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Abstract
A finite chain calculation in terms of Hubbard X-operators is explored by setting
up a vibronic Hamiltonian. The model conveniently transformed into a form so that
in the case of strong coupling a numerical renormalization group approach is
applicable. To test the technique, a one particle Green function is calculated for the

model Hamiltonian.

Introduction

Different types of systems in which localized electronic
states can be strongly coupled to vibronic modes (phonon)
which may occur at defects or impurities in insulators or
certain molecules. Examples of this type of problems are
Jahn-Teller Systems with degenerate electronic states or
mixed-valence molecules. In these systems quantum
mechanical tunnelling (dynamic effects) between
equivalentconfigurations may occur in which the spectrum
of vibronic levels is calculated. The Hamiltonian of these
systems is expressed in matrix form, using products of
suitable electron-phonon states as a basis.

The matrix elements subsequently diagonalized
numerically, gives the vibronic levels. These types of
calculations become too complex and the matrices become
too large for numerical techniques.

Here, an iteration scheme which makes use of the
numerical renormalization group approach, originally
developed by Wilson [1,2] for the Kondo [3,4] problem,
is used.

The strong coupling constant of electron-phonon
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interaction is considered first and then put in a form, so
that the rest of the modes can be treated perturbationally.
In applying this method to multi-mode electron-phonon
systems, phonon modes are coupled in achain-like fashion/
cluster, so that they can be treated iteratively. The phonon
modes are arranged so that the first mode is the only one
which is vibronically coupled to the multi-level/impurity
system in a cluster model [10], Figure 1.
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Figure 1. Electronic part, H, is coupled to phonon modes
through a coupling constant A.

To realize the scheme, a set of orthogonal basis states
is generated using the Lanczos algorithm. The Lanczos
method is a procedure used for putting any Hamiltonian
matrix form into tridiagonalization form [5]. The method
works by making a succesive choice of basis vectors by
operating with the matrix on any suitable vector. Here the
initial normalized basis vector is X,, and states H"X p H=
1,2,3,... are generated, where H is the original matrix.
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Therefore, X, is selected to be the phonon state which is
linearly coupled to the electronic system. The Hamiltonian
composing electronic system, coupled with the modes, is
set up in matrix form using uncoupled electron and
phonon states as abasis. The matrix is in block form, with
blocks of elements corresponding to a particular number
of phonons excited and non-zero off-diagonal blocks
linking n-phonon states with (n+1) phonon states.

This matrix must be truncated, and it is usually
truncated so that it includes blocks of some specific
number of phonon excitations.

The Model Hamiltonian
The theory is developed for a model Hamiltonian in
the form:

H=H,+H + H, )

where H_ is a purely electronic part, H, describes the
vibronic modes in the harmonic approximation and H
represents the electron-phonon interaction.

The model Hamiltonian (1) can be expressed in terms
of standard basis operators, (Hubbard X-operators),
[6,7,8]. The standard operators are those that create and
annihilate states of the non-interacting model, They are
definedby X  =Ins><n’s’l,wherelns>are the eigenstates
of the uncoupled Hamiltonian. By making use of the
above operators, (1) becomes [9,10]:

H=2Ens nsXm+ z wkbl:bk‘*‘
ns k
)
SAS™ (b + biws X
k

ns,n's

where b{, b, are creation and annihilation operators for

ns,n's'

the phonon of frequency @, and A is the matrix

element of H, between states Ins> and In's’> divided by

V2w« .

Due to exploring an iterative scheme, a canonical
transformation is used, so that in the new representation,
the electronic part is coupled in a single mode with
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creation and annihilation operators B I, B, where

ABY = XAxbi . B = 2k bi 3)
k

A=A DA . A=Ak @)
k

In the new representation, H, is no longer diagonal,
but takes the form ¥, D' Bs", s >1, where the orthogonal

transformation to the new phonon states is denoted by:

Bs =2 0tis b (5)
k

ks = Afks
with o, real.
A column vector Is >= (¢, ), where k denotes the

components of the vector is introduced. The commutation
relation reads:

(B, Bdl = 3, ot stuis' [bi, bil= 8 (6)
kk'

The diagonal term Xwbibi transforms to a non-
k

diagonal form as follows:

Y wibibe = Y Q ok ous o) BB =
k stk

. ¥
ZDS ‘Bs Bs-
where the matrix element D is given by
D = g‘,wk Otks Olgs - ®

The form of the proposed iterative scheme for the
model Hamiltonian isillustrated in Figure 2, with diagonal
elemenls D and off-diagonal ones D, s#5".
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Figure 2. Diagramatic representation of the chain of phonon coupled to multi-level

electronic state
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The Phonon Basis States

In the following calculations based on Lanczos
algorithm, one can show that the ¢, s can be chosen so
that only the nearest neighbour matrix elements D, s” =
s+1 need to be taken into account.

This method works by making a successive choice of
basis vector in such a way as to produce a transform
matrix that is tri-diagonal.

A complete set of orthogonal basis state: {I11>,12>,...
in >,...} can be generated where the first vector I1 > is
defined as follows:

11 >=B10>= S Al k > ©)
k

with Ik >= bz 10>, where 10 > is the vacuum of H |
The vector 11 > is equal to (A)= (a, ) corresponding to
frequency D .

~2
D =<1H|1>=X0ck  (10)
k

The second vector 12> is chosen to be orthogonal to
11>, The coupling constant D , and D,, are calculated as
follows:

~)
Du=<1uﬁ|2>:Nq2w£M-Dﬁ (11)
k

3
Dzz=<2aH,,|2>=D3‘2D1# (12)
Dy - Du
where D= <1IH, 11>, ancl D,=< 11H;11>. The procedure
is continued to obtain the general form of vectors which
corresponds to In-1>, In> and In+1> modes along the
chain as shown in Figure 3.
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Figure 3. The n-1, n and n+1 terms along the cluster
The (n+1)* phonon state can be written as

i o~ ~
In+1>=D, n41 [Din > Dpnln> -Dpypln-1> | (13)

where D= HP.
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The general form of H, on the basis of the new
representation with only the nearest neighbour modes
coupled to each other may be written as

. H,=Y. D BuBn +Y. D, n (BaBn1 + BniBy)

n=1

(14)

n=2

ForA=0,onehas H,=H, + H witheigenstates lny>, where
v labels the electronic part and r represents the phonon
excitation number.

Application in a Two-Level System

Theiterative schemeis applied toatwo-level clectronic
system coupled to phonons. To perform the scheme, first
we take into account the first mode of frequency D, ,and
diagonalize the Hamiltonian matrix H plus the firstphonon
mode along the chain which is directly coupled to it.
Secondly, the diagonalized states of the first stage are
used as a basis to take in account the next mode along the
chain. Thiss then, is diagonalized. A new Hamiltonian is
constructed by using these, to include the next mode
along the chain and so on. As an approximation in
calculating the lower energy states, the basis is truncated
and only a limited number of states is retained in each
stage. The model Hamiltonian is given by:

H= Y, Eici'ci +1(cico + cica) + 2. Ak (b + by
i=ab

(15)

(caca - citcs) + Xk b
k

The creation and annihilation operators ¢ , ¢, and c2,
¢, correspond to the electronic states at sites a and b,
respectively, with an overlap matrix element, ¢.

To write the Hamiltonian in a slightly different form
we introduce bonding and anti-bonding operators, namely,

+
Cipo= 21 (ca = cb),
— ___)0

In terms of these operators we get

H= (Eot+t) C1C1 + (Eo -t) CoCo

. (16)
+ 2 Ak (0F + b)) (C1Co+ CoCY) + Y. i bitbe
n k
On the new basis states we have

H= (Eo+t) CIC1 + (o -1) CoCo+ 3Dy ByBn

n=1
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+ 3Dpstn Bn+1Bn+ BuBnst) + AB] + B)

n=1

(CICo+ CiCy) (17

We keep the first mode and ignore the rest to
diagonalize the Hamiltonian // , corresponding to the first
stage of our iterative scheme (Fig. 4).
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Figure 4. The first mode coupled to electronic system

H,

Then we may write,

Hy= (Eo+0) C{Cy + (Eo 1) C3Co 18)
+ DuiB{By + A(Bf + B)) (CIC1 + C3C1)

In terms of Hubbard X-operators we can write,

Hi=(Eott) 0 Xo+ (Eo-t)1 X1 (19)
+
+ A(B1 + B)) (1Xo+ oX1) + DuB1B)
For E = 0 and in the case of, A= 0 by considering the
first phonon mode of the chain, we get

Hi=1t00Xo + 1,X,+ D11BIB) (20)
where ¢ =t and ¢ =-t.

The eigenstates of diagonal part are given by
ny>=Vn! B1)Y 10> Iy >, n=0,12,3,...y=0,1 (21)

In this notation y= 1 denotes the (+) parity, similarly
to a spin-up system, also, ¥ = 0, denotes the (-) parity
which bears similarity to the spin-down system. The set of
basis vectors {Iny>, ne€ N, y=0,1} is broken down into
two subsets belonging to /, subspare

S;= {lny2,y=+, for n even, y=—, for n odd}

S,= {lny2,y=—, for n even, Y=+, forn odd} (22)

The subsets S, and S, determine two blocks, the first of
which corresponds to

H = (-1)"t + nD1) (23)
and the second,

HP= - (-1)"t + nD1y (24)
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where n denotes the number of excitation phonons. H¢"

and H$® are related to diagonal elements of (+) and (-)
parity blocks, respectively.

The Effective Hamiltonian
In the case of A# 0, using lro. > to represent the basis
states for the first block of H, we may write Ira> as alinear
combination of diagonal states (i.e. S D

lrot >= Zq,f;’ | ny > (25)
ny

with r representing the phonen excitation number and o
denoting the parity of states.

Also, for the negative block, Isf> can be written as a
linear combination of S :

Isf >= Z q:liy, Iy >
n'y'

(26)

The matrix elements of H can be established with
respect to the above basis

H_ _=<ny H | ny> 27)

with H | which is taken from Equation (20).

Here H decomposed into two blocks corresponding to
the states lroc > and s >.

The next stage in this process is to numerically
diagonalize H.

A mode is added to the chain in the next stage, causing
expansion of the matrix size, so that we can write

‘12:[71+H12= z ;,'iXi+Dzz+B;Br+D12(Bz+Bl+BI+BZ) (28)
i=0,1

where ; stands for the diagonalized form of the preceding
part. The eigenstates for this system, namely Ir'oc”> and
Is"B"> can be expressed as a linear combination of Iro. >
and Isf >.

ro >= Y, Fon, | ro, na >
ra, m

Is’B > = 2 qu'? I sB, ny>  (29)
B,

Then the bosonic operators B | and B, are written in terms
of X -operators.
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XD (30)

raX s + Esﬂ'

Bi= 2, (gr&?
ra, 58
where g and %7 @ are real.

Now, H , isevaluated in terms of X-operators. Then the
diagonalized form of H, for the basis Ir" "1 > and Is "B lis
calculated.

The matrix elements of the H, for each block are
constructed such that the alternating states Iro.> and s >
are replaced one after the other, each time adding a
phonon of the second type.

The matrix elements of H, are calculated as

(rlal, nolH 51y, nz) =
QIO‘I’ niHy + Do, (BIB2+B1B1) s, né)
=H16n2.n; 8ryat, 51

+D2 2
re,

@B ot 1) 8y 1 B0y ]

€29)
For the third mode along the chain the Hamiltonian is
written as

Hs= H, + DxR3B+Dxi(B; Bs+B3 B)) (32)
Having expressed H, analytically, its Hamiltonian is
numerically diagonalized.

The matrix elements of H, are worked out in the same
method as before;

o s= Y, q,"a,o’,,3 1 ra’, n3>
rd, m
~5B
5B >= 3, Qepn ) 5B ny > (33)

sBn

The whole process then continues, each time adding a
new mode to the chain which increases the size of the
matrix.

One Particle Green Function
The optical transitions are proportionate to the
imaginary part of the Fourier transform of response
function [11,12,13]:

G(0)= -i < 0ITX(HX(0)I0 > (34)
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where ¢ = time, 10> = ground state, T= time ordering
operator.

A single particle Green function corresponding with a
two-level system coupled to asingle phonon mode may be

written as:

GH= << X (n): X, (0)>> (35)
where
X= z {(2 gue *m)m ;
ra, $ neven

( “rﬂ “r ) ﬂXra} (36)
=Y W aXg+ i $Xra

ro, sB

(37

WP =3 qifqh

with correspondence between v, Y'and n, n"as:

b Y =——n"od

Y=+ —> nod

a)" Y =-— neven

'\ Y=+ - n" even

Go(w+i8) = 1 _[Xo-uXu]
21 [@- (t1 - to) + i8]

(i 55) > P
ra,sp [@- (tra - [sﬂ) + l&

X |~s/1 rog2
( ”> 01 (38)
[@- (tsp - tra) + i8]
with numerically measurable variables w7 8, 5% "®,
(X ro and (spX sp) where
TrreX, -BH
(raX roy = IrraXsq el } (39)

T, et

The spectral density of states may be calculated as
follows [14]

p (@) =:Lim G + i)
¥4
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=1 Y < pXp> ww* $|2 Olw-(ts - tra)} +
2 ra,sﬁ

rB,ra 2
<aXra> U

0o - Ura-t)] (40)
The function p(w) represents a number of sharp lines
which are spread over the range of energy at positions
AE=l1 - 1l
The strength of lines is calculated numerically from
yrest yebre < X >and < X >. The presence of the

coupling A in Equations (19,28) as well as the temperature
dependence of some measurable quantities such as (raX ra)

and (:,BX sﬂ) affect the strength of the spectral density of
states.

Taking into account the second mode along the chain
in this diagonalizating process, new variables should be
evaluated.

To compare this procedure with those of alternative
methods of calculation, the reference [11] is introduced.

Conclusion

In summary an interation scheme which makes use of
the numerical renormalization group approach has been
used to calculate the spectrum of vibronic levels due to
dynamic effects which occured in certain molecules or
impurities in insulators.

The Hamiltonian of these systems is expressed in
matrix form using products of suitable electron-phonon
states as a basis.

In applying the method to multi-mode electron-phonon
systems, phonon modes are coupled in a chain-like fashion.
Then, a set of orthogonal basis states is generated using
lanczos algorithm.

The matrix form of the Hamiltonian is expressed in
block form with blocks of elements corresponding to a
particular number of phonon excited and non-zero, off-
diagonal blocks linking n-phonon states with (n+1) phonon
states. Since the matrix elements are subsequently
diagonalized numerically to give the vibronic levels, the
matrices becomes too large for numerical techniques.

Therefore, for the calculations based on lanczos
algorithm, only the nearest neighbour matrix elements
along the chain need to be taken into account.

The iterative scheme is then applied to a two-level
electronic system coupled to phonons. In performing the
scheme the first mode is taken into account, followed by
diagonalizing of the Hamiltonian matrix, plus the first
phonon mode along the chain whichis directly coupled to
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it. The diagonalized states of the first stage are used as a
basis to take into account the next mode along the chain.
This; then, is diagonalized. This diagonalization process
is continued by considering a new mode along the chain
each time. As an approximation in calculating the lower
energy levels, the basis is truncated and only a limited
number of states is retained.

Itis convenient to introduce bonding and antibonding
operators, as well as, Hubbard X-operators. Then the
Hamiltonian is written in a slightly different form.

Also to obtain a set of basis vectors, which determines
two blocks belonging to an uncoupled Hamiltonian, the
coupling constant is first set to be zero.

Inthe case of anon-zero coupling constant, an effective
Hamiltonian is calculated, taking new basis states for the
blocks as linear combinations of the diagonal subsets. The
matrix elements are established with respect to the above
basis. The diagonalizing process is used in each stage
when a mode is added to the chain.

Finally, to calculate the spectral density of states, a
single particle Green function corresponding to a two-
level system, coupled to a single mode, is worked out. A
number of sharp lines which are spread over the range of
energy represent the spectral density of states and the
strength of lines is affected by the coupling constant as
well as temperature dependence of some measurable
quantities.
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