h: S \to [0, +\infty]$ be a Borel-measurable function and $\mu \in M_b^+(S)$, $\nu \in M_a^{\ l}(S)^+$. Then, (i) the map $x \to \int_s h(xy) \, d\nu(y)$ is k-lower semicontinuous (k-L.S.C.).

(ii) $\mu * \nu(h) = \mu . \nu(h) = \int_{s} \int_{s} h(xy) d\mu(x) d\nu(y) = \int_{s} \int_{s} h(xy) d\nu(y) d\mu(x)$.

Proof. (i) Let $E \subseteq S$ be a Borel set, $x \in S$. Then by (1.1) (iii),

 $\bar{x} * v(E) = \sup \{v(x^{-1}K): K \text{ is a compact subset of } E \}.$

But the map $x \to v(x^{-1}K)$ is k- continuous, so the map $x \to v(x^{-1}E)$ is k-L.S.C. Similarly, let $E^c = S \setminus E$. Then the map $x \to v(x^{-1}E^c) = v(S) - v(x^{-1}E)$ is k-L.S.C. Hence the map $x \to v(x^{-1}E)$ is k-continuous.

Let $(s_{n'm})$ be a sequence of positive, Borel measurable simple functions increasing to h, pointwise. (see (1.1)). Then $\int_s s_{n,m}(xy) \, dv(y)$ increasingly converge to $\int_s h(xy) \, dv(y)$. But the map $x \to \int_s s_{n,m}(xy) \, dv(y)$ is k-L.S.C. Hence (i) follows.

(ii) Let $E \subseteq S$ be a Borel set and K(S) be directed by inclusion. Then the family of k-continuous functions $\{x \to v(x^{-1} C): C \in K(S)\}$ is directed upward to the map $x \to v(x^{-1} E)$, by (1.1) (iii). Hence by (1.1) (ii),

$$\mu^* \nu(K) = \int_s \nu\left(x^{-1}K\right) d\mu\left(x\right) \nearrow \int_s \int_s \chi_E\left(xy\right) d\nu\left(y\right) d\mu\left(x\right).$$

Therefore, $\mu^* \nu(E) = \sup \{ \mu^* \nu(K) : K \text{ is a compact subset of } E \} = \mu.\nu(E)$.

By a standard argument and applying (1.1) (ii) is immediate.

We now state the main theorem of this paper. As a corollary this answers the open question raised in [6].

(3.2) **Theorem.** M_a^I (S,ω) is a Banach algebra, left ideal and solid in $M_b(S,\omega)$.

Proof. (i) First of all we show that $M_a^l(S, \omega)$ is solid. Let $v \in M_a^l(S, \omega)$ and $\mu \in M_b(S, \omega)$ such that $|\mu| \ll |\nu|$. Then it is easy to show that $|\mu|\omega \ll |\nu|\omega$. Since the map,

$$y \to \int_{s} \chi_{K}(xy) d \mid \mu \mid \omega(x) = \mid \mu \mid \omega * \overline{y} (K)$$
$$=\inf \left\{ \int_{s} f(xy) d \mid \mu \mid \omega(x) : f \in C_{b}(S) \text{ and } f \ge \chi_{K} \right\}$$

is k-upper semicontinuous, by (1.2) and [7, p.174]. Thus by a similar argument as is used in [7, p. 10], one can show that $|\mu| \omega \in M_a^l(S)$. Thus $\mu \in M_a^l(S,\omega)$.

(ii) Now we show that $M_a^I(S, \omega)$ is a left ideal of $M_b(S, \omega)$. Let $\mu \in M_b^+(S, \omega)$, $v \in M_a^I(S, \omega)^+$ and $K \subseteq S$ be compact. Then,

$$\mu \omega * \nu \omega (x^{-1}K) = \int_{s} \nu \omega ((xa)^{-1}K) d\mu \omega (a), \text{ by (3.1)},$$

and the map $(x,a) \rightarrow v\omega((xa)^{-1}K)$ is k-separately continuous bounded function.

Thus by (1.2), the map $x \to \mu \omega^* v \omega (x^{-1}K)$ is k-continuous. But $(\mu^* v)\omega = (\mu v)\omega \le (\mu \omega)$. $(v\omega) = (\mu \omega)^* (v\omega)$ and M_a^I (S) is solid, by (i), so $(\mu^* v) \omega \in M_a^I$ (S).

That is, $\mu * \nu \in M_a^I(S,\omega)$. In general, let $\xi \in M_b(S,\omega)$ and $\eta \in M_a^I(S,\omega)$. Then $|\xi * \eta| \le |\xi| * |\eta| \in M_a^I(S,\omega)^+$, so $\xi * \eta \in M_a^I(S,\omega)$, by (i).

- (iii) M_a^I (S,ω) is a closed subalgebra of M_b (S,ω) . For, let $\xi,\eta\in M_a^I$ (S,ω) and $\lambda\in IR$. Then, $|\xi+\lambda\eta| \ll |\xi+|\lambda| |\eta| \in M_a^I$ (S,ω) . Thus $\xi+\lambda\eta\in M_a^I$ (S,ω) , by (i). Let $\eta_n=[\mu_n,\nu_n]\to \eta=[\mu,\nu]$ in M_a^I (S,ω) , $f_n(x):=(\mu_n\omega-\nu_n\omega)$ $(x^{-1}K)$ and $f(x):=(\mu\omega-\nu\omega)(x^{-1}K)$, for $x\in S$ and compact set K. Then $\|f_n-f\|_\infty \le \|\eta_n-\eta\|_\infty$, so f is k-continuous. That is, the map $x\to |\eta|\omega(x^{-1}K)$ is k-continuous. Thus $\eta\in M_a^I$ (S,ω) and the proof is complete.
- (3.3) Corollary. M_a (S, ω) is a convolution measure algebra.
- (3.4) Corollary. Let S be a C-distinguished k-space. Then $M_a^I(S,\omega)$ is a Banach algebra, left ideal and solid in $M_b(S,\omega)$.

Remark. The k-topology is coincided with the original topology for k-spaces. Thus M_a^l (S, ω) is a Banach algebra, when S is endowed with the original topology. In particular, every locally compact or complete metric space is k-space, (see [17]). As a consequence, we answer the question raised in [6].

(3.5) Corollary. Let S be either a locally compact or complete metric semitopological semigroup. Then $M_a^I(S,\omega)$ is a Banach algebra, left ideal and solid in $M_b^I(S,\omega)$.

In the following, we consider M_a^I (S,ω) , when S is a subsemigroup of a group. Let m be the left Haar-measure on a locally compact group G, and S be a Borel subset of G. We denote

 $L^1(S,\omega) = \{h: S \to IR | h \text{ is Borel-measurable and } \|h\|_{\omega} = \int_{S} \|h\| \omega dm \text{ is finite } \}.$ If $f, g \in L^1(S,\omega)$, then $L^1(S,\omega)$, with following product, is a Banach algebra.

$$f *g (y) = \int_{s} f(x)g(x^{-1}y) dm(x)$$
, for $y \in S$.

We will show that for each $\mu \in M_a^l(S,\omega)$ there exist a unique $f \in L^1(S,\omega)$ such that, $\mu(E) = \int_S f dm$, for $E \in B(S)$.

(3.6) **Theorem.** Let S be a subsemigroup of a locally compact group with positive Haar- measure. Then $M_a^I(S,\omega)$ is $L^1(S,\omega)$ as a Banach algebra.

Proof. (i) First we show that,

$$M_a^l(S) = \{\mu | s : \mu \in M_h(G) \text{ and } \mu \ll m\}.$$

Let $\mu \in M_b(G)$ such that $\mu \le m$ and $\nu = \mu ls$. Since $m \in M_a^1(S)$ and $\mu \chi_s \le m$, so $\mu \chi_s \in M_a^1(G)$, by (3.2). Hence the map $x \to \nu(x^{-1}K) = \mu \chi_s(x^{-1}K)$ is continuous for each compact set K. Thus $\nu \in M_a^1(S)$.

Conversely, since m(S) > 0, so supp $(m \mid s) \neq \emptyset$. Let $z \in$ supp $(m \mid s)$ and W be a relatively compact neighbourhood of z, clearly m(W) is finite. Let also $v \in M_a^I(S)$ and $\mu(E) = v(E \cap S)$, for $E \in B(S)$. Then $\mu \in M_b(G)$ such that $v = \mu$ is . Suppose m(K) = 0, for some compact set $K \subseteq G$. Then m'(F) = 0, where m' is the right Haar measure of G and F = zK, by [10, p. 272]. Let $\lambda = m'(\chi_W)$. Then $\lambda(Fx^{-1}) \leq m'(F) = 0$, for all $x \in G$. Thus

$$0 = \int_{G} \lambda (Fx^{-1}) d\mu = \int_{G} \int_{G} \chi_{F}(yx) d\lambda (y) d\mu (x)$$
$$= \int_{G} \int_{G} \chi_{F}(yx) \chi_{w}(y) dm'(y) d\mu (x)$$
$$= \int_{G} \mu (y^{-1}F) \chi_{w}(y) dm'(y).$$

Thus $m' \{ y \in W : \mu(y^1 F) > 0 \} = 0$, so $\mu(K) = 0$. For, suppose $\nu(z^1 F) = \mu(K) > 0$. Since the map $x \to \mu(x^1 F) =$

 $v(x^1 \ F)$ is continuous on S, so there exists an open neighborhood V of z in S such that $v(x^1 F) > 0$, for all $x \in V$. Thus m'(V) = 0, which is a contradiction. Hence $\mu \ll m'$, also $m' \ll m$, by [10, p. 272], so $\mu \ll m$ and the proof of (i) is complete.

(ii) Let $\mu \in M_a^I(S,\omega)^+$. Then by using (i) and the Radon-Nykodym Theorem and the fact that μ is σ -finite, there exist a unique $f \in L^1(S,\omega)$ such that, $\mu(E) = \Big|_E f d\mu$, for $E \in B(S)$. In general, let $\eta = [\eta^+, \eta^-] \in M_a^I(S,\omega)$ and f, f corresponds to η^+, η^- , respectively, as above. Then by a standard argument, one can show that the map $\eta \to f f$ is an isometric isomorphism from $M_a^I(S,\omega)$ onto $L^1(S,\omega)$. (iii) Let $\mu, \nu \in M_a^I(S,\omega)$ and $\mu \mapsto f, \nu \mapsto g$. Then,

$$\mu * \nu(C) = \int f * g(z) dm(z), \text{ for } C \in K(S).$$

By inner-regularity of $\mu^* \nu$ and m,

$$\mu * \nu(E) = \int_{E} f * g(z) dm(z), \text{ for } E \in B(S).$$

In general, let $\eta \mapsto f$ and $\xi \mapsto g$. Then,

$$\xi * \eta \mapsto f * g = (f^{**} g^{*} + f^{**} g^{*}) - (f^{**} g^{*} + f^{**} g^{*}).$$

Therefore the proof is complete.

Remark. Prof. H.A.M. Dzinotyiweyi recalled that if m(S) > 0, then by using [7, p. 16] one can show that the interior of S^2 is non-empty. Also, every continuous function on an open subset of G can extend to a continuous function on G. Thus clearly, $M_a^I(S) = L_1(S)$.

The following corollary is the Theorem (19.18) in [10].

(3.7) Corollary. Let G be a locally compact group. Then $M_a^I(G) = L_1(G)$.

In the following, we find $M_a^l(S,\omega)$ for a subset S of IR in the Euclidean topology of IR, but with a different multiplication, related to the results of this paper. Their proofs can be obtained by using the definition of $M_a^l(S,\omega)$.

(3.8) Examples. (i) Let S = ([0,1], .), where $x \cdot y = \min\{x + y, 1\}$, for $x,y \in S$, and ω be a weight function on S.

Then $\omega^{-1} \le 1$ and

$$M_a^I(S,\omega) = L^I(S,\omega) \oplus \{\lambda \overline{1}: \lambda \in \mathbb{R}\}.$$

(ii) Let $S = [0, +\infty)$ with the usual multiplication [resp.,

addition]. Then $M_a^I(S,\omega) = \{\lambda \overline{0} : \lambda \in \mathbb{R}\}$ [resp. $L^1(S,\omega)$]. (iii) Let S = ([0,1], .), where $x \cdot y = y$ for $x,y \in S$. Then $M_a^I(S,\omega) = M_b (S,\omega)$ and $M_a^I(S,\omega) = \{0\}$, so $M_a^I(S,\omega) \neq M_a^I(S,\omega)$. (iv) Let S = ([0,1], .), where $x \cdot y = \min\{x,y\}$ [resp. max $\{x,y\}$] and ω be a weight function on S. Then S is an idempotent semigroup, so $\omega^{-1} \leq 1$ and $M_a^I(S,\omega) = \{\lambda \overline{0} : \lambda \in \mathbb{R}\}$ [resp. $\{\lambda \overline{1} : \lambda \in \mathbb{R}\}$].

Acknowledgements

It is a pleasure to acknowledge the help and advice given me by Dr. J.W. Baker in my research. I would also like to thank the University of Isfahan for financial support, the University of Alberta, and especially Professor A.T. Lau, for their hospitality during my sabbatical year there. Finally, I would like to thank the referee for his suggestions and comments that brought about this version of my previous paper.

References

- Baker, A.C. and Baker, J.W. Algebras of measures on a locally compact semigroup, J. London Math. Soc., 1, 249-259, (1969).
- Baker, A.C. and Baker, J.W. Algebras of measures on a locally compact semigroup, II, *Ibid.*, 2, 651-659, (1970).
- Baker, A.C. and Baker, J.W. Algebras of measures on a locally compact semigroup, III, *Ibid.*, 4, 685-695, (1972).
- Berg, C., Christensen, J.P.R. and Ressel, P. Harmonic analysis on semigroups, Springer Graduate Texts in Math., 100, (1984).
- Dzinotyiweyi, H. A. M. Algebras of measures on Cdistinguished topological semigroups, Math. Proc. Camb. Phil. Soc., 84, 323-336, (1978).
- Dzinotyiweyi, H.A.M. Some aspects of abstract harmonic analysis, Semigroup Forum, 29, 1-12, (1984).
- Dzinotyiweyi, H.A.M. The analogue of the group algebra for topological semigroups, *Pitman Pub. Lond. Research Notes* in Math., 98, (1984).
- Ghahramani, F. Weighted group algebras as an ideal in its second dual space, *Proc. Amer. Math. Soc.*, 90, (1), 71-76, (1984).
- Glicksberg, I. Weak compactness and separate continuity, Pacific J. Math., 11, 205-214, (1961).
- Hewitt, E. and Ross, K.A. Abstract harmonic analysis, Vol. I, Springer-Verlag, Berlin, (1963).
- 11. Janssen, A. Integration separat stetiger Funktionen, *Math. Scand.*, 48, 68-78, (1981).
- Kharaghani, H. The convolution of Radon measures, Proc. Amer. Math. Soc., 103, (4), (1987).
- 13. Knowles, J.D. Measures on topological spaces, *Proc. Lond. Math. Soc.*, **17** (3), 139-156, (1967).
- 14. Lashkarizadeh, M. Representation of foundation semigroup and their algebras, *Cand. J. Math.*, 37, 29-47, (1985).
- 15. Rejali, A. The Arens regularity of weighted convolution algebras on semitopological semigroups, *Proc. 21st International Math. Conf. Iran*, (1986).

- 16. Sleijpen, G.L.G. Locally compact semigroups and continuous translations of measures, *Proc. London Math. Soc.*, 37 (3), 75-97, (1978).
- 17. Willard, S. General topology. Addison-Wesley Pub. Company,
- (1970).
- 18. Wong, J.C.S. Convolution and separate continuity, *Pacific J. Math.*, 75, 602-611, (1978).