J.Sci. LR, Iran

Vol.8 No.2
Spring 1997

A STUDY OF OPTIMAL DIMENSIONING OF
QUEUES WITH RESPECT TO SOCIAL AND
INDIVIDUAL PROFIT

G.H. Shahkar and H.R. Tareghian

Department of Statistics, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad,
Islamic Republic of Iran

Abstract
In this paper, a system of GI/G/1/K queue is considered. The optimal

system’s capacity (K), when the system is optimized with respect to the benefit
of the entire system (social optimization) and when the criterion for optimality
is individual gains (individual optimization), is determined and compared. In
social optimization, the system capacity is obtained through maximization of
the system’s profit. However, when individual gains is the criteria, the system
capacity is determined as a result of customers not joining the system because
they estimate that getting service from the system does not yield them any
profit and therefore leave the system. It is shown by simulation that irrespective
of the traffic intensity, p and arrival and service time distributions with
different failure and acceleration rates, the K obtained from social optimization
of the system is always equal or less than the K obtained from individual
optimization. Thus, the social optimization of the system not only maximizes
the system’s profit but also preserves individual gains and prevents the
customer from leaving the system. In this paper, some other interesting results

are also reported.

Introduction

For any queueing system in which customers re-
nege, the system itself reaches a certain size, due to
reneging customers. This self determined capacity (K)
may not even satisfy the intentions of customers about
their waiting time in the system. Since, in the short
period of time during which customers are observing
the behaviour of the queue, they can not correctly
guess the waiting time distribution, and hence their
estimate of their waiting time may be incorrect. In
addition, it is not clear whether the server’s capabili-
ties are optimally utilized, if the queueing system is
designed with the capacity equal to (K).

Keywords: Failure rate functions; Optimization; Queueing
theory; Simulation

It is natural for customers to stay in the system for
service as long as their estimate of their waiting time
is tolerable. In other words, it is profitable for them to
stay and get served. Now if we optimize a queueing
system with respect to the system’s profit without
considering the customer’s waiting time, do we still
satisfy the individual customer’s benefit? And does
not the waiting time of the customer in the optimized
system discourage him from staying in and getting

- served? Rue and Rosenshine [6] have shown that if an
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M/M/1/K system is designed, such that the system’s
profit is maximized, then the benefit of the individual
cutomer is also satisfied. In this paper, the above ques-
tions are considered for the general queueing system
of GI/G/I/K.
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In a GI/G/I/K queueing system, we consider the
following objective function:

' Z= R\ - CL - DK) (1.1)

in which

Z= Expected system profit per unit of time.

R= A fixed fee charged per customer.

A’= The effective arrival rate, i.e., the mean rate of
customers actually entering the system.

C= The cost incurred per customer per unit time.

L= The expected system size.

D= The cost of providing one unit of space, and

K= The system capacity.

The value of K that maximizes Z, is referred to as
social optimization, that is, it maximizes benefits to
the entire system, rather than the personal gain of an

individual customer.
' Now consider the case where customers may re-
nege. If an arriving customer fmds N customers ahead
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N=A(1q )= K(l-p) 1.3)

where q, is the probability that an arriving customer
finds K customers in the system, p, is the probability
of the system being empty, and A is the arrival rate.

It can be shown that (see [2] and [3]):
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where generally 75 is the steady state probability of n
customers in the system at a departure point.

In order to optimize Z, we need L, the average
system size which is obtained from:

k-1
L= Y nma (1.5)

n=0

where 75 can be obtained by solving K equations of:

~of himself in the system, ‘and-if he estimates the mean’: i

service time as 1/u, then his estimate of his waiting -

time is (N+1)/u. Therefore, from an individual
customer’s standpoint we get the following objective
function:

C(N+1)
m

Z=R- (1.2)

The customer will serve his own interest (positive
gain) by joining the queue as long as C(N + /<R,
or equivalently, N < Ru/C-1. Hence, if every customer
uses this strategy, a GI/G/I/K queue results, where
K= [R W/C], (individual optimization).

Rue and Rosenshine have shown that for the
M/M/I/K queueing system,’ Z is concave in K. They
have also shown that the K obtained from social opti-
mization of the system is always less than the K
obtained when the criterion is individual gains.

In the rest of this paper, we will try to examine the
possibility of generalizing Rue and Roshenshine’s re-
marks to the general system of GI/G/I/K. The stimulus
for this study stems from the fact that the implications
of the results obtained from this study can be valuable
in the design and control of queueing systems. We will
first consider the M/G/I/K system.

For M/G/I/K, like any other queueing system in
steady state, the effective arrival rate, A", is equal to
the effective departure rate, i.c.:
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and:

k, = Pr { n arrivals during a service time S=t}

Although A" and L, needed to optimize (1.1) for an
M/G/IK, can be obtained theoretically from (1.3) and
(1.5) respectively, even for the simplest service pro-
cess, achieving numerical results for M/G/V/K needs a
lot of complicated mathematical work [2].

In M/G/I/K the interarrival time is exponential
which has the Markovian property. In some cases, the
memoryless property of exponential distribution may
not be appropriate. For these cases, we will consider
some distributions that have different characteristics.
One particularly useful characteristic is failure rate
function.

Under the assumption of a continuous cumulative
distribution function, B(u), instantaneous failure rate,
h(u), is defined as (see for example [2]):
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L_pr {Service or arrival of will
h(“)=Au]i‘_T}o A ofageu be

compkiedi(u,u +Au)}

=2W (1.7)
1-B()

The hazard or failure rate function, h(u), can be
increasing im u (called an Increasing Failure Rate-
IFR), decreasing in u (DFR), constant, or a
combination of these cases. The constant case implies
the memoryless property.

It can be shown that Erlang distribution, E,, has
IFR with decreasing acceleration when k>1, and a
mixture of exponentials (H,) has DFR (see for ex-
ample [2] pp. 392-393). For Weibull distribution [with
1-F(t) = exp(-(t/B)*)] we can select the shape
parameter o such that we obtain an IFR with
decreasing acceleration, constant acceleration, and
increasing acceleration as well as obtaining even a
DFR.

The pdf of the Weibull distribution is:

f@®)=0f*t* " exp Hﬁ)“] (1.8)

Thus
h ([) = aB-a t(Jr,-l

It is easy to see that for a0 = 1/2 say, the Weibull
distribution is DFR with decreasing acceleration, for
o =2 and a = 3 it is an IFR with constant and
increasing acceleration respectively.

Since analytical study of the queueing models with
general arrival and service processes seems to be im-
possible, the queueing models considered in this paper
are analyzed by simulation. By simulating various
GI/G/I/K systems, we show that irrespective of the
system’s parameters the K obtained from social opti-
mization of the system is always equal or less than the
K obtained from individual optimization.

For the purpose of the simulation study, the fol-
lowing combinations of distributions are considered
and simulated. Erlang distribution is used because of
its flexibility, while Weibull distribution is used be-
cause by changing its shape parameter one can obtain
a distribution with IFR, DFR and even increasing or
decreasing acceleration, and finally generalized Erlang
distribution (GE) is used because it is considered a
good approximation to any distribution. As a matter of
fact, it can be shown that any cumulative distribution
function can be approximated to almost any degree of
accuracy by the convolution of exponential distribu-
tions (see e.g. [2]).

(1.9)
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Simulation

The reason why the system under study is analyzed
by simulation rather than analytical methods is two-
fold. First, because deriving formulae for the system
performance measures (e.g. expected profit rate or
mean waiting time) becomes too complicated when
the arrival and service time distributions are as we
have considered, and in addition, the analysis of some
of the distribution functions (e.g. convolution of expo-
nential distributions) requires numerical approaches.
Second, we wanted to develop an interactive model to
enable us to easily test the effect of various input pa-
rameters on the system performance.

The system performance measures are collected
when the system is in steady state. In order to deter-
mine the time period at which the system reaches
steady state, Welch’s method [4] is used. In this paper
based on Welch’s method, 30 independent replications
of the simulation model are made and a plot of mean
transit time (W) is drawn against time. The results of
two such simulation runs are shown in Figure 2.1. It is
observed that irrespective of the values of p and K,
steady state is reached at approximately 675 units of
time.

Each simulation run consists of the arrival and de-
parture of 1500 served customers. The sample size re-
quired to establish a given statistical significance at a
given level of precision is obtained using central limit
theorem and sequential sampling [8].

The simulation model is constructed based on the
event processing approach [5]. To simulate the
interarrival and service times, samples are drawn from
the corresponding distributions. The method of inverse
transformation [1] is used for this purpose when appli-
cable. For the Erlang distribution, we use the method
of convolution [4], and for the GE distribution used in
this paper, i.c.

G)=(F, *E) @)= J F, (x-y) 4, () @1
[}
where
F(x)=1-¢M* | i=1,2. 2.2)
hence,
Gx)= I ule*‘z’[l-e"‘l("'y)]dy, 2.3)
0

Gx)=1- e et + o) et (1 #1)
Hy - by Hy -y
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=1-e¥ (+w) (W =1,=H) 24) termine if they are drawn from the corresponding dis-
we have tributions. For the final step, the results obtained from
V

1-RN=t_etr. _to_enx )
WK, WK

2.5)

where RN ==1(0,1). To generate random numbers, we
use the well-tested acceptable prime modulus multipli-
cative linear congruential generator (R, = aR, ;(mod
m)), with m = 231-1, a = 630360016 and R, as any
integer from 1 through m-1 [4]. From (2.4) and by
taking y= e™*, we get

y =exp _l_.Ln &yul +R_§£_)_)

B K H

(2.6)

Samples from GE are drawn by solving (2.6) using
numerical methods, for instance fixed-point or New-
ton-Raphson method [10]. The tolerance considered is
0.001.

Model Validation

Various authors [7,8] suggest that for model vali-
dation the three steps of 1) face validation, 2) testing
of model assumptions and 3) testing of input-output
(I/0) wansformation be made.

In this study, after making sure that the logic is
correct, we analyze the model’s 1/O relationship to de-
termine whether the internal behaviour of the system
is reasonable. In the second stage, all the samples
drawn from the various distributions are tested to de-

the M/M/JK simulation model is statistically compared
with the corresponding analytical results. In the M/M/I/K
model, the following assumptions are made (A =1;
R = 300; C = 15; D = 1). Two values of p (0.55 and
0.99) are also considered. As it can be seen from Figures
3.1 and 3.2, the true values of Z and W are always
contained within their respective 95% confidence
intervals.

Any queueing model that has been considered in this
study is fundamentally based on the validated M/M/VK
model. The only difference is that for each model the
interarrival and service times are sampled from the cor-
responding distributions. In addition, for each queueing
model the fact that for K= 1; W= 1/u has been checked.

Discussion of Results

The simulation model is run with different arrival
and service processes, and also with various values of p,
R, C, and D. The results of some of these runs are pre-
sented in Figure 4.1. In analyzing the results, it is ob-
served that irrespective of the aforementioned param-
eters, W and Z are always concave. Therefore, in com-
paring the social and individual optimization, it is not
deemed necessary to change the values of R, C and D.

The results of simulating different queueing models
with different traffic intensities for R = 300, C = 15 and
D = 1 are given in Tables 4.1, 4.2 and 4.3. Comparing
mean transit times in these tables, one can observe that
irrespective of p and queueing model the social optimi-
zation of the system always preserves the customer’s
benefits more than the individual optimization. The only
exception is M/M/I/K in light traffic, where transit times

[Traﬂic Intensity = 0.55]

(Traftic intensity = 0. 99|
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Figure 3.1. Simulation and analytical results for p=0.55
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Figure 3.2. Simulation and analytical results for p= 0.99
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Table4.1. Comparison of results obtained from social and individual optimization

Light Traffic (p=0.55).

Variance System Mean Mean

Capacity Trans. Time | Syst. Profit

MODEL
Arrv.| Serv. | Indv.| Soci. | Indv.|Soci. | Indv. Soci.
IME//K [k=1[1.00 | 030 | 36 9 1.22 11.22 [242.8 |275.3
k=5]|1.00 | 006 { 36 5 095 |0.88 |248.3 | 281.2
k=) 100 | 0.00 | 36 5 0.89 |0.86 |251.5282.7
H /MK 250 1.55 36 4 072 10.71 | 2542|2853
E/W /K 033 | 0.11 36 3 0.66 | 0.64 |254.0|286.6
W, /E/I/IK 19.00; 0.10 | 36 11 530 | 2.89 | 1849|2134
W, /GE/K | 538 { 0.16 | 36 10 262 |2.08 |227.6]253.1
W,/W /K | 060|018 | 36 9 201 ]1.62 | 2343|2622

Table4.2. Comparison of results obtained from social and individual optimization
Heavy Traffic (p= 0.95).

Variance System Mean Mean

Capacity Trans. Time | Syst. Profit
MODEL

Arrv.|Serv. | Indv.[Soci. | Indv.|Soci. | Indv. | Soci.
ME UK k=1( 1.00 | 0.90 21 6 843 [3.15 [147.1|214.6
k=5] 1.00 | 0.20 21 5 7.24 12.60 |166.7 | 230.6
k=e| 1.00 | 0.00 21 5 7.19 [2.56 |169.1]236.1
H /MK 250 4.63 21 4 599 1250 | 187.5] 2435
E/W /K 033 ] 033 21 4 473 12.07 | 2065|2575
W, /ES//K 19.00 0.33 21 7 1099| 4.16 | 83.2 |144.2
Wm/GE/l/K 5381 0.51 21 8 10.08; 4.38 | 112.5|179.8
Wzlwm/l/l( 0.60 | 4.86 21 4 692 1232 | 14231824

Table4.3. Comparison of results obtained from social and individual optimization
Non-stationary (p= 1.50).

Variance System Mean Mean

Capacity Trans. Time | Syst. Profit
MODEL

Arrv.|Serv. | Indv.|Soci. | Indv.|Soci. | Indv.| Soci.
IM/EI/K k=1] 1.00 | 2.25 13 3 1634/ 342 |23.7 | 142.1
k=5{ 1.00 | 045 13 3 17.24{332 | 146 | 1523
k=e} 1.00 | 0.00 13 3 1743|332 |12.6 |156.1
H /MHAK 250 11.53| 13 2 17901 234 | 8.1 160.4
E/W /K 033 | 0.81 13 2 18.23{ 233 | 4.7 165.7
W,/E/UK 19.00 0.75 13 5 13.05{ 5.14 (415 | 876
W.,/GEN/K | 538 | 1.17 13 4 1441 4.21 406 | 1171
W,/W /K | 060 12.11] 13 3 13.21) 343 |53.28} 127.6
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are the same. Although in light traffic one does not ob-
serve a significant difference between some of the indi-
vidual or social transit times (see column 4 of Table
4.1), in individual optimization, the system’s profit is
significantly reduced (see column 5 of Table 4.1). In
heavy traffic and nonstationary queues, the differences
between transit times and the system's profits, when opti-
mized individually or socially, are more significant.

As the customers’ estimate of their gains is based
only on 1/ut and not on the arrival and service processes,
in some cases they might even incure some losses in
entering the system. In light traffic, the difference
between two mean transit times in individual and social
optimization may not be significant in some cases, but in
heavy and non-stationary queues the difference is
significant (see column 4 of the tables).

In columns 2, we have computed the variances of
interarrival and service time distributions. The mean of
Weibull distribution is

EX)=pT (é+ 1) and by using Stirling’s formula

2r
=g 4.1)
(@)*

- In order to obtain a better approximation for B in
using Stirling’s formula, B is first calculated from (4.1)
considering the given value of E(x). Then the simulation
model is run with different values of B, around its calcu-
lated value. By using the fact that for K = 1, the mean
transit time is equal to mean service time, the approxi-
mation is thus improved.

Considering the mean transit times and the variances
of service times in’ queueing models, one can
observe that for light and heavy traffic, even when the
system’s capacity is finite, the trend in Pollaczek-
Khintchin’s formula [3] is observed. This is also true for
the cases where interarrival process is non-Markovian.
For instance, for W. when variance of service
times are 0.18, 4.86 and 12.11, the mean transit times are
1.62, 2.32 and 3.29 respectively.

Considering the graphs in Figures 4.2 and 4.3, it is
observed that as K increases, the confidence intervals of
Z and W widens. This means that the variance of transit

Shahkar and Tareghian
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time is an increasing function of the system capacity.

Conclusion

From this study and for the queueing models that
were considered the following conclusions are drawn:

1. Irespective of traffic intensity and queueing mod-
els, Z and W are concave in K.

2. The K obtained from social optimization is always
equal or less than the K obtained from individual opti-
mization.

3. The social optimization preserves the individual
gains and prevents the customer from leaving the sys-
tem.

4. The trend in Pollaczek-Khintchin’s formula is ob-
served irrespective of the arrival process and traffic in-
tensity.

5. The variance of transit time is an increasing func-
tion of the system capacity.

Analysis of the sensitivity of the service and
interarrival time distributions’ moments on the distribu-
tion of transit times is an interesting topic which the
authors are working on at present.
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