![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 162 |
تعداد شمارهها | 6,578 |
تعداد مقالات | 71,072 |
تعداد مشاهده مقاله | 125,696,400 |
تعداد دریافت فایل اصل مقاله | 98,926,705 |
کنترل پرش هیدرولیکی نامتقارن در کانالهای با مقطع واگرای ناگهانی توسط سیستم جت | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 10، دی 1403، صفحه 1903-1920 اصل مقاله (2.17 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.377718.669725 | ||
نویسندگان | ||
افشین محجوبی1؛ جواد احدیان* 2؛ سید محسن سجادی3؛ سیدمحمود کاشفی پور1 | ||
1دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
2دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران. | ||
3استادیار گروه سازههای آبی، دانشکده علوم آب، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
چکیده | ||
قرارگیری سیستم جت در تقابل و تقاطع با جریان آب پایین آمده از سرریز اوجی پس از مقطع واگرای ناگهانی، پرش نامتقارن را کنترل کرده و موجب یکنواختی جریان آب در طول کانال میشود. در این تحقیق از 3 ترکیببندی سیستم جت با هدف بکارگیری حداقلی و3 قطر جت استفاده شد و شرایط جریان پاییندست کانال در دو پرش S و T و فرودهای مختلف بررسی گردید. با وجود سیستم جت، پارامتر β_L معرفی شده برای پرش S، پراکندگی و مقدار کمتری نسبت به پرش T دارد. به عبارت دیگر، سیستم جت به عنوان یک سازه کاهنده انرژی و جریان یکنواخت در شرایط بحرانیتر بسیار خوب عمل کرده است. یافتهها نشان داد که پارامتر مومنتم β_L.v_m^2 از محل انبساط ناگهانی (تلاطم زیاد) به سمت انتهای کانال کم شده است که در واقع، نیروی مومنتم بر روی بستر کاهش مییابد. ترکیببندی با تعداد جت حداقل، بیشترین یکنواختی جریان را به همراه داشته و قطر جت وابسته به نوع پرش ( تغییر عمق پایاب) میباشد. طول پرش با استفاده از سیستم جت به طور قابل توجهی نسبت به مدل شاهد کاهش یافته ولی به افت نسبی انرژی افزوده شده است. نتایج نشان میدهد که استفاده از سیستم جتهای جانبی و متقابل در همه مدلهای آزمایش شده، میتواند به طور قابل توجهی پرش هیدرولیکی را کنترل کرده و موجب توزیع یکنواخت سرعت در پاییندست کانال گردد. | ||
کلیدواژهها | ||
انبساط ناگهانی؛ پرش هیدرولیکی نامتقارن؛ پرش S و T؛ سازه های استهلاک انرژی؛ سیستم جت متقابل و متقاطع | ||
عنوان مقاله [English] | ||
Asymmetric hydraulic jump control in sudden expansion channels using a Jet system | ||
نویسندگان [English] | ||
afshin mahjoubi1؛ Javad Ahadiyan2؛ Seyed Mohsen Sajjadi3؛ Seyed Mahmood Kashefipour1 | ||
11. Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran. Center of Excellence of the Network Improvement and Maintenance, Ahvaz, Iran | ||
2Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran. Center of Excellence of the Network Improvement and Maintenance, Ahvaz, Iran | ||
3Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran. Center of Excellence of the Network Improvement and Maintenance, Ahvaz, Iran | ||
چکیده [English] | ||
The implementation of a jet system at the intersection of the downstream flow from the ogee weir, following the sudden expansion section, effectively controls the asymmetric jump and promotes uniform flow distribution along the channel. This study employed three jet system configurations, each utilizing a minimum number of jets with varying diameters, to investigate the downstream flow conditions under different S and T jumps and tailwater depths. With the introduction of the jet system, the dispersion and magnitude of the parameter (βL) introduced for the S jump exhibited reduced values compared to the T jump. In essence, the jet system functioned admirably as an energy-dissipating and flow-uniforming structure under more critical conditions. The findings revealed a decreasing trend in the momentum parameter (βL.vm2) from the location of sudden expansion (high turbulence) towards the channel end, indicating a reduction in the momentum force acting on the bed. The configuration with the minimum number of jets achieved the most uniform flow distribution, while the jet diameter was found to be dependent on the type of jump (tailwater depth variation). The jump length was significantly reduced compared to the control model with the implementation of the jet system, albeit at the cost of a slight energy loss. The results demonstrate that the utilization of side-facing and opposing jet systems effectively controls the hydraulic jump and promotes uniform velocity distribution in the downstream channel for all tested configurations. | ||
کلیدواژهها [English] | ||
Cross and counterflow jets, Asymmetric hydraulic jumps, S and T-jumps, Dissipating energy structures, Sudden expansion | ||
مراجع | ||
Alghwail, Svetlana, & Abourohiem, M. A. (2018). Dissipation of mechanical energy over spillway through counter flow. Journal of the Croatian Association of Civil Engineers, 70(05), 377–391. https://doi.org/10.14256/JCE.1691.2016 Alhamid, A. A. (2004). S-jump characteristics on sloping basins. Journal of Hydraulic Research, 42(6), 657–662. https://doi.org/10.1080/00221686.2004.9628319 Arabi, A., Salhi, Y., Zenati, Y., Si-Ahmed, E.-K., & Legrand, J. (2021). Experimental investigation of sudden expansion’s influence on the hydrodynamic behavior of different sub-regimes of intermittent flow. Journal of Petroleum Science and Engineering, 205, 10883. https://doi.org/10.1016/j.petrol.2021.108834 Blevins, R. D. (1984). Applied fluid dynamics handbook. Van Nostrand Reinhold Co. http://books.google.com/books?id=G-ZUAAAAMAAJ Bremen, R. (1990). Expanding stilling basin. Laboratoire De Constructions Hydrauliques. Lausanne, 1990 Bremen, R., & Hager, W. H. (1993). T-jump in abruptly expanding channel. Journal of Hydraulic Research, 31(1), 61–78. https://doi.org/10.1080/00221689309498860 Bremen, R., & Hager, W. H. (1994). Expanding stilling basin. (Includes appendices). Proceedings of the Institution of Civil Engineers - Water, Maritime and Energy, 106(3), 215–228. https://doi.org/10.1680/iwtme.1994.26934 Chen, J. G., Zhang, J. M., Xu, W. L., & Peng, Y. (2014). Characteristics of the Velocity Distribution in a Hydraulic Jump Stilling Basin with Five Parallel Offset Jets in a Twin-Layer Configuration. Journal of Hydraulic Engineering, 140(2), 208–217. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000817 Chow VT, 1959. Open Channel Hydraulics. Mc Grow Hill Book Co, New York, NY. Daneshfaraz, R., Majedi Asl, M., & Mirzaeereza, R. (2019). Experimental Study of Expanding Effect and Sand-Roughened Bed on Hydraulic Jump Characteristics. Iranian Journal of Soil and Water Research, 50(4), 885–896. https://doi.org/10.22059/ijswr.2018.261923.667968. Hydraulic Engineering-Asce - J HYDRAUL ENG-ASCE, 128. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:7(656) Ferreri, G. B., & Nasello, C. (2002). Hydraulic jumps at drop and abrupt enlargement in rectangular channel. Journal of Hydraulic Research, 40(4), 491–505. https://doi.org/10.1080/00221680209499891 France, P. W. (1981). AN INVESTIGATION OF A JET-ASSISTED HYDRAULIC JUMP. Journal of Hydraulic Research, 19(4), 325–337. https://doi.org/10.1080/00221688109499507 Graber, S. D. (2006). Asymmetric Flow in Symmetric Supercritical Expansions. Journal of Hydraulic Engineering, 132(2), 207–213. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:2(207) HAGER, W. H. (1992). Energy Dissipators and Hydraulic Jump. Springer Science & Business Media. Haghdoost, M., Sajjadi, S., Fathi Moghadam, M., & Ahadiyan, J. (2022). Experimental study of spatial hydraulic jump stabilization using lateral jet flow. Water Supply, 22(11), 8337–8352. https://doi.org/10.2166/ws.2022.376 Hajialigol, S., Ahadiyan, J., Sajjadi, M., Rita Scorzini, A., Di Bacco, M., & Shafai Bejestan, M. (2021). Cross-Beam Dissipators in Abruptly Expanding Channels: Experimental Analysis of Flow Patterns. Journal of Irrigation and Drainage Engineering, 147(11), 06021012. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001622 Hajialigol, S., Ahadiyan, J., Sajjadi, S. M., Hazi, M. A., Chadee, A. A., Nadian, H. A., & Kirby, J. (2024). Experimental analysis of turbulence measurements in a new dissipator structural (cross beams) in abruptly expanding channels. Results in Engineering, 21, 101829. https://doi.org/10.1016/j.rineng.2024.101829 Herbrand, K. (1973a). The Spatial Hydraulic Jump. Journal of Hydraulic Research, 11(3), 205–218. https://doi.org/10.1080/00221687309499774 Herbrand, K. (1973b). The Spatial Hydraulic Jump. Journal of Hydraulic Research, 11(3), 205–218. https://doi.org/10.1080/00221687309499774 Ibrahim, M. M., Refaie, M. A., & Ibraheem, A. M. (2022). Flow characteristics downstream stepped back weir with bed water jets. Ain Shams Engineering Journal, 13(2), 101558. https://doi.org/10.1016/j.asej.2021.08.003 Jobson, H. (1965). The effect of submerged jets on the hydraulic jump. Masters Theses. https://scholarsmine.mst.edu/masters_theses/5687 Kordi, E., & Abustan, I. (2012). Transitional Expanding Hydraulic Jump. Journal of Hydraulic Engineering, 138(1), 105–110. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000479 Matin, M. A., Hasan, M. M. R., & Islam, M. A. (2008a). Experiment on hydraulic jump in sudden expansion in a sloping rectangular channel. Journal of Civil Engineering. Matin, M. A., Hasan, M. M. R., & Islam, M. A. (2008b). Experiment on hydraulic jump in sudden expansion in a sloping rectangular channel. Journal of Civil Engineering. Mero, S., & Mitchell, S. (2017). Investigation of energy dissipation and flow regime over various forms of stepped spillways. Water and Environment Journal, 31(1), 127–137. https://doi.org/10.1111/wej.12224 Mossa, M., Petrillo, A., & Chanson, H. (2005). Tailwater level effects on flow conditions at an abrupt drop. Neisi, K., & Bejestan, M. S. (2013). Characteristics of S-jump on Roughened Bed Stilling Basin. Journal of Water Sciences Research, ISSN: 2251-7405 eISSN: 2251-7413 Vol.5, No.2, Summer 2013, 25-34, JWSR. Ohtsu, I., Yasuda, Y., & Ishikawa, M. (1999). Submerged Hydraulic Jumps below Abrupt Expansions. Journal Of Hydraulic Engineering. 1999.125:492-499. Omid, M. H., Esmaeeli Varaki, M., & Narayanan, R. (2007). Gradually expanding hydraulic jump in a trapezoidal channel. Journal of Hydraulic Research, 45(4), 512–518. https://doi.org/10.1080/00221686.2007.9521786 Rajaratnam, N. (1967). Hydraulic Jumps. In Advances in Hydroscience (Vol. 4, pp. 197–280). Elsevier. https://doi.org/10.1016/B978-1-4831-9935-1.50011-2 Sajjadi, S. M., Kazemi, M., Pari, S. A. A., & Kashefipour, S. M. (2023). Effect of Submerged Counter Flow Jet on Hydraulic Jump Characteristics in Stilling Basins. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47(2), 1153–1164. https://doi.org/10.1007/s40996-022-00933-7 Scorzini, A. R., Di Bacco, M., & Leopardi, M. (2016). Experimental Investigation on a System of Crossbeams As Energy Dissipator in Abruptly Expanding Channels. Journal of Hydraulic Engineering, 142(2), 06015018. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001088 Sharoonizadeh, S., Ahadiyan, J., Scorzini, A. R., Di Bacco, M., Sajjadi, M., & Moghadam, M. F. (2021). Experimental Analysis on the Use of Counterflow Jets as a System for the Stabilization of the Spatial Hydraulic Jump. Water, 13(18), 2572. https://doi.org/10.3390/w13182572 Sharoonizadeh, S., Ahadiyan, J., Scorzini, A. R., Di Bacco, M., Sajjadi, M., & Moghadam, M. F. (2022). Turbulence characteristics of the flow resulting from the hydrodynamic interaction of multiple counter flow jets in expanding channels. Acta Mechanica, 233(9), 3867–3880. https://doi.org/10.1007/s00707-022-03250-2 Tharp, E. L. (1966). Modification of the hydraulic jump by submerged jets. Rolla, Missori. Torkamanzad, N., Hosseinzadeh Dalir, A., Salmasi, F., & Abbaspour, A. (2019). Hydraulic Jump below Abrupt Asymmetric Expanding Stilling Basin on Rough Bed. Water, 11(9), 1756. https://doi.org/10.3390/w11091756 Varol, F. A. (2009). The Effect Of Water Jet On The Hydraulic Jump. Thirteenth International Water Technology Conference, IWTC 13 2009, Hurghada, Egypt Yüksel, Y., Günal, M., Bostan, T., Çevik, E., & Çelikoğlu, Y. (2004). The influence of impinging jets on hydraulic jumps. Water Management.
| ||
آمار تعداد مشاهده مقاله: 77 تعداد دریافت فایل اصل مقاله: 60 |