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Abstract
It has been shown that the Boltzmann equation for the viscosity of the A-phase of
superfluid *He at low temperatures has the same form as for a normal Fermi liquid.
The viscosity coefficients A, B, C, D and E are derived exactly. The 9\2 parameter
plays an important role in determining the temperature dependence of the viscosity

coefficients.

Introduction

Analytical evaluation of the shear viscosities of super-
fluid phases of *He has been investigated by many authors.
' Theseinvestigations have been concentrated mostly on the
B-phase of superfluid *He, which is believed to be an
- isotropic BW state. However, even in this isotropic state,
the collision integrals in the Boltzmann equation are very
complicated and an exact solution for the Boltzmann
equation cannot be found in the whole range of tempera-
tures, except in those near transition temperature, T_, and
at the low temperature limit, T—0 [1,2].

The Boltzmann equation has been solved by approxi-
mate methods for a whole range of temperatures in the B-
phase [3-5] which may be mainly generated in two ways:
the first is by using the variational solution of the kinetic
equation which one can use to find an approximate solu-
tion of the exact collision integral once the exact solutions
in the limiting cases are known [4,5]. Using the second
method, one may construct an approximation of the colli-
sion integral that allows an exact solution [4,6}]; the sim-
plestone is to equate the collision integral to the relaxation
rate of the quasiparticle [7].

The Boltzmann equation contains the streaming terms
and the collision integrals. In a normal Fermi liquid at low
temperatures the only important collision process is the
scattering of pairs of quasiparticles, but in a superfluid
state the quasiparticle number is notconserved, soone also
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has to take into account decay processes in which a single
quasiparticle decays into three, and the inverse processes,
in which three quasiparticles coalesce to form one. For a
normal Fermi liquid, the Boltzmann equation has been
solved exactly by Sykes and Brooker {8] and Hojgaard
Jensen et al. [9]. This equation has also been solved
exactly close to T in the A and B-phases of superfluid *He
by Bhattacharyyaer al. [1]. They showed that the Boltzmann
equation can be solved exactly by treating the difference
between the collision terms for the normal and superfluid
states as a perturbation. Bhattacharyya et al. {1] found that
the shear viscosities drop as (T_-T)'* for temperatures just
below T, and the coefficients of (T.-T)'* are expressed as
a function of normal state properties. Pethick et al. [2]
solved the Boltzmann equation exactly at the low tempera-
ture limit for the BW state. They showed that the shear
viscosity tends to a constant, and the two-quasiparticle
scattering process contributes to the collision integral. The
last result has been obtained by the argument that the total
rate of coalescence and decay processes are less important

by a factor ~e-A/K8T than the two-quasiparticle scattering.
In this paper, we solve the Boltzmann equation exactly

forthe ABM state atthe low tcmperatures,T?C- << Tl' <<,
F c

We show that only the two-quasiparticle scattering pro-

cess is important in the collision integrals and the form of

the Boltzmann equation is the same as normal state. By

using the method of Sykes and Brooker [8] we obtain the
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viscosity coefficients A,B,C,D and E of the A-phase. The
plan of the paper is as follows: in section 2, the collision
integral for the Bogoliubov quasiparticles is obtained, then
in section 3 the Boltzmann equation is written and the
viscosity coefficients are calculated. Section 4 is allocated
to the discussion and concluding remarks.

Collision Integral

In anormal Fermi liquid the total quasiparticle number
is conserved, and therefore the only scattering processes
allowed are those in which the number of quasiparticles in
the final state is the same as the number in the initial state.
Atlow temperatures, the density of the excitations is low,
and consequently the most important processes are those
in which two quasiparticles scatter. The collision integral

for a binary collision, specified by P, + P, P: + Py, fora

normal Fermi liquid is [10]:

1P, D= - ] drz dv3 dP4 W 1 na2 (1-n3)(1-n4) 03 ng (1-1) (1))

1 +€1-83-84) S@1+P,-P3-Py)
1

where i stands for P, and dtpi is the density of states in a
momentum interval dy, , nis the guasiparticle distribution
function and Wzi-w ™+ %W T4 is the transition prob-
ability.

In a superfluid state, the quasiparticle number is not
conserved, and other processes as well as the two-quasi-
particle scattering process can occur. For example, one
quasiparticle can decay into three, or three quasiparticles
can coalesce to produce one. To see this in more detail, one
has to consider the Bogoliubov transformation between
the normal quasiparticle creation and annihilation opera-
tors 0, and 0y and the creation and annihilation opera-
tors 0o and e in the superfluid state, i.e.

apo= %:Ugﬁ ot - Vip Whs
k ; ¥)]
ags = %U&; Opp - ngi‘i ®.pp

where the matrix elements U :3 and Vﬁﬁ can be chosen for
the ABM state as
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where Ep=[e2+|Ag "] "2 and the spin independent part of
A?’ the equilibrium gap parameter of the ABM state is
given by [11]

12 ~
Ar=A(T) {8—3"-] Yu® @

where A(T) is the maximum of the gap. The interaction
between the quasiparticles in superfluid is found by per-
forming a Bogoliubov transformation on the normal state
interaction and is

H=L % <34ft|12>a}aaa; &)

1
4 1234

By substituting equation (2) in equation (5) we get

=L 3 <34l12>Uiod- Vioy U3 as- Vi)
1234

Ui0;-Viot)x Uza,- Voot 6)

where istands for p,o,. Note that, H in equation (6)
contains terms o o3 0 or1, 00F 001 03002, OF OFF Oy L1,
o3 03 0 oy, and 014 013 0 00y which convert one quasi-
particle into three, three quasiparticles into one, two qua-
siparticles into two and the last two terms create four
quasiparticles from the condansate and scatter four quasi-
particles into condansate respectively. The last two pro-
cesses are not allowed, since in each process the energy -
should be conserved in the collision integral, Therefore,
the collision integral in terms of the Bogoliubov quasipar-
ticles may be written as {1,3]

I=1,+L,+1, )

where

w m !‘f,f d;’: dey des de Wi nf (1-08) (L) (1o8)

W1 -¥2- 3 -yl 8(E1-E;-E3Ey), 8)
- @Y g ¥
R 92 =22 ey s eWaz of o (L) 1)
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[Wi+V2-vys-yu] S(E1+Ez-E3Ey), )]

and

3 9
Iy= (:n‘) ! dQ 49z de; de3desW3 nf ndng (1-nd)
4m KgT =~ 47m 2m

(Wi +ye+Vy3-y4] 8 (Er+Ex+Es-Ey), (10)

with the notation of reference [10].* The transition prob-
abilities W,,, W, and W, can be written in terms of the

matrix elements Ugﬁ , V;e and corresponding normal state
collision terms. By substituting equation (3) in the expres-
sions for the transition probability and taking g= P,-P=P,
-P,== 0 for the ABM state at low temperatures (see below)
after a bit of algebra we have

Wa ()= | Vo> (1 [As]lAg] - 2¢2) (1 |Al]]Aq] - 14
E3Ep E\Es J

W (TT)=IV:|2 (1 (A - es24) (1 ad|A - &1

E4Es3 E»E| )

W13('N,)=|V°|2 {1 18dlAd] +ese0) | [AdA] - e
\ EsE, f E4E, /

Wis (T T)-|V°|2 1- |AdIAg +ees) / 1- [a2|Ay - 21
\ EsEs / EE /

Wa (T4 —IVOI 1- |A2"A1|+8251U1 |A4||A3| 3\
31(r ) \ E2E1 f E4E3 ,

W (TT)JV0|2 {1 -|A4”A1| -8481} 1_|A3"A2| +£3£2\‘
4 EsE, EsE,  /
(11

Inthelow temperatures, Gpl =0 and €p == 0 contribute
most to the integrals of the viscosity coefficients (see

section 3), where 8p, is the angle between the gap axis, I,
and the momentum of quasiparticle, P,. The energy delta-

function in equation (8) indicates that6p =0 and e, = 0 (i=
2,3,4) in I ,. Consideration of the following formulae
cos@ij = cos 8, cos 9}. + sing, sinej cos(¢, - ¢j),
cos6,, = cosd,,= cos 6,

cosO,, = cosh,, = cos? &+ sin? & cos ¢,
2 2

*Throyghout the paper we take n=1.
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and

cos8,, = cos8,, = cos?€ - sin? 8 cosg,
2 2

and the presence of the Fermi function n3and p3n$ in1,,
and/, indicates also that 8, = 0 (i=2,3,4) in these collision

integrals. Substituting the transition probabilities, equa-
tion (11), in equations (8)-(10) and using the above results,
we see that practically only the W,,(TT) of the transition
probabilities, equation (11), has non-zero value. Hence
only the two- quasiparticle scattering process contributes
to the collision integrals in the ABM state at low tempera-

tures. Furthermore, by taking Ei =1 in the collision
B

integral I, we see that the collision integral for ABM state

is:

1 A

not)nox+y-t)

{1-no(y)} {1-no(x)} [Wi1+W2-y3-y4] (12)

wherex=BE .y=fE , t= BE, .8=BA(0)0and B=(K Ty
'. Integrating with respect to x and y, after a certain amount
of simplication and ignoring the terms proportional to §,
we see that the collision integral has the form as normal

state [8]. Of course, as we said, 8, = 0 contributes most to
1

the integrands of I, which implies 8<<1, and the limits of
integration on 0 is therefore from 0 to 8 (see section 4 for
the value of 8 ).

Viscosity Coefficients

Inthe hydrodynamics limit, the distribution functionin
the streaming terms in the Boltzmann equation may be
replaced by local equilibrium distribution function. To
calculate the viscosity, one needs to consider a local
equilibrium distribution function corresponding to a spa-
tially varying velocity U, n= (e"(E ,-U) + 1) Keeping
only terms of first order in the departure from equilibrium,
the Boltzmann equation reduces to

npplals,,1 aE,, am_g_ai_ak
2 o n o 3 %

=In@np) (13)

0
where np =%,8n,‘,=8np - npd, Ey characterizes the
P
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deviation from local equilibrium and in obtaining the lhs

of equation (13) we supposed U = V*in order to cancel the '

term oy with the term - L ﬁ’.pl & v.u.
o 3 E

on

The fourth rank viscosity tensor may be defined as

= -n | ?.U._k.-lﬁ’_"ga,,] 14
b """[au+ari 3 1

where m, , the momentum current density, may be ex-
pressed in terms of the Bogoliubov quasiparticle distribu-
tion function:

&3

L Er.a]an' 15)
3l)ma‘hl In| Oltp (

25>

P

Following Abrikosov and Khalatnikov [10], 8n can be
written in terms of the function q(EP, gy

dnp=Ln, piiE!.-l.pl?Ef.aik Ui U 2 s 5
2 3 om & & 3 o
q@E, T)=np Wp (16)

Comparison of equation (14) with equations (15) and (16)
gives

O

. [&] . .
'-Xﬂ—dﬁ’np[a] gn g qEp. T)

~ N
where gi =P; Pt --;— k. 4]

The viscosity tensor fora system with uniaxial symme-
try can be written in terms of the components of symmetry

axis, {, with five coefficients A,B.C,D and E

T = A s Suc + S 8ui) + B®s Lol + i > K) + C BiaBic +
DIl e+ EGin il + 85 L1) (18)

Furthermore, the definition of viscosity in equations (14),
(15) and (17) indicates that n , is a traceless tensor, i.e.
8,M,.,=0, which gives the following Combescot's equali-
ties [7] between the viscosity coefficients:

2A+3C+E=0
4B+ D+ 3E=0
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By taking the gap axis, ; , along the z-axis, we can write the
components of the viscosity tensor in terms of the coeffi-
cients A,B,C,D and E, then by using equation (17) we have

. L 5 bl &
§=§pv§g.‘n_ B 'Ode sinB (1- cos? BF ‘Odsp[E;]iM

(19)
BEY/2) qEpT)

. L B » bl §
B=£va%%-ﬁ "odesune(-5ms‘+6cos29-1) fods,[E_p.]zsedf
BE)qEp T)

20
- ‘ol e 2 7 g [
C —%pv%“—[:‘— B f Odeme(uos‘e+.3.oos2e-§q{ odq,[-E:]Z sech?
BEp2)qEp T)
(21)
D=3 pvim_p "cﬂsm965m4-30m§9+3)’wdq,[i]zsedn2
64 m "o lo Ep

GEp2)qEp T)
22

-3 ‘ol d0s L | g | B 2
E—-B—g-PVP%-B‘OdanG(-Sms‘B+2msze+3-)’odq,[E;]zm

EEw2)qEp T)
(23)

At low temperatures, € = K,T and the function

sech*(BE P/2) is practically only non-zero for the values of
9p= 0 in equations (19)-(23). In the last paragraph of
section 2, we used this fact and proved that the collision
integral for ABM state has the same form as in the normal
state. Hence, q(E', T) can be obtained from the Boltzmann
equation (13) which is similar to the normal Fermi liquid
(of course we keep E_ instead of & and remember that the
limits of the integration on § are 0 and 6 ).

The Boltzmann equation has been solved exactly by
Sykes and Brooker {8] and Jensen er al. [9]. We use the
solution of sykes and Brooker for the kinetic equation.
Equation (13) can be written as

w+f
2

90 - % |_ K& q()=0 @)

where
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K, 9= 41 &0 04
e*+1 ek-0-1

Aa=1 -3—<W(9, ) (1 -cos)” sin? >a, <KW(B, e, (25)

where <A>g, = L ' 2"d¢ ‘ ™ 40 sing A6, 9)
4n o o 8

COS ==

By defining the functions Q(t)= q(t) sech E;-and

00= | deRQu 26)
Sykes and Brooker [8] obtained
_ mam®@D ¥ @n+3) |
ba== é‘, D) 2ne1) {oe]) @neaa) D 2
(tanh k) @7
where
Tnm“’-T)=——32nEFB (28)

1t2<W(9, 0)>a,

By using equations (26) - (27) in equations (19) - (23), and
doing the integration on t, we get:

A=2pAD 4 0DAOB" fn3)
3 m :Ez)(n+1)(2n+1){(n+l)(2n+1)-7q}
” y
[ovfimfor) o
@n3)

B=3pil w0 DAOR* ¥
8 n=0 +1)(2n+1) {(+1) 2n+1) g}

[osponi=d) o

9C =D = -3E=3 pv3lll 1, 0, ) AO) ) > T
4 m n=0

DR+ D (D @+ g} © \ 2lf

where p, ,(x) is the Legendre polynomial functions.

Discussions and Concluding Remarks
In this paper, we have calculated the viscosity coeffi-
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cients of the infinitely extended superfltid *He-A at low
temperatures. Our results can serve as a useful starting
point for variational calculations in the intermediate tem-
perature range where our results are not applicable. We can
also compare the exact results with the approximate colli-
sion integrals [6,7,12], and guess their validity in a whole
range of temperatures.

At low temperatures, the mean free path of quasipar-
ticle is larger than characteristic dimensions in the experi-
ments, and therefore, the experimental measurements of
the viscosity coefficients would not be the bulk ones. The
boundary effects of the apparatus must be taken into
account [13,14], but that is beyond the scope of this paper.
We may calculate the mean free path, I(T), of Bogoliubov
quasiparticle by taking the root mean square of the average
distance travelled by a quasiparticle of momentum P,

whichisL =t V E =tPV . Thisis given by
E,
21—»;2;!13 12 . . 2 ‘ . /2
_|P _ d( & il
’m‘[w} =w [f =1, "'3"“3’['5:] || derd
P

(32

Because of the presence of the Fermi function, n, in the
integrands, only the values of 8 =~ 0 give non-zero value to
the integrands of equation (32) at low temperatures. Fol-
lowing the same procedure as that in section 2, it is easy to
show that T, can be obtained in a similar way as the normal
state quasiparticle lifetime [16]. Hence we write for this
limit

(nKp T )’ +E2

—_— P (33)
1 +exp(-Ep/KgT)

ti=—L_<W ©,y)>s,
16¢r

As we said previously, 0_ is the maximum value of 0
at low temperatures. By comparison of the terms Eg and
(rK T)?inequation (33) we may write Ep~nK T.Now 6
can be found by the fact that nd has only non-zero value
in equation (32) if A(0)8 = Ep~nK,T, which gives
0_~nK_ T/A(0). The scattering amplitude W(8, ¢) is

w(©,0)= ;—t[3A%+A§] (34)

where the dimensionless singlet and triplet components A,
and A are [5]

A=S5,+S,c050+ S, [% (3 cos? 0-1) + % (cos 0-1)2 (cos2¢-1)] +...
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A= (TT, cos6+T, % (3c0s%0-1) = ...} cosd (35)

where S, and T, are related to the Landau parameters. For
small values of 6, the triplet component A, is zero. This is
derived from the fact that the forward scattering sum role
indicates XL T,=0.

By substituting equations (34) and (33) in equation
(32) and doing the integrations we have

(D)= 357 [&]z zn[lgr

= T (36)
C

where 1 _ = 2, The tempera-
= Vit (0, Tc) and y=<W(B, ¢)>/As
ture dependenc(e ofcl):he mlan free gat‘ of the quasipar-

ticles, T+, has also been estimated phenomenologically by
Greaves et al. [17].

The viscosity coefficients depend strongly on the val-
ues of the A, parameters [eq. (25)] which involves the
scattering amplitudes and therefore depends on the values
of the Landau parameters. Wolfle et al. [4] in their calcu-
Mations of the shear viscosity of B-phase used A, as a
parameter which can be determined from other experi-
ments. By using the shear viscosity or the zero-sound
attenuation in the normal state, they obtained the values of
A, ranging from 0.65 at melting pressure to about 0.7 at 20
bar. The values of A, have also been calculated theoreti-
cally by many authors and have been tabulated by Einzel
[18] in Table III of his paper.

In this paper, we need the value of A, at low tempera-
tures. By substituting equations (34) and (35) in equation
(25) and doing the integration we have

4
A=1-1 [M @7

2 12A0)

The expression for the viscosity coefficients A,B,C,D
and E in equations (29) - (31) contain the series whose first

term (n=0) gives the faotor 1 -2 [ 2A0) ]4 Itis clear
1-A2 nKsT

that the contribution of the other terms in the series is
negligible and the viscosity coefficients are

A= %n (T (Tc/T)> (38)
B= 336y adLéé‘ll] Te/T (39)
~ Tc

4
9C=D=-3E=21%Qvn(rc)ﬂ1):)g] (Tc/T)F° (40)
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=1 gyp M
whert.=,1'|('I'c)--5 pvr I T (0, TO).

By using a simple relaxation time approximation,
Combescot [7] obtained the shear viscosity A and B
directly. The other coefficients C, D and E were obtained
with the help of the first sound attenuation formula. The
viscosity coefficients are proportional to the relaxation
time 1(T), which, by using the collision integral and the
scaling argument, Combescot, Vollhardt and Wolfle [19,
20] indicated that ©(T)aT* at low temperatures,

%‘- «-’i‘L«L As a result, the absolute temperature de-
o c

pendence of the viscosity coefficients are: A =< T2, B=
const, C, D and E « T2, Valls et al. [12], by defining a
second rank viscosity tensor and using the same scaling
approach, obtainedn, *<T?,n_=constandn,, <T?which
are consistent with Combescot's results. Comparison be-
tween these results and ours shows the important role of
the A, parameter in determining the temperature depen-
dence of the viscosity coefficients, since the appearance of

the factor # in the formulae for the viscosity coeffi-
A2

cients rises the temperature dependence of these coeffi-

cients by T+.

A more detailed comparison between our exact calcu-
lated viscosity coefficients and approximate collision
integral approach [6] is worthwhile, since one can see the
validity of the approximate approach in the intermediate
temperatures. If we modify this approach by saying that A,
is not a constant parameter at low temperatures, say

-'_1%2« -TL<<1’ and should therefore be determined by
F c

equation (25), it is easy to show that the viscosity coeffi-
cients A,B,C,D and E (eq. (14) of ref. [6]) have the same
temperature dependence as equations (38)-(40). The nu-
merical factors are also nearly equal to each other. Bearing
in mind the fact that agreement between the results of the

exact calculations near T: and the approximate approach
[4] are good, we can say that the latter approach is very
useful for intermediate temperatures.

At extremely low temperatures, say -L- =< -T-C-,
Tc Tr

Combescot [19] showed that the temperature dependence
of 1(T), the quasiparticle relaxation time, is T, By using
his scaling argument in eq. (13) we may write: Ax T3,
BxT%and 9C = D = -3ExT”,

To summarize, the viscosity coefficients A,B,C,D and
E are calculated at low temperatures. The A, parameter
plays an important role in deriving these coefficients. The
approximate collision integral may give good results for
the bulk viscosity coefficients at intermediate tempera-
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tures, since its results at temperatures near T, and low
temperatures are nearly the same as exact results.
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