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Abstract

In [1,2,3], A. C. Baker and J.W. Baker studied the subspace MG(S) of the
convolution measure algebra M, (S) of a locally compact semigroup. H.
Dzinotyiweyi in [5,7] considers an analogous measure space on a large class
of C-distinguished topological semigroups containing all completely regular
topological semigroups. In this paper, we extend the definitions to study the
weighted semigroup algebra M_ (S, @), where @is a weight function on a C-
distinguished semitopological semigroup S. We will show that this subspace
is aconvolution measure algebra. As a corollary, this answers in the affirmative
a question raised by J.W. Baker and H. Dzinotyiweyi in [6].

Definitions and Preliminary Results

Throughout the paper, S [resp. X] will denote a
Hausdorff semitopological semigroup [resp.
topological space]. Let k_ denote the strongest
topology on X which agrees with the original
topology on the compact subset of X. The topological
space X is said to be a k-space if k = T,. By T 'we
mean the weakest topology on X such that whenever
a bounded real valued function which is continuous
with respect to the topology £ , then it is continuous
with respect to T_. All notations and terminology in
the subject of measure theory are as in [4] and [7].
We denote by K(X) [resp. B(X)] the set of all
compact [resp. Borel] subsets of X. Also by C, (X)
[resp. C, (X, k)], we mean the set of all real-valued
bounded continuous functions on (X, 7)) [resp. (X,
k)). Wenote C, (X) < C, (X, k,) and denote ilfil oo ;
=sup {If(lxe X}, for fe C, (X).IfC, (X) separate
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points of X, we say X is C-distinguished. Clearly, the
family of C-distinguished spaces contain all
completely regular spaces.

Let M, (X) [resp. M » (X, k_)] be the set of all bounded
Radon measureson (X, T ) [resp. (X, k)]. If L= p* - - be
the Hahn decomposition of pe M , (X), then we write {i =
M),-w),e M, X k), where (11*), is the unique extension
Radon measure of 4* on (X, k,) which agrees on compacta,
(see [4,p. 18] ). Werecall thatK (X, T )=K (X,k,)and
B(X,T)<B(X,k),s0V,(E):=sup {v(K): Kis acompact
subsetof E}, forve M, (X) andE € B(X, k).

In the following we give an alternate proof to a
Glicksberg’s result for general case, (see [9], [11]), noting
that Glicksberg’s proof can be modified, by using this
method, to get this extended version,

For easy reference, we mention the following
consequence of [4, p. 20-21].

(1.1) Lemma. Let X be a Hausdorff space and f :
X - [0, + ==] be an arbitrary function, Then,

() Leta,, = (xe X: f()>) andf, = %, L #a,0 Then
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0<f,<fandf increases to f. Im particular if f is lower
semicontinuous function, then there existsasequences, =
k

)

gu=}
that lim h‘rtn Su k= f.

(ii) If anet (f ) of lower semicontinuous functions X — [0,
+eo] isincreasing withsup _(f )= and pe M5 (X). Then,

-2% XA, ,of simple lower semicontinuous functions such

[fdu=sgp{[ fad}l}=li&n[ Ffadp
X X X

(iii) Let f : X = [0, +0o] be a Borel -measurable function
and K (X ) be directed by inclusion. If L € M (X), then

ffdu=sup{deu:Ce KX)}.
X C

(1.2) Theorem (Glicksberg’s Extended Version). .
Let (X, T,) and (¥, T,,) be Hausdorff topological spaces
and F: X XY — IR be a bounded separately continuous
function. Ifu e M ,(X)andveM, (Y), then
(i) The map x — /, F (xy) dv (y) [resp.y =  F (xy),
dp (x)] is k_{resp. k,] continuous.

(i) [/, F (xy)av(y)dw(x) = [, | F (xy)du(x)av (y).

Proof. Without loss of generality, we can assume that

F, u and v are positive.
(i) Let X denote the point mass atx € X . Then by (1.1),

| F@y)avoy=v(,m, where F(y)=F (ry)
=sup I F 5)v() De K¥)).

But the map x— |, _F () dv(y) is continuous on each
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compact subset C of X, by the Glicksberg theorem, -

(see [9]). Hence the map x — [ F(x, y) dv (y) is k-

continuous on X, for each D € K(Y ). Since the family of

functions

{x=> [, F(x,y)dv(y): D € K (¥)} is directed upward to
x =3[ F (x,y)dv(y), sothe map x — [, F(x,y) dWy) is K -
lower semicontinuous, by (1.1) (ii).

Similarly, the map x —[, (IF Il_- F) (x,y ) dW(y) =
WF_v(Y)- |,F(x,y)dv(y)isk -lowersemicontinuous.
Therefore, the map x — |, F(x,y) dv(y) is K -continuous.

By the same argument, the mapy — ]x F (x,y) du(x)
is k, -continuous.
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(ii) Since the family of K -continuous functions {x—
|,F (ty)dWy ) : D eK(Y )} is directed upward to &, -
continuous map x —f, F (x,y ) dWy), by (i), so {J, (|, F (x.
y)dv(y))dii(x):Ce K(X),D e K (Y)} is directed upward

to the integral | ([, F (x.y ) dWy)) dfi (x), by (1.1) (iii). But
the measures {1 and j1 are concentrated on a 6-compact set

“and [l agree with L on compacta. Hence

|| F ey vy e =

sp (|| F@y)duy) dn(:C ek ) ek ()=
sup ([ | F Gy) dix) dvioyCe K(X).D ek (V)
=[] F o) duav).

(1.3)Coroliary[11].LetX,Y be Hausdorff completely
regular topological spaces and F: (X, T ) X (¥, T, )—> IR be
abounded separately continuous function. If pe M, (X,T)),
ve M, (Y,T,), then ,
(i) The map x — |, F(x,y) dWy) [tesp. y— [, F(x.y ) dj(x )]
is T [resp.T,] continuous.

Gi) JoJ, F (ey)dvy) din (x) = [, ], F () du (x)dwy).

Weighted Convolution Measure Algebras M, (S, ®)
In [9], I Glicksberg showed that M, (S) with the usual
convolution is a Banach algebra, when § is compact.
Later, C.J. Wong [ 18] studied the space M A (S),whereSis
a locally compact semitopological semigroup. Also, H.
Kharaghani [12) considered M,(S ) on Cech-complete
spaces included in locally compact and complete metric
semitopological semigroups S. It is to be noted that H.
Dzinotyiweyi [S] showed that M, (S ) is a convolution
measure algebra on alarge class of C-distinguished spaces

containing all completely regular topological semigroups

S. Finally, A. Janssen {11] proved M, (S) need not be a
Banach algebra with usual convolution under the
assumption that S is acompletely regular semitopological
semigroup. In this section, we will introduce aconvolution
“** for which (M, (S), *) be a (non associative) Banach
algebra.

Let w : §— (0, + =) be a Borel measurable weight
function, thatis w(st )< w(s) @(t), where s, t e § for which
1/ is bounded on compacta. Various authors have
considered the space of weighted measure algebra M (w)
consisting of all complex measures p such that Il @ &
M, (S), (see for example [8], [14]). The space M (w) need
not be complete and the norm-algebra M (w) is different
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from (S, w): = (f: S—IRI X, | (s)| @(s) <o}, where

ses§
§ has discrete topology. For these reasons we have chosen
adifferentdefinition for the weighted convolution measure
algebra M f (S, w).

LetC, (S, )={ f:5 >IRILe C,(5)}. Then, 6,
o) with the usual addition and the following multiplication,

Fg0)=fREW) gy sandf, g e C,(5.0)
wXx)

with the norm, Iif ll | : = sup {% () xe § },is a Banach

algebra. Also the mapf — % from (C, (S,w),.)onto C, (S)
with pointwise multiplication is an isometric isomorphism.
In [5], H. A. M. Dzinotyiweyi showed that M, (S ) =
C ﬁ(S )as Banach algebra, where C ﬂ(S )is C, (S) with the
strict-topology. In the following, we define M, (S, @) such
that the identity M, (S, @) = C 5 (S, w)" holds.
" Let My (S, w) be the set of all Radon measures {4 on

S, that is inner-regular and finite on compacta, such that
uwe My (S) where

o E)=| oduforEe BS).

I @ My (S, @) X My (S, w) —C, (5, m) be
defined by (u,v) —1 u"v’ where

Iu-lv(f)=Lfdu-Lfdv, for feC,(S, o).

In general, g need not be injection. Following [151, let
“==" e an equivalence relation on My (S,0) X M (S, @)
defined by,

Wy =@,V)ifandonlyifp +vV=u'+v
and [ ,v] be the equivalence class of (U, v), then we define,

M, (S, ) = {[WVI: pve My (S, m}.

Let also Cﬁ (S, w) denote C, (S, ) with the o-strict
topology, in the obvious way. One can show that M (S, @)
with the norm H{u,v]ll = o -vedl and regard M (S, w)
as a norm space over IR is a Banach space isometric
isomorphism to Cﬁ(S, w)".

Let us turn our attention to make Mb(S, ) into a
convolution measure algebra, Since (C,(S, @),.)is aBanach
algebra, thus one can define a multiplicationon C 5 S, )"
and so M, (S, o) such that it be a Banach algebra. In the
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following, we define aconvolution“*” on M b(S, o), where
S is C-distinguished semitopological semigroup, such that
urv (K) = | | %, 0)du (x) dv (3), for each compact set X
cSandp,ve My (S, w).

Since % is bounded on compacta and yt = (i @) % ,
so each measure L € M; (S, o) is o-finite. Letp, ve
M5 (S, w) and,

A(C) :=usxc ) @) dv @), for Ce K (S).

Then the family of k-continuous maps {y -] J (xy)dp
(x): fe C,(5), f 2 xc} is directed downward to the map

¥y 2 (&y)dp.(x), by [7,p. 174 1. Hence, themap y — 1.
(xy)du(x) is k-upper semicontinuous function on §. Thus

the family {| | f(xy)du (x) dv (3): fe C, (S) and f 2 x.}is
directed downward to A(C), see (1.1). Inother words, A(C)
=inf {/(f): fe C,(S) and f 2 x.}, where I (f )= ] | f(xy)
du (x ) avy ), for fe C, (S). But ! is a positive linear
functional on C,(S). Thus by the same argument as is used

in [4, p. 36}, one can show that A is a Radon-content, that
is

A(C,) - A(C))=sup {A(C): C is a compact subset of
C)\C,}, where C, and C, are compact subsets of § such that

C, c C2 . It is to be noted that,

1© </ [ L oo 0 dvap) <
Wi jivi,,

is finite, for each C € K(S).

Therefore, the Radon-part A of 4 is aRadon measure,
by [4, p. 18]. We define,

H* v(E): = A (E)=sup {A(C): Cisacompact subset

of E} and p. v(E): = LL;;E(xy)du () awy), forE
B(S).

(2.1) Definition. Let {u,V], {0,V M, (S,@)and A IR.
Then

GO v+ Vi=h+p,v+ V]

@V * V=¥ + vV, p* v+ *y]

(ApAv) i 420
(iii) A. [u,v] -'-{[_ Av,-Al] otherwise.

It is easy to show that M, (S, @) is a vector space.
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Let{G } beafamily of open sets directed upward to G.
Thenthe family of k-lower semicontinuous maps {y—| xc .,
(xy)du(x)} is directed upward to the k-lower semicontinuous
- mapx—] xc (xy)dp (x), by (1.1). Hence, by (1.1) (i), the
family {u.WG 21 1s directed upward to p.v (G), that is
K.V is a T-smooth measure. In general pu.v is not Radon
measure, by [11], so (L.v =y * v. But i*v is the maximal

Radon measure on S coincide p.v on compacta. If S is Cech

complete space, that is S is G ,-set in the Stone Cech
compactification of S, then every 1-smooth measure is
Radon-measure, see [13]. In particular, if S is either a
locally compact or complete metric space, then the inner-
convolution “*” is equal to the usual-convolution “.”. In
the following we give an alternative proof for the equality
of “*” and “.”, in this case, without using the Stone Cec

compactification. ‘

(2.2) Theorem. Let S be either a locally compact or

complete metric semitopological semigroup. Then
(M, (S,w),.) is a convolution measure algebra,

Proof. (i) Suppose S is a locally compact space. Then
for each x € § there exists a relatively compact
neighborhood V,,say. Let g be the family of all finite

n
union of these V, where x € S. If G = N Vyeg, then
k=1

G=U Vi is compact. Let y, v € M7 (S ). Then,
k=]

H.v(S)=sup { p.v (G):Geg)
Ssup {(Uv(GGeg}
Sssup { UV(C ) Ce K(S)} <pv(s).

Thus l.v(S)=p*v(S).Let€={Ec B(S): p.v(E)
=u*v(E)}.Onecanshow that eis a o-algebra containing

closed sets, 5o p*v = .. Since each measure in M} (S, w)
is o- finite, so it is easy to show that u * v= v, for all u,
ve M; (S, w). '

(ii) Suppose S is a complete metric space. Then for each n
€ IN, define g, be the family of all finite unions of open

balls B (x, ,1—2—), where x e §. Then itis clear, g /'S, so

R.v(S)=sup {L.v(G):Ge g }. Hence foreach £> 0 and
ne IN, thereexist G, e g, such thatp. v (S\G ) < £ /2",

Put G=n Gn. Then,

n=l

Mz

RV(S\G) <P V(S\G,) < T . v(S\G,)< =€

n

£
12"
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Also G, is totally-bounded, so Gois compact. Hence,

Hv(§)=sup {pv(C)Ce KS)=p*v(S)

Therefore “*” coincides with “.”. The rest of the proof is
routine.
We now state the main theorem of this section.

(2.3) Theorem. Let § be a C-distinguished
semitopological semigroup such that either
(1) K* is compact, for each compact K in §, or

(ii) x’ K and Kx/ are compact, for each compact K< S.
Then (M, (S, w),* ) is a convolution measure algebra.

Proof. (i) By a similar argument as is used in [7, p. 6-
7} is immediate.
(i) Let p,v, n € M5 (S ) and K < S be compact. Then,

w* W0 ®=] | g @) v dn )
=L RV Kz dn ()
= | | 2 0o2 o ravy yam 2y
= [ % ahyncoav. n @)

=[ v e k) duce)
=p* () (K ).

By inner-regularity, (LW * v) * n=u* (v* 1), Thus “*”
is associative.

Letk= }llaixk,,where g, IR, ne INand K, be

compact subset of S, for 1 <i<n.Letalsop, ve M (S.0).
Then,

M*v)(0y,)=sup {j kdp* vik<wy }, see [4,p. 36-
37N
=sup {L.vk ) kswy}

suv@z) = | oz, ) duciavy)
< lipit v, for each compact C in §.

Therefore lip* vl < Tiull_fivil |+ The rest of the proof is
casy.

(2.4) Corollary. Let $ beaC-distinguished topological
semigroup, or semitopological group. Then (M, (S,w), *)
is a Banach algebra.

The following example shows that the measure algebra
M(w) is not complete.
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(2.5) Example. Let § = (IN, +) with the discrete
topology and @ (x) = ¢ *, forx € 5. Then M (w) = 1, (IN)
~, (IN, w) is not complete.

Proof. Let 4 = ¢" / n*, for n € IN, and fo () =

Anifn<k ) )
{ 0  otherwise. Then (f,) is Cauchy in (M(w), lLlw ),

which is not convergent [for, if fi— f,then f = (lﬂ) and

n%if(n)lmo. sof eI (IN)].

The following example shows that “*” need not be
associative.

(2.6) Example. Let S, p', v, beasin [11,p. 77] and
1'=e,where e:=(e )and e : [0,1] - (0,1] be defined by
e, (x)=1,forxe [0,1]. Then,

MLetC ={e}. Then(W*V)* 0 (C)=p"*vV(§ )=
HVES)=p' > (V*) (C).

(iyLet 1 (f)=], f (cy)dw (x)dV (v),for f € C, (S). Then
1 is not strictly continuous, (c.f. {7, p. 6-7).

Weighted Convolution Measure Algebra M (S,0)

A.C. Baker and J.W, Baker in [1,2,3] introduced and
studied the convolution measurealgebraM (S),absolutely
continyous measures, analogous to the group algebra
LYG), for a locally compact topological semigroup S.
Later, several authors studied this algebra, for example [5]
and [16]. In particular, in [6] Dzinotyiweyi asked whether
M _ (8) can be made into a convolution measure algebra,
whenever S is a semitopological semigroup.

‘In this section, we give an affirmative answer to this
question and show that this space has the advantage that if

peM, (S)and veMa(S), then p*v= p.v. For a suitable
definition of M2 (S, w) analogous to M 2(8), see [7]. Also
M (S. w) is a solid and left ideal of M,(S.).

Let n=[uvie M, (S, w). Then nw:=pw-vw €
M, (§),so by the Hahn decomposition theorem, there exist
unique £,& in M (S)suchthat nw=&-& and & LE-
Put rr“=(§+)'léand n‘=(§')%.Then n=1[n", 77} such that
Ly Letinl:=n+ 1 and AcM, (S,0).If A satisfies

the following conditions, then A is called (weighted)
convolution measure algebra.

(1) A is a norm-closed subalgebra of M » (S.0).
(i) A is solid, that is if n € M, (S.w) and § e A such that
Inl « 1El implies n € A.
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We define, Ma(S, w)={n e M,(S,0): INjwe Mi(S)),
where Mg (S) = {e M,(S): The mapx — Il (x~* C)is
continuous for each C € K (§)}. Similarly, one can define
M. (S,0) and M_ (S, @): =M (S,0) "\ M (S,0).

Throughout this section, S is a C-distinguished

semitopological semigroup endowed with the ks-topology
(or k-topology).

(3.1) Lemma. Let h: § — [0, +cc] be a Borel-
measurable function and p e M7 (S), ve M. (S)*. Then,
(i) the mapx — Jsh {xy}dv(y) is k -lower semicontinuous
(k-L.S.C.).

(i p* v =wvih)=| [ hixy)duix)avy) =] hxy)
av(y)du (x).

Proof. (i) Let E ¢ § beaBorel set, x € §. Then by (1.1)
(i),

X * V(E) =sup {W(x " K): K is a compact subset of E }.

Butthe map x — v (x " K} is k- continuous, so the map
x> v(x'E )isk-L.S.C. Similarly, let E“=S \E. Then
themapx— v{x'Ey=v(§)-v(x"'E)iskL.S.C. Hence
the map x—v (x 'E ) is k -continuous,

Let(s , )beasequence of positive, Borel measurable

simple functions increasing to 4, pointwise. (see (1.1)).
Then ]s 5, . (X¥) dv (y ) increasingly converge to ]sh (xy)
dv(y).Butthe mapx— | s (xy)dv(y)isk-LSC.
Hence (i) follows.
(ii) Let E < § be a Borel set and K(S ) be directed by
inclusion. Then the family of k -continuous functions {x—
v(x'C): Ce K (§)} is directed upward to the map x—
v(x E), by (1.1) (iil). Hence by (1.1) (ii),

WK ) =] v K ) du ) A Gy)dv(3)du (x).

Therefore, p*v (£ ) = sup {p*VK ): K is a compact
subset of E }=u.v(E ).
By a standard argument and applying (1.1) (ii) is
immediate.

We now state the main theorem of this paper. As a
corollary this answers the open question raised in [6].

(3.2) Theorem. M. (S,w) is a Banach algebra, left
ideal and solid in M, (S.m).

Proof. (i) First of all we show that M/ (S, w) is solid.
Letve M, (S.)and pe M, (S. @) such that Il « IV, Then
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it is easy to show that i « M. Since the map,

y =@y dnioe) = e*5 &)
=inf {| £ oy )l (1): f € €, (S)and £ 2 g}

is k-upper semicontinuous, by (1.2) and [7, p.174].
Thus by a similar argument as is used in {7, p. 10}, one can

show that il we ML(S). Thus pe Ml (S.w).
(ii) Now we show that M (S, @) is aleftideal of M, (S.).

Letpe M3 (S, @), ve ML (S, w)* and K< S be compact.
Then,

Ho*ve (x K ) = va ((x@)'K ) duo (@), by (.1),

and the map (x.a) - vw((xa)' K)isk-separately continuous
bounded function.

Thus by (1.2), the mapx — pw *vo (x 'K )isk-
continuous. But (U * Vo= (L.V)o < Uw). (vo) = (uw) *

(vw) and M. (S ) is solid, by (i),so (UW* V) we Mi (S).
Thatis,p* ve M4 (5,0). In general, let Ec M, (5,0)
and e M. (S, w). Then 1 E*n1<18* nie Ml (S, 0y,
so §*ne ML (S, w), by G).
(iii) M4 (S,0) is a closed subalgebra of M, (S,w). For, let
Ene ML (S,m)and A IR, Then, IE+An 1 « 1§ +IAlInie
M. (S.w). Thus E+An € Mi (S.0), by (i). Let 1, =
[,V 1-n =Vl in Mi (S,0), f &)=L ©-v.0) x"K)
and f (x):= (L@ -vo)(x 'K ), for x € § and compact set K.
Then l!fn- flleo<lin -1l , so fis k-continuous. That is, the

map x—|1 lo(x 'K') is k-continuous. Thus 7 € M! (S, W)
and the proof is complete.

(3.3) Corollary. M_ (S,@) is a convolution measure
algebra.

(3.4) Corollary. Let S be a C-distinguished &-space.
Then M. (S.m) is a Banach algebra, left ideal and solid in
M, (S.0).

Remark.The k-topology is coincided with the original
topology for k-spaces. Thus M p (S,w) isaBanach algebra,

when S is endowed with the original topology. In particular,
every locally compact or complete metric space is £ -space,
(see [171). As a consequence, we answer the question
raised in [6].
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(3.5) Corollary. Let S be either a locally compact or
complete metric semitopological semigroup . Then

M Z(S,w) is a Banach algebra, left ideal and solid in M,
(S.w).

In the following, we consider M! (S.w),whenSisa
subsemigroup of a group. Let m be the left Haar-measure
on a locally compact group G, and S be a Borel subset of
G. We denote

L' (S,0)={h: S >IRIh is Borel-measurable and Izl =
[ 101 camis inite ). 16, g € L1 (5,09, then LI(S,), with

following product, is a Banach algebra.
Fr¢0)= | £ ek ly) dm (x), for yes.

We will show that foreachpe M, T (S,0) * there exist
aunique fe L'(S,) such that, u (E)=| fdm, forE < B (5).

(3.6) Theorem. Let S be a subsemigroup of a locally
compact group with positive Haar- measure. Then

ME(S,w)is L' (S,w) as a Banach algebra.

Proof. (i) First we show that,

M (S) = {pls: peM, (G )and p«m}.

Letp e M, (G ) such that i« mand v=pls. Sinceme

Ma(S)and ug; «m,sopys€ Mq(G),by (3.2). Hence
the map x — v (x 'K ) = iy, (x 'K ) is continuous for each
compact set K. Thus ve M} ().

Conversely, sincem (S )>0,sosupp (inls) #g.Letze
supp (m Is) and W be arelatively compact neighbourhood

of z, clearly m (W) s finite. Let also ve M. (S) and p.(E)=
V(ENS),forE e B(S). Thenp € M, (G) such that v=

s . Suppose m (K )=0, forsome compactsetK < . Then
m'(F ) =0, where m'is the right Haar measure of G and F=

zK, by [10, p. 272]. Let A= m’ .. Then A (Fx ') sm’ (F)
=0, forallxe G. Thus
0= AFxhau=] [ 2700 dr6) du
| |_2r 0%) 20 0) ' 6 s 0

=[ u 0P B ) dm' ).

Thusm’ {ye W: (! F)>0}=0,s0 (K )=0. For,
suppose v (z'! F) = (K )> 0. Since the map x — i (v} F)=
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v(x! F) is continuous on S, so there exists an open
P

neighborhood V of z in § such that W(x* F)> 0, forallx e
V. Thus m' (V) =0, which is a contradiction. Hence (L « m’,
also m'«m, by [10, p. 272}, so u « m and the proof of (i) is
complete.

(i) Let p € M} (S,w)*. Then by using (i) and the Radon-
Nykodym Theorem and the fact that p is o-finite, there

exist aunique f € L' (S, @) such that, w (E) =], fdu, for

Ee B(S).Ingeneral, letn={n", 1l e M} (S,w)and f*f
corresponds to 17, 117, respectively, as above. Then by a
standard argument, one can show that the map 11 — f *-f

is an isometric isomorphism from M ! (S,) onto L! (S,w).

(iii) Let b, ve MJ (S,0) andp £, v+—>g. Then,
T v(C):j F*g(z)dm(z),forCe K(S).
By inner-regularity of u*v and m,

e v(E)=jEf*g (z)dm(z),forE € B (5).

In general, let 77 —>f and §~>g. Then,
Exnofrg=(frg+f*e)-(freg+f*g)
Therefore the proof is complete.

Remark. Prof. H.A M. Dzinotyiweyi recalled that if
m (5 ) >0, then by using {7, p. 16} one can show that the
interior of § 2 is non-empty. Also, every continuous
function on an open subset of G can extend to a continuous

function on G. Thus clearly, M) $)y=L, ()
The following corollary is the Theorem (19.18) in [10].

(3.7) Corollary. Let G be a locally compact group.
Then M4 (G)=L, (G).

In the following, we find M. (S, ) for a subset S of IR
in the Euclidean topology of IR, but with a different
multiplication, related to the results of this paper. Their

- proofs can be obtained by using the definition of M Ls,m).
(3.8) Examples. (i) Let S =({0,11, .), where x . y = min
{x+y 1}, forx,ye S, and @ be a weight function on S.

Then w! <1 and

ML S0y =L (S,0) ® (Al: Ae IR}.

(ii) Let § = [0, +oo) with the usual multiplication [resp.,
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addition]. Then M2 (S,w)= {A0: A€ IR} [resp. L' (S, m)].
(iii) Let S = (10,11, .), where x . y =y forx,y < §. Then

Ma(S,0) =M, (S,) and M., (S,0) = {0}, s0 M. (S,0) #
MLS,w).

(iv) Let §=([0,1}, .), where x . y = min {x, y } [resp. max
{x, y}1 and @ be a weight function on S. Then S is an

idempotent semigroup, so o™ < 1 and M. (S,m)= {10: A
e IR} [resp.{}t-l-: Ae IR}].
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