
تعداد نشریات | 163 |
تعداد شمارهها | 6,878 |
تعداد مقالات | 74,135 |
تعداد مشاهده مقاله | 137,878,820 |
تعداد دریافت فایل اصل مقاله | 107,237,588 |
تهیه و تعیین خصوصیات نانو بورات مس، آهن و منگنز با روش همرسوبی شیمیایی و سینتیک رهاسازی این عناصر در آب و خاک | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 6، شهریور 1404، صفحه 1479-1493 اصل مقاله (2 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2025.391682.669898 | ||
نویسندگان | ||
کتایون خسروی1؛ احمد تاج آبادی پور* 2؛ محسن حمیدپور1؛ محمد ثابت3 | ||
1گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه ولی عصر (عج) رفسنجان، رفسنجان، ایران | ||
2عضو هیات علمی گروه علوم و مهندسی خاک دانشکده کشاورزی دانشگاه ولی عصر رفسنجان ایران | ||
3گروه شیمی، دانشکده علوم پایه، دانشگاه ولی عصر (عج) رفسنجان، رفسنجان، ایران | ||
چکیده | ||
این پژوهش به تهیه و ارزیابی نانو بورات مس، نانو بورات آهن و نانو بورات منگنز با استفاده از روشهای نوین شیمیایی پرداخته است. نانو کودها با فراهم کردن تدریجی و کنترلشده این عنصر، میتوانند کارایی جذب گیاهان را بهبود بخشیده و مخاطرات زیستمحیطی ناشی از کودهای شیمیایی را کاهش دهند. در این مطالعه، خصوصیات ساختاری نانو ذرات سنتز شده با استفاده از تحلیلهای XRD و مطالعات مرفولوژیکی مورد بررسی قرار گرفت. نتایج نشان داد که نانو ذرات بورات مس، آهن و منگنز به درستی سنتز شدهاند و اندازه کریستالیت آنها بهترتیب 5/9، 5/10 و 12 نانومتر بود. علاوه بر این، سینتیک آزادسازی بور از این نانو ترکیبات در محیطهای آبی و خاک مورد بررسی قرار گرفت. نتایج نشان داد که نانوترکیبات تولیدشده قابلیت آزادسازی تدریجی و کنترلشده بور را دارند که این روند از طریق برازش دادههای آزمایشگاهی به مدلهای سینتیکی الوویچ، شبه مرتبه دوم و تابع توانی ارزیابی شد. مقادیر پارامترهای سینتیکی از جمله ضریب α و β در معادله الوویچ، qe و k در مدل شبه مرتبه دوم و ضریب a در مدل تابع توانی، سرعت و میزان آزادسازی بور را بهطور کمی مشخص کردند. این نتایج نشان دادند که نانو بورات آهن بیشترین سرعت و میزان آزادسازی بور را در مقایسه با سایر ترکیبات داشته و مدل الوویچ و شبه مرتبه دوم بهترین برازش را با دادهها داشتند. این ویژگیها موجب بهبود کارایی تغذیه گیاهان و کاهش سمیت خاک میشوند. همچنین، استفاده از این نانو کودها میتواند به بهبود متابولیسم گیاه و افزایش رشد، نمو و کیفیت تغذیهای محصولات کمک کند. این پژوهش نشان میدهد که نانو کودهای بورات میتوانند بهعنوان یک روش مؤثر برای بهبود تغذیه گیاهی و افزایش پایداری کشاورزی به کار گرفته شوند و پتانسیل بالایی برای استفاده در کشاورزی پایدار دارند. | ||
کلیدواژهها | ||
رهاسازی کنترل شده مواد مغذی؛ کشاورزی پایدار؛ نانو کودها؛ نانوذرات بور | ||
عنوان مقاله [English] | ||
Synthesis and Characterization of Nano Copper, Iron, and Manganese Borates Using a Chemical Coprecipitation Method and the Release Kinetics of These Elements in Water and Soil | ||
نویسندگان [English] | ||
Katayoun Khosravi1؛ Ahmad Tajabadi Pour2؛ Mohsen Hamidpour1؛ mOHAMMAD SABET3 | ||
1Department of Soil Science and Engineering, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran | ||
2soil science department faculty of agriculture Vali-e-Asr university of Rafsanjan Iran | ||
3Department of Chemistry, Faculty of basic Sciences, Vali-e_Asr University of rafsanjan, Rafsanjan, Iran | ||
چکیده [English] | ||
This study focuses on the synthesis and evaluation of nano copper borate, nano iron borate, and nano manganese borate using advanced chemical methods. Nano-fertilizers, by enabling the gradual and controlled release of boron, can improve nutrient uptake efficiency in plants and reduce environmental risks associated with conventional fertilizers. The structural characteristics of the synthesized nanoparticles were analyzed using X-ray diffraction (XRD) and morphological techniques. The results confirmed successful synthesis, with crystallite sizes of 9.5 nm, 10.5 nm, and 12 nm for copper, iron, and manganese borates, respectively. Furthermore, boron release kinetics from these nanomaterials were evaluated in both aqueous and soil media. Data fitting to Elovich, pseudo-second order, and power function models revealed that the nanoformulations provided sustained and controlled boron release. Kinetic parametersi ncluding α and β (Elovich model), qe and k (pseudo-second-order model), and a (power function model). were calculated to quantify the release rate and capacity. Among the tested compounds, nano iron borate showed the highest release rate and efficiency. The Elovich and pseudo-second-order models exhibited the best fit to the experimental data. These findings suggest that nano borate fertilizers can enhance plant nutrient efficiency, reduce soil toxicity, and potentially improve plant metabolism, growth, and crop quality. This research highlights their promise as an effective tool for improving plant nutrition and advancing sustainable agriculture. | ||
کلیدواژهها [English] | ||
Boron Nanoparticles, Controlled Release of Nutrients, Nano Fertilizers, Sustainable Agriculture | ||
مراجع | ||
Ahmadi, M., and Souri, M.K. (2018). Growth and mineral elements of coriander (Corianderum sativum L.) plants under mild salinity with different salts. Acta Physiologia Plantarum, 40, 94-99. Aljbour, S.H., Al-Harahsheh, A.M., Aliedeh, M.A., Al-Zboon, K. and Al-Harahsheh, S. (2017). Phosphate removal from aqueous solutions by using natural Jordanian zeolitic tuff. Adsorption Science & Technology, 35, 284-299. Bellaloui, N., Turley, R. B., Stetina, S. R. and Zhang, J. (2015). Water stress and foliar boron application altered cell wall b and seed nutrition in near-isogenic cotton lines expressing fuzzy and fuzzless seed phenotypes. Plos One, 10 (6), e0130759. Brdar-Jokanovic, M. (2020). Boron toxicity and deficiency in agricultural plants. International Journal of Molecular Sciences, 21 (4),1424. doi:10.3390/ijms21041424. Berlin, J. (2011). Analysis of boron with energy dispersive X-ray spectrometry: Advances in light element analysis with SDD technology. Imaging & Microscopy, 13, 19-21. Chien, S.H. and Clayton, W.R. (1980). Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Science Society of America Journal, 44, 265-268. Chinnamuthu, C. R and Murugesa Boopathi, P. (2009). Nanotechnology and Agroecosystem. Madras Agricultural Journal, 96(1-6), 3-17. Couch, E.L. and Grim, R.E. (1968). Boron fixation by illites. Clays Clay Minerals, 16,249-256. Dastafkan, K., Li, Y., Zeng, Y., Han, L. and Zhao, C. (2019). Enhanced surface wettability and innate activity of an iron borate catalyst for efficient oxygen evolution and gas bubble detachment. Journal of Materials Chemistry A, 7, 15252-15261. Deb, N. (2012). Plant nutrient-coated nanoparticles and methods for their preparation and use. U.S. Patent Application, 13(7), 661-825. Feigenbaum, S., Edelstein, R. and Shainberg, I. (1981). Release rate of potassium and structural cations from micas to ion exchangers in dilute solution. Soil Science Society America Journal, 45,501-506. Gavriliuk, A., Trojan, I., Boehler, R., Eremets, M., Zerr, A., Lyubutin, I. and Sarkisyan, V. (2002). Equation of state and structural phase transition in FeBO3 at high pressure. Pis’ma v Zhurnal Éksperimental’noœ i Teoreticheskoœ Fiziki, 1, 25-27. Ghasemi-Fasaei, R., Tavajjoh, M., Olama, V., Molazem, B., Maftoun, M., Ronaghi, A., Karimian, N. and Adhami, E. (2007). Copper release characteristics in selected soils from southern and northern Iran. Soil Research, 45, 459-464. Goldberg, S., Forster, H.S. and Heick, E. L. (1993). Temperature effects on boron adsorption by reference minerals and oils. Soil Science, 156(5), 316-321. Goldberg, S. and Glaubig, R.A. (1986). Boron adsorptoin and silicon release by clay minerals kaolinite, montmorillonite, and illite. Soil Science Society of American Journal, 50, 1442-1448. Hamidpour, M., Karamooz, M., Akhgar, A., Tajabadipour, A. and Furrer, G. (2017). Adsorption of cadmium and zinc onto micaceous minerals: Effect of siderophore desferrioxamine B. Pedosphere, 29, 590-597. Havlin, J.L., Westfall, D.G. and Olsen, S.R. (1985). Mathematical models for potassium release kinetics in calcareous soils. Soil Science Society of America Journal, 49, 371-376. Horta, M.D. and Torrent, J. (2007). Phosphorus desorption kinetics in relation to phosphorus forms and sorption properties of Portuguese acid soils. Soil Science, 172, 631-638. Ichikuni, M. and Kikuchi, K. (1972). Retention of B by travertines. Chemical Geology, 9(13-21). Jin, J.Y., Martens, D. C. and Zelazny, L .W. (1987). Distribution and plant availability of soil boron fractions. Soil Science Society of America Journal, 51, 1228-1231. Madadi Paein Roodposhti, A., Akbarpour, V., Bahmanyar, M.A., and Ashnavar, M. (2023). Evaluation of nano iron and zinc fertilizers on quantitative and qualitative characteristics of Lallemantia royleana Benth. Iranian Journal of Medicinal Plant Research, 9(1), 1-15. (in Persian) Mengel, K. and Dou, H. (1998). Release of potassium from the silt and sand fraction of loess-derived soils. Soil Science, 163, 805-813. Moradgholi, E. (2021). Role and effects of nano-biomic fertilizers in sustainable agriculture and healthy crop production. 5th National Conference on New Technologies in Agriculture, Natural Resources, and Environment of Iran. (in Persian) Naderi, M. R. and Danesh-Shahraki, A. (2013). Nanofertilizers and their roles in sustainable agriculture. International Journal of Agriculture and Crop Sciences, 5(19), 2229-2232. Nematollahi, M.R., and Karimipour, H. (2006). Applications of nanotechnology in optimized agricultural use of pesticides and fertilizers. Proceedings of the 1st National Conference on Nanotechnology in the Environment, Amirkabir University of Technology, Tehran, 141-156. (in Persian) Payvandi, M., Parandeh, H., and Mirza, M. (2011). Comparison of the effect of nano iron chelate and conventional iron chelate on growth parameters and antioxidant enzyme activity of basil (Ocimum basilicum). Journal of Cellular and Molecular Biotechnology, 1(4), 43-48. (in Persian) Rehman, A., Farooq, M., Rashid, A., Nadeem, F., Stuerz, S., Asch, F., Bell, R. and Siddique, K.H. (2018). Boron nutrition of rice in different production systems. A review. Agronomy for Sustainable Development, 38,25. Rehman, A., Farooq, M., Ata Cheema, Z., Nawaz, A. and Wahid, A. 2014. Foliage applied boron improves the panicle fertility, yield and biofortification of fine grain aromatic rice. Journal of Soil Science and Plant Nutrition, 14 (3), 723-733. doi:10.4067/s0718-95162014005000058. Reyhanitabar, A. and Gilkes, R.J. (2010). Kinetics of DTPA extraction of zinc from calcareous soils. Geoderma, 154, 289-293. Saha, U.K., Liu, C., Kozak, L.M. and Huang, P.M. (2004). Kinetics of selenite adsorption on hydroxyaluminum- and hydroxyaluminosi-licatemontmorillonite complexes. Soil Sci Soc Am J, 68, 1197-1209. Santos, G.C., Valladares, G. S., Abreu, C. A., de Camargo, O. A. and Grego, C. R. (2013). Assessment of copper and zinc in soils of a vineyard region in the state of Sao paulo, Brazil. Applied and Environmental Soil Science, 790795. Saurabh, K., Prakash, V., Dubey, A.K., Ghosh, S., Kumari, A., Sundaram, P.K., Jeet, P., Sarkar, B., Upadhyaya, A., Das, A., Kumar, S., Makarana, G., Kumar, U., Kumar, A. and Singh, R.R. (2024). Enhancing sustainability in agriculture with nanofertilizers. Discover Applied Sciences, 4(10), 2067. Sikora, F.J., Copeland, J.P., Mullins, G.L. and Bartos, J.M. (1991). Phosphorus Dissolution Kinetics and Bioavailability of Water‐Insoluble Fractions from Monoammonium Phosphate Fertilizers. Soil Science Society of America Journal, 55, 362-368. Souri, M. K. and Bakhtiarizade, M. (2019). Biostimulation effects of Rosemary essential oil on growth and nutrition uptake of tomato seedlings. Scientia Horticulture, 243, 472476. Souri, M. K. and Hatamian, M. (2019). Aminochelates in plant nutrition: A review. Journal of Plant Nutrition, 42(1), 67-78. Taghdis, S., Hejazi Mehrizi, M. and Jalali, V. (2016). Effect of oxalic and citric acids on zinc release kinetic in two calcareous soils. Commun Soil Sci Plant Anal. 47, 2479-2489. Tohidloo, G. and Souri, M.K. (2009). Uptake and translocation of boron in two different tomato (Lycopersicon esculentum Mill) genotypes. Horticulture Environment and Biotechnology, 50(6),487-491. Torabian, Sh., and Zahedi, M. (2011). Effect of foliar application of iron sulfate in conventional and nano forms on the growth of sunflower cultivars under salinity stress. Iranian Journal of Field Crop Science, 44(1), 109-118. (in Persian) Uluisik, I., Karakaya, H. C. and Koc, A. )2018(. The importance of boron in biological systems. Journal of Trace Elements in Medicine and Biology, 45,156-162. Vera, A., Moreno, J. L., Garcia, C., Morais, D. and Bastida. F. (2019). Boron in soil: The impacts on the biomass, composition and activity of the soil microbial community. Science of the Total Environment, 685, 567-573. Yadegari, R., Niakan, M., and Masavat, A. (2011). Comparison of nano and non-nano zinc fertilizers on growth indices of chickpea (Cicer arietinum L.) under different salinity levels. 1st National Conference on Medicinal Plants and Sustainable Agriculture, Hegmataneh Environmental Assessment Association, Hamedan, 49-53. (in Persian) | ||
آمار تعداد مشاهده مقاله: 40 تعداد دریافت فایل اصل مقاله: 39 |