
تعداد نشریات | 163 |
تعداد شمارهها | 6,878 |
تعداد مقالات | 74,135 |
تعداد مشاهده مقاله | 137,878,820 |
تعداد دریافت فایل اصل مقاله | 107,237,588 |
مقایسه کلسیم و سدیم در آزادسازی و تثبیت مجدد پتاسیم در برخی از خاکهای جنوب ایران با ویژگیهای مختلف فیزیکی، شیمیایی و مینرالوژیکی | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 6، شهریور 1404، صفحه 1631-1646 اصل مقاله (1.77 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2025.393016.669917 | ||
نویسندگان | ||
مهدی نجفی قیری* 1؛ حمید رضا بوستانی2؛ نازنین سلیمانی2؛ یونس قارزی2 | ||
1دانشیار بخش علوم خاک، دانشکده کشاورزی و منابع طبیعی داراب، دانشگاه شیراز | ||
2گروه علوم خاک و آب، دانشکده کشاورزی و منابع طبیعی داراب، دانشگاه شیراز، شیراز، ایران | ||
چکیده | ||
تبادل پتاسیم بین لایهای کانیها با کاتیونهای مختلف محلول خاک میتواند سبب آزادسازی این شکل پتاسیم و تأمین بخشی از پتاسیم مورد نیاز گیاه در خاکهای تخلیه شده از پتاسیم شود. توانایی کاتیونهای مختلف در تبادل پتاسیم در خاکهای مختلف میتواند متفاوت باشد. در تحقیق حاضر، توانایی محلولهای 01/0 مولار کلرید کلسیم، کلرید سدیم و مخلوط کلرید کلسیم و سدیم در عصارهگیری پتاسیم غیرتبادلی از چهار خاک با ویژگیهای مختلف طی 12 بار عصارهگیری 15 دقیقهای و تغییرات در توانایی تثبیت مجدد پتاسیم توسط این خاکها مورد بررسی قرار گرفت. خاکهای مورد مطالعه دارای مقدار بالایی اسمکتیت در بخش رس بوده و کانیهای کلریت، ایلیت و پالیگورسکیت نیز به مقدار کمتر یافت میشود. در همه خاکها، کلرید سدیم مقدار پتاسیم بیشتری را نسبت به کلرید کلسیم عصارهگیری کرد (به ترتیب افزایش 24، 64، 68 و 83 درصدی برای خاکهای یک، دو، سه و چهار 1، 2، 3 و 4). بیشترین مقدار پتاسیم از خاک سه (Ustorthents) و کمترین آن از خاک 4 (Torriorthents) استخراج شد. اگر چه در سه مرحله اولیه عصارهگیری، تفاوت معنیداری بین کلرید کلسیم و کلرید سدیم از نظر استخراج پتاسیم وجود نداشت اما در 9 مرحله بعدی، کلرید سدیم مقدار بیشتری پتاسیم را از همه خاکها استخراج کرد (افزایش 47 تا 149 درصدی) که این میتواند در نتیجه تأثیر سدیم بر پراکندگی رسها و تماس بیشتر محلول با محلهای تبادلی و جلوگیری از تثبیت مجدد پتاسیم توسط اسمکتیتها باشد. توانایی تثبیت پتاسیم در خاک یک (Haploxerets) بسیار بیشتر از سایر خاکها بود و خاکهایی که تحت تأثیر عصارهگیری کلرید سدیم قرار گرفته بودند مقدار کمتری پتاسیم را تثبیت کردند. | ||
کلیدواژهها | ||
اسمکتیت؛ کربنات کلسیم معادل؛ پراکندگی رس؛ پتاسیم غیرتبادلی | ||
عنوان مقاله [English] | ||
Comparison of calcium and sodium in the release and re-fixation of potassium in various soils with distinct physical, chemical, and mineralogical characteristics in southern Iran | ||
نویسندگان [English] | ||
Mahdi Najafi-Ghiri1؛ Hamid Reza Boostani2؛ Nazanin Soleimani2؛ Younes Qarzi2 | ||
1Department of Soil Science, College of Agriculture and Natural Resources of Darab, Shiraz University | ||
2Department of Soil and Water Science, College of Agriculture and Natural Resources of Darab, Shiraz University, Shiraz, Iran | ||
چکیده [English] | ||
The exchange of mineral interlayer potassium (K) with soluble cations in the soil can release this form of K and supply a portion of the potassium required by plants in K-depleted soils. In the present study, the ability of 0.01M CaCl2, NaCl, and a mixture of CaCl2 and NaCl to extract non-exchangeable K from four soils with distinct characteristics over twelve 15-minute extraction periods, and the changes in soil’s capacity to re-fix K were investigated. The studied soils contained a high amount of smectite in the clay fraction with smaller amounts of chlorite, illite, and palygorskite minerals also present. Overall, NaCl extracted more K than CaCl₂ in all soils, with increases of up to 24, 64, 68, and 83% for soils 1, 2, 3, and 4, respectively. The highest amount of K was extracted from soil 3 (Ustorthents), while the lowest was from soil 4 (Torriorthents). Although, there was no significant difference between CaCl2 and NaCl in terms of K extraction in the initial three extraction stages, NaCl extracted a greater amount of K from all soils in the subsequent nine stages with increases ranging from 47 to 149%. This enhanced extraction may be attributed to the effect of Na on the clay dispersion, which increases the contact of the solution with the exchange sites and preventing the re-fixation of K by smectites. The capacity to fix K in soil 1 (Haploxerets) was significantly higher than in the other soils, while soils subjected to NaCl extraction exhibited a reduced ability to fix K. | ||
کلیدواژهها [English] | ||
smectite, equivalent calcium carbonate, clay dispersion, non-exchangeable potassium | ||
مراجع | ||
Ahrari, M., Owliaie, H. R., Adhami, A., & Najafi-Ghiri, M. (2017). Study of Potassium Status and Evaluating Chemical Extractants for Estimating Available K in Some Soils of Olive Orchards of Fars Province. Iranian Journal of Soil and Water, 31(3), 835-845. (in Persian) Bray, A. W., Oelkers, E. H., Bonneville, S., Wolff-Boenisch, D., Potts, N. J., Fones, G., & Benning, L. G. (2015). The effect of pH, grain size, and organic ligands on biotite weathering rates. Geochimica et Cosmochimica Acta, 164, 127-145. Carmo, A., Angélica, R., & Paz, S. (2021). Ageing characteristics related to cation exchange and interlayer spacing of some Brazilian bentonites. Heliyon, 7(2), e06192. Dhaliwal, A., Gupta, R., Yadvinder-Singh, & Bijay-Singh. (2006). Potassium Fixation and Release Characteristics of Some Benchmark Soil Series under Rice–Wheat Cropping System in the Indo‐Gangetic Plains of Northwestern India. Communications in soil science and plant analysis, 37(05-06), 827-845. Farsang, S., Pekker, P., Lampronti, G. I., Molnár, Z., Milovský, R., Pósfai, M., Ozdín, D., Raub, T. D., & Redfern, S. A. (2022). Inclusions in calcite phantom crystals suggest role of clay minerals in dolomite formation. American Mineralogist, 107(7), 1369-1377. Fathi, S., Samadi, A., Darvari, M., & Asadi-Kapourchal, S. (2014). Evaluating different extractants for determining corn available potassium in some calcareous soils of Kurdistan province. Cereal Research, 4(3), 253-266. (in Persian) Golestanifard, A., Santner, J., Aryan, A., Kaul, H. P. & Wenzel, W. W. (2020). Potassium fixation in northern Iranian paddy soils. Geoderma, 375, 114475. Gul, M., Wakeel, A., Saqib, M., & Wahid, A. (2016). Effect of NaCl-induced saline sodicity on the interpretation of soil potassium dynamics. Archives of Agronomy and Soil Science, 62(4), 523-532. Hashemi, S. S. (2020). Study on the Effect of Long Term Cultivation of Grape on Mineralogy of Soil Fractions and Different Potassium Forms in Two Regions of Malayer. Iranian Journal of Soil Research, 34(2), 183-198. (in Persian) Hashemi, S. S., & Najafi-Ghiri, M. (2024). Kinetic of Potassium Release from Vermiculite Clay Soil to Calcium Chloride and Citric Acid Solutions (Emphasis on Clay Mineralogy Changes). Communications in soil science and plant analysis, 55(6), 782-795. Helmke, P. A., & Sparks, D. L. (2020). Lithium, sodium, potassium, rubidium, and cesium. In D. L. Sparks, A. L. Page, P. A. Helmke, & R. H. Loeppert (Eds.), Methods of soil analysis. Part 3-chemical methods. (Pp. 551-574). Madison. Jalali, M. (2008). Effect of sodium and magnesium on kinetics of potassium release in some calcareous soils of western Iran. Geoderma, 145(3–4), 207-215. Jalali, M (2011). Effect of saline-sodic solutions on column leaching of potassium from sandy soil. Archives of Agronomy and Soil Science, 57(4), 377-390. Johns, W. D., Grim, R. E., & Bradley, W. F. (1954). Quantitative estimations of clay minerals by diffraction methods. Journal of Sedimentary Research, 24(4), 242-251. Kittrick, J., & Hope, E. (1963). A procedure for the particle-size separation of soils for X-ray diffraction analysis. Soil Science, 96(5), 319-325. Li, T., Wang, H., Zhou, Z., Chen, X., & Zhou, J. (2015). A nano-scale study of the mechanisms of non-exchangeable potassium release from micas. Applied Clay Science, 118, 131-137. Loeppert, R., & Suarez, D. (1996). Carbonate and gypsum. In D. Sparks (Ed.), Methods of soil analysis. Part 3. Chemical methods (pp. 437-474). SSSA Book Ser. 5. SSSA, Madison. Luo, X., Zhang, X., Zhang, L., Guo, L., Nie, Z., Zhou, J., Wang, R., Zhang, T., Miao, Y., & Ma, L. (2024). Characteristics of clay dispersion and its influencing factors in saline-sodic soils of Songnen Plain, China. Agricultural Water Management, 303, 109033. Martin, H., & Sparks, D. (1985). On the behavior of nonexchangeable potassium in soils. Communications in soil science and plant analysis, 16(2), 133-162. Molavi, R., Baghernejad, M., Ghasemi-Fasaei, R., & Zarei, M. (2020). Release characteristics of potassium from native reserves of some calcareous soils of Iran and their relationship with yield and potassium uptake by ryegrass (Lolium perenne L.). Soil Research, 58(8), 770-778. Morida, K., Fukushi, K., Sakuma, H., & Tamura, K. (2023). Systematic comparison of the hydration and dehydration of Na+-, K+-, and NH4+-saturated montmorillonite, nontronite, hectorite, saponite, and Fe-saponite by in situ X-ray diffraction measurements. Applied Clay Science, 237, 106898. Murrell, T. S., Mikkelsen, R. L., Sulewski, G., Norton, R., & Thompson, M. L. (2021). Improving potassium recommendations for agricultural crops. Springer Nature. Najafi-Ghiri, M. (2024). Potassium Equilibration and Dynamics in the Soils of Iran (Vol. 1). Tehran University Press. (in Persian) Najafi-Ghiri, M., Abtahi, A., Karimian, N., Owliaie, H., & Khormali, F. (2011). Kinetics of non-exchangeable potassium release as a function of clay mineralogy and soil taxonomy in calcareous soils of southern Iran. Archives of Agronomy and Soil Science, 57(4), 343-363. Najafi-Ghiri, M., Boostani, H. R., & Hardie, A. G. (2022). Investigation of biochars application on potassium forms and dynamics in a calcareous soil under different moisture conditions. Archives of Agronomy and Soil Science, 68(3), 325-339. Najafi-Ghiri, M., Boostani, H. R., & Hardie, A. G. (2023). Release of potassium from some heated calcareous soils to different solutions. Archives of Agronomy and Soil Science, 69(1), 90-103. Najafi-Ghiri, M., Boostani, H. R., & Hashemi, S. S. (2024). Effect of Low Temperature Heating of Potassium-Depleted Soils on Secondary Potassium Release to Calcium Chloride and Wood Vinegar and Fixation. Eurasian Soil Science, 57(10), 1698-1708. Najafi-Ghiri, M., Mirsoleimani, A., & Amin, H. (2017). Nutritional status of washington Navel orange orchards in arid lands of southern iran. Arid Land Research and Management, 31(4), 431-445. Najafi-Ghiri, M., Rezabigi, S., Hosseini, S., Boostani, H. R., & Owliaie, H. R. (2019). Potassium fixation of some calcareous soils after short term extraction with different solutions. Archives of Agronomy and Soil Science, 65(7), 897-910. Nelson, D. W., Sommers, L. E., Sparks, D., Page, A., Helmke, P., Loeppert, R., Soltanpour, P., Tabatabai, M., Johnston, C., & Sumner, M. (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis. Part 3-chemical methods., 961-1010. Ohazuruike, L., & Lee, K. J. (2023). A comprehensive review on clay swelling and illitization of smectite in natural subsurface formations and engineered barrier systems. Nuclear Engineering and Technology, 55(4), 1495-1506. Owliaie, H. R., Barooni, F., Adhami, E., & Najafi-Ghiri, M. (2017). Comparison of some extractants for extracting available potassium for rice in some soils of Kohgiluyeh Province. Iranian Journal of Applied Soil Research, 5(1), 13-24. (in Persian) Rahmatullah, B. S., Gill, M., & Salim, M. (1994). Bioavailable potassium in river‐bed sediments and release of interlayer potassium in irrigated arid soils. Soil Use and Management, 10(1), 43-46. Rhoades, J. (1996). Salinity: Electrical conductivity and total dissolved solids. In D. Sparks (Ed.), Methods of Soil Analysis Part 3—Chemical Methods (pp. 417-435). Madison. Rowell, D. L. (2014). Soil Science: Methods and Applications. Routledge. Samadi, A. (2010). Long-term cropping on potassium release and fixation behaviors. Archives of Agronomy and Soil Science, 56(5), 499-512. Schoeneberger, P. J., Wysocki, D. A. & Benham, E. C. (2012). Field book for describing and sampling soils. Government Printing Office. Shakeri, S., & Abtahi, A. (2020). Potassium fixation capacity of some highly calcareous soils as a function of clay minerals and alternately wetting-drying. Archives of Agronomy and Soil Science, 66(4), 445-457. Soil Survey Staff. (2022). Keys to Soil Taxonomy (Vol. 14). USDA-NRCS. Sumner, M., & Miller, W. (1996). Cation exchange capacity and exchange coefficients. In D. Sparks (Ed.), Methods of Soil Analysis Part 3—Chemical Methods (pp. 1201-1229). Madison. Thomas, G. W. (1996). Soil pH and soil acidity. In D. L. Sparks (Ed.), Methods of Soil Analysis. Part 3—Chemical Methods (pp. 475-490). Madison. Zareian, G., Farpoor, M. H., Hejazi-Mehrizi, M., & Jafari, A. (2018). Kinetics of Non-exchangeable Potassium Release in Selected Soil Orders of Southern Iran. Soil & Water Research, 13(4), 200-207. Zarrabi, M., & Jalali, M. (2010). A Comparison of Some Extractants Used for the Assessment of Available Potassium in Some Hamadan Soils. Iranian Journal of Water and Soil Research, 40(2), 149-155. (in Persian) | ||
آمار تعداد مشاهده مقاله: 34 تعداد دریافت فایل اصل مقاله: 25 |