
تعداد نشریات | 163 |
تعداد شمارهها | 6,761 |
تعداد مقالات | 72,822 |
تعداد مشاهده مقاله | 131,629,008 |
تعداد دریافت فایل اصل مقاله | 103,413,203 |
Prediction of Rheological Properties of Drilling Fluids Using Two Artificial Intelligence Methods: General Regression Neural Network and Fuzzy Logic | ||
Journal of Chemical and Petroleum Engineering | ||
دوره 59، شماره 1، شهریور 2025، صفحه 127-139 اصل مقاله (393.14 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jchpe.2024.380925.1551 | ||
نویسندگان | ||
Reza Rooki1؛ Mojtaba Rahimi* 2 | ||
1Birjand University of Technology, Birjand, Iran. | ||
2Department of Petroleum Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran. Stone Research Center, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran | ||
چکیده | ||
The rheological properties of drilling fluids, including viscosity and yield point, are essential for the effectiveness of drilling operations. Inaccurate predictions of these parameters may lead to costly complications during the drilling operation. Among artificial intelligence (AI) methods, the general regression neural network (GRNN) approach and the fuzzy logic method possess a high speed of estimation and fewer adjustable parameters than other methods. Despite the excellent capability of these two methods, they have seldom been used to predict the rheological properties of drilling fluids. Hence, through programming in MATLAB software, the capabilities of these methods in predicting the rheological properties of drilling fluids were investigated by comparison of their predictions against experimental results. The neural network contained one input layer with three inputs (clay mass, Na2Co3 concentration, and Gum Arabic concentration), one hidden layer with 38 neurons, and one output layer with three outputs (apparent viscosity (AV), plastic viscosity (PV), and yield point (YP)). In the fuzzy logic method, the optimal value of the clustering radius was considered to be 0.1 in this research. Based on the two methods designed, the value of R (about 0.99) and RMSE (about 0.5) between predicted values and the measured values of rheological properties in training and testing data were excellent. Our findings indicate that both AI methods can be utilized to predict the rheological parameters of drilling fluids with different compositions. | ||
کلیدواژهها | ||
Artificial Intelligence؛ Fuzzy logic؛ General Regression Neural Network؛ Machine Learning؛ Rheological Properties | ||
مراجع | ||
[1] Agwu OE, Akpabio JU, Alabi SB, Dosunmu A. Artificial intelligence techniques and their applications in drilling fluid engineering: A review. Journal of Petroleum Science and Engineering. 2018 Aug 1;167:300-15. https://doi.org/10.1016/j.petrol.2018.04.01.
[2] Bahiuddin I, Mazlan SA, Imaduddin F, Shapiai MI, Ubaidillah, Sugeng DA. Review of modeling schemes and machine learning algorithms for fluid rheological behavior analysis. Journal of the Mechanical Behavior of Materials. 2024 Mar 22;33(1):20220309. https://doi.org/10.1515/jmbm-2022-0309.
[3] Gul S. Machine learning applications in drilling fluid engineering: A review. In International Conference on Offshore Mechanics and Arctic Engineering 2021 Jun 21 (Vol. 85208, p. V010T11A007). American Society of Mechanical Engineers. https://doi.org/10.1115/omae2021- 63094.
[4] Noshi CI, Schubert JJ. The role of machine learning in drilling operations; a review. InSPE eastern regional meeting 2018 Oct 7 (p. D043S005R006). SPE. https://doi.org/10.2118/191823-18erm-ms.
[5] Zhong R, Salehi C, Johnson Jr R. Machine learning for drilling applications: A review. Journal of Natural Gas Science and Engineering. 2022 Dec 1;108:104807. https://doi.org/10.1016/j.jngse.2022.104807.
[6] Al-Azani K, Elkatatny S, Abdulraheem A, Mahmoud M, Al-Shehri D. Real-time prediction of the rheological properties of oil-based drilling fluids using artificial neural networks. InSPE Kingdom of Saudi Arabia annual technical symposium and exhibition 2018 Apr 23 (pp. SPE- 192199). SPE. https://doi.org/10.2118/192199-ms.
[7] Elkatatny S, Mousa T, Mahmoud M. A new approach to determine the rheology parameters for water-based drilling fluid using artificial neural network. Soc Pet Eng-SPE Kingdom Saudi Arab Annu Tech Symp Exhib 2018, SATS 2018. https://doi.org/10.2118/192190-ms.
[8] Elkatatny S. Real-time prediction of the rheological properties of water-based drill-in fluid using artificial neural networks. Sustainability. 2019 Sep 12;11(18):5008. doi:10.3390/su11185008 https://doi.org/10.3390/su11185008.
[9] Gomaa I, Elkatatny S, Abdulraheem A. Real-time determination of rheological properties of high over-balanced drilling fluid used for drilling ultra-deep gas wells using artificial neural network. Journal of Natural Gas Science and Engineering. 2020 May 1;77:103224. https://doi.org/10.1016/j.jngse.2020.103224.
[10] Oguntade T, Ojo T, Efajemue E, Oni B, Idaka J. Application of ANN in predicting water-based mud rheology and filtration properties. InSPE Nigeria Annual International Conference and Exhibition 2020 Aug 11 (p. D013S009R012). SPE. https://doi.org/10.2118/203720-ms.
[11] Gouda A, Khaled S, Gomaa S, Attia AM. Prediction of the rheological properties of inverted emulsion mud using an artificial neural network. ACS omega. 2021 Nov 24;6(48):32948-59. https://doi.org/10.1021/acsomega.1c04937.
[12] Ismail A, Rashid HM, Gholami R, Raza A. Characterization based machine learning modeling for the prediction of the rheological properties of water-based drilling mud: an experimental study on grass as an environmental friendly additive. Journal of Petroleum Exploration and Production Technology. 2022 Jun;12(6):1677-95. https://doi.org/10.1007/s13202-021-01425-6.
[13] Alsabaa A, Gamal H, Elkatatny S, Abdelraouf Y. Machine Learning Model for Monitoring Rheological Properties of Synthetic Oil-Based Mud. ACS omega. 2022 Apr 29;7(18):15603-14. https://doi.org/10.1021/acsomega.2c00404.
[14] Ning YC, Ridha S, Ilyas SU, Krishna S, Dzulkarnain I, Abdurrahman M. Applying machine learning to determine the shear stress and filtration loss properties of nano-based drilling fluid. Journal of Petroleum Exploration and Production Technology. 2023 Apr;13(4):1031-52. https://doi.org/10.1007/s13202-022-01589-9.
[15] Abdelaal A, Ibrahim AF, Elkatatny S. Data-driven framework for real-time rheological properties prediction of flat rheology synthetic oil-based drilling fluids. ACS omega. 2023 Apr 13; 8(16):14371-86. https://doi.org/10.1021/acsomega.2c06656.
[16] Al-Obaidi AK, Majdi HS, Jweeg MJ, Hadi FA, Jasim DJ, Ellafi A. Artificial Intelligent for Real-Time Prediction of Rheological Drilling Mud Properties. The Iraqi Geological Journal. 2024 May 31:147-61. doi: 10.46717/igj.57.1E.10ms-2024-5-21.
[17] Specht DF. A general regression neural network. IEEE transactions on neural networks. 1991 Nov 1;2(6):568-76. https://doi.org/10.1109/72.97934.
[18] Haykin S. Neural networks: a comprehensive foundation. Prentice Hall PTR; 1998 Jul 1. https://doi.org/10.1142/s0129065794000372.
[19] Demuth H., Beale M., Neural network toolbox for use with MATLAB. 2002; User’s Guide Version 4. https://doi.org/10.1002/0470848944.hsa251.
[20] Holdaway KR. Harness oil and gas big data with analytics: Optimize exploration and production with data-driven models. John Wiley & Sons; 2014 May 5. https://doi.org/10.1002/9781118910948.ch7.
[21] Sugeno M. Industrial applications of fuzzy control. Elsevier Science Inc.; 1985 Jan 1.
[22] Yager RR, Zadeh LA, editors. An introduction to fuzzy logic applications in intelligent systems. Springer Science & Business Media; 2012 Dec 6. https://doi.org/10.1007/978-1-4615- 3640-6.
[23] Salam KK, Adeleye OJ, Arinkoola AO. Evaluation of rheological properties of beneficiated locally sourced mud using factorial design. International Journal of Oil, Gas and Coal Technology. 2010 Jan 1;3(2):144-59. https://doi.org/10.1504/ijogct.2010.033561. | ||
آمار تعداد مشاهده مقاله: 191 تعداد دریافت فایل اصل مقاله: 231 |