
تعداد نشریات | 162 |
تعداد شمارهها | 6,692 |
تعداد مقالات | 72,232 |
تعداد مشاهده مقاله | 129,197,995 |
تعداد دریافت فایل اصل مقاله | 102,027,930 |
Effect of Rhazya stricta-synthesized Copper Nanoparticles on Staphylococcus aureus-infected Wounds in Rabbit | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 5، دوره 19، شماره 2، تیر 2025، صفحه 211-226 اصل مقاله (10.28 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.19.2.1005593 | ||
نویسندگان | ||
Ali Hussein Aldujaily1؛ Kifah Fadhil Hassoon2؛ Douaa Barzan Salman2؛ Ghadeer Sabah Bustani* 3 | ||
1Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Kufa, Kufa, Iraq. | ||
2Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Kufa, Kufa, Iraq. | ||
3Department of Anesthesia, Faculty of Medical Technologies, The Islamic University, Najaf, Iraq. | ||
چکیده | ||
Background: Nanoparticles (NPs) are utilized in various technological fields, including medicine, due to their inherent antibacterial properties. Recent research has focused on the biosynthesis of copper NPs (CuNPs) and their potential medical applications. Objectives: This study aimed to use Rhazya stricta for the green synthesis of CuNPs and assess their effectiveness in eradicating bacterial pathogens, particularly Staphylococcus aureus, and promoting wound healing in rabbits. Methods: The synthesized NPs were characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), x-ray diffraction (XRD), atomic force microscopy (AFM), and zeta potential analysis. Fifteen rabbits were divided into three groups of five. Full-thickness costo-abdominal skin wounds were created on the right side of each rabbit. The first group served as the untreated control, the second group was treated with CuNPs, and the third group received fusidic acid treatment. Results: R. stricta extract successfully synthesized CuNPs. The application of CuNPs on S. aureus-contaminated wounds showed faster healing than fusidic acid treatment. The CuNPs group healed in 16 days, while the fusidic acid group healed in 22 days. CuNPs-treated wounds had significantly reduced wound area, total cell count, neutrophil count, macrophage count, and lymphocyte count (P<0.05), along with increased wound contracture (P<0.05). Bacterial counts indicated that CuNPs eradicated S. aureus infections in seven days, compared to 12 days for fusidic acid. CuNPs reduced inflammation and promoted collagen fiber deposition, leading to better healing of S. aureus-infected wounds by decreasing hemorrhagic regions and inflammatory cells. Conclusion: CuNPs synthesized using R. stricta show promising potential as a safe and effective treatment for infected wounds. They effectively eradicate infections and promote efficient wound healing, making them a viable therapeutic option for managing infected wounds. | ||
کلیدواژهها | ||
Rhazya stricta؛ Copper nanoparticles (CuNPs)؛ Staphylococcus aureus؛ Skin wounds؛ Histopathology؛ Rabbits | ||
اصل مقاله | ||
Introduction
Notably, after seven days of treatment, CuNPs successfully reduced the size and inflammation of the infected wounds. Re-epithelialization is vital in wound healing, as the skin performs a significant barrier function in protecting the body against pathogens (Zou et al., 2021).
Abdelghany, T. M., Al-Rajhi, A. M. H., Yahya, R., Bakri, M. M., Al Abboud, M. A., & Yahya, R., et al. (2023). Phytofabrication of zinc oxide nanoparticles with advanced characterization and its antioxidant, anticancer, and antimicrobial activity against pathogenic microorganisms. Biomass Conversion and Biorefinery, 13, 417-430. [DOI:10.1007/s13399-022-03412-1] Alizadeh, S., Seyedalipour, B., Shafieyan, S., Kheime, A., Mohammadi, P., & Aghdami, N. (2019). Copper nanoparticles promote rapid wound healing in acute full thickness defect via acceleration of skin cell migration, proliferation, and neovascularization. Biochemical and Biophysical Research Communications, 517(4), 684-690. [DOI:10.1016/j.bbrc.2019.07.110] [PMID] Al-Mousaw, M., Bustani, G. S., Barqaawee, M. J. A., & AL-Shamma, Y. M. (2022). Evaluation of histology and sperm parameters of testes treated by lycopene against cyclophosphamide that induced testicular toxicity in Male rats. AIP Conference Proceedings, 2386(1). [DOI:10.1063/5.0067059] Al-Garawi, N. A. H. D., Suhail, A. A., Kareem, H. A., & Bustani, G. S. (2022). Study of Lipid Profile and Leptin hormone and Adiponectin hormone hypertensive patients in Najaf Governorate. Revista Electronica de Veterinaria, 23(3), 45-51. [Link] Awwad, A. M., Salem, N. M., & Abdeen, A. O. (2013). Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. International Journal of Industrial Chemistry, 4(29), 1-6. [Link] Badri, A., Slimi, S., Guergueb, M., Kahri, H., & Mateos, X. (2021). Green synthesis of copper oxide nanoparticles using Prickly Pear peel fruit extract: Characterization and catalytic activity. Inorganic Chemistry Communications, 134, [DOI:10.1016/j.inoche.2021.109027] Behera, S. S., Nath, I., Nayak, S., Parija, S. C., Mishra, U. K., & Kundu, A. K., et al. (2019). Histomorphological study of cutaneous wound healing in rabbits using xenogenic adipose derived stem cells. Journal of Animal Research, 9(5), 645-652. [DOI:10.30954/2277-940X.05.2019.3] Bukhari, S. I., Hamed, M. M., Al-Agamy, M. H., Gazwi, H. S., Radwan, H. H., & Youssif, A. M. (2021). Biosynthesis of copper oxide nanoparticles using Streptomyces MHM38 and its biological applic Journal of Nanomaterials, 2021(1), 6693302. [DOI:10.1155/2021/6693302] Bustani, G. S., & Kashef Alghetaa, H. (2024). Exploring the Impact of Aryl Hydrocarbon Receptor (AhR) modulation on the blood-testis barrier integrity via tight junction protein-1 function. Iranian Journal of Veterinary Medicine. [Unpublished]. [Link] Cardoso, C. G., Ayer, I. M., Jorge, A. T., Honsho, C. S., & Mattos-Junior, E. (2020). A comparative study of the cardiopulmonary and sedative effects of a single intramuscular dose of ketamine anesthetic combinations in rabbits. Research in Veterinary Science, 128, 177-182. [DOI:10.1016/j.rvsc.2019.11.016] [PMID] Caroling, G., Tiwari, S. K., Ranjitham, A. M., & Suja, R. (2013). Biosynthesis of silver nanoparticles using aqueous broccoli extract-characterization and study of antimicrobial, cytotoxic effects. Asian Journal of Pharmaceutical and Clinical Research, 6(4), 165-172. [Link] Chinnathambi, A., Awad Alahmadi, T., & Ali Alharbi, S. (2021).Biogenesis of copper nanoparticles (Cu-NPs) using leaf extract of Allium noeanum, antioxidant and in-vitro cytotoxicity. Artificial Cells, Nanomedicine, and Biotechnology, 49(1), 500-510. [DOI:10.1080/21691401.2021.1926275] [PMID] Diniz, F. R., Maia, R. C. A. P., Rannier, L., Andrade, L. N., V Chaud, M., & da Silva, C. F., et al. (2020). Silver nanoparticles-composing alginate/gelatine hydrogel improves wound healing in vivo. Nanomaterials (Basel, Switzerland), 10(2), 390. [DOI:10.3390/nano10020390][PMID] Foroutan, S., Eslampour, M. A., Emaneini, M., Jabalameli, F., & Akbari, G. (2022). Characterization of biofilm formation ability, virulence factors and antibiotic resistance pattern of staphylococcus aureus isolates from subclinical bovine mastitis. Iranian Journal of Veterinary Medicine, 16(2), 144-154. [Link] Gaddafi, M. S., Yakubu, Y., Junaidu, A. U., Bello, M. B., Bitrus, A. A., & Musawa, A. I., et al. (2023). Occurrence of Methicillin-resistant Staphylococcus aureus (MRSA) from dairy cows in Kebbi, Nigeria. Iranian Journal of Veterinary Medicine, 17(1), 19-26. [DOI:10.22059/ijvm.17.1.1005256] Gkanatsiou, C., Karamanoli, Κ., Menkissoglu-Spiroudi, U., & Dendrinou-Samara, C. (2019). Composition effect of Cu-based nanoparticles on phytopathogenic bacteria. Antibacterial studies and phytotoxicity evaluation. Polyhedron, 170, 395-403. [DOI:10.1016/j.poly.2019.06.002] Guan, G., Zhang, L., Zhu, J., Wu, H., Li, W., & Sun, Q. (2021).Antibacterial properties and mechanism of biopolymer-based films functionalized by CuO/ZnO nanoparticles against Escherichia coli and Staphylococcus aureus. Journal of Hazardous Materials, 402, [DOI:10.1016/j.jhazmat.2020.123542] [PMID] Hasanin, M., Al Abboud, M. A., Alawlaqi, M. M., Abdelghany, T. M., & Hashem, A. H. (2022). Ecofriendly synthesis of biosynthesized copper nanoparticles with starch-based nanocomposite: Antimicrobial, antioxidant, and anticancer activities. Biological Trace Element Research, 200(5), 2099–2112. [DOI:10.1007/s12011-021-02812-0] [PMID] Hussain, Z., Thu, H. E., Rawas-Qalaji, M., Naseem, M., Khan, S., & Sohail, M. (2022). Recent developments and advanced strategies for promoting burn wound healing. Journal of Drug Delivery Science and Technology, 68, [DOI:10.1016/j.jddst.2022.103092] Hossieni, M., Kiani, S. J., Tavakoli, A., Kachooei, A., Habib, Z., & Monavari, S. H. (2024). In vitro inhibition of rotavirus multiplication by copper oxide nanoparticles. Archives of Razi Institute, 79(1), 83-91.[DOI:10.32592/ARI.2024.79.1.83][PMID] Islam, F., Shohag, S., Uddin, M. J., Islam, M. R., Nafady, M. H., & Akter, A., S., et al. (2022). Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials, 15(6), 2160. [DOI:10.3390/ma15062160][PMID] Liu, L., Shen, X., Yu, J., Cao, X., Zhan, Q., & Guo, Y., et (2020). Subinhibitory concentrations of fusidic acid may reduce the virulence of S. aureus by down-regulating sara and saers to reduce biofilm formation and α-toxin expression. Frontiers in Microbiology, 11, 25. [DOI:10.3389/fmicb.2020.00025][PMID] Mali, S. C., Dhaka, A., Githala, C. K., & Trivedi, R. (2020). Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnology Reports, 27,[DOI:10.1016/j.btre.2020.e00518][PMID] Mirnezami, M., Rahimi, H., Fakhar, H. E., & Rezaei, K. (2018). The role of topical estrogen, phenytoin, and silver sulfadiazine in time to wound healing in rats. Ostomy/Wound Management, 64(8), 30-34. [PMID] [DOI:10.26855/ijcemr.2023.04.023] Moradifar, N., Moayyedkazemi, A., Mohammadi, H., Ahmadi, S., & Raziani, Y. (2024). Investigating the potential application of organic and inorganic nanoparticles for gastric cancer treatment: An evidence-based review. Archives of Razi Institute, 79(2), 264-271.[DOI:10.32592/ARI.2024.79.2.264][PMID] Pal, M., Shuramo, M. Y., Tewari, A., Srivastava, J. P., & Steinmetz, C. H. (2023). Staphylococcus aureus from a commensal to zoonotic pathogen: A critical appraisal. International Journal of Clinical and Experimental Medicine Research, 7(2), 220-228. [Link] Rafi, R., Zulfiqar, S., Asad, M., Zeeshan, R., Zehra, M., & Khalid, H., et al. (2023). Smart wound dressings based on carbon doped copper nanoparticles for selective bacterial detection and eradication for efficient wound healing application. Materials Today Communications, 35, [DOI:10.1016/j.mtcomm.2023.105914] Rahman, H., Rauf, A., Khan, S. A., Ahmad, Z., Alshammari, A., & Alharbi, M., et al. (2023). Green synthesis of silver nanoparticles using rhazya stricta decne extracts and their anti-microbial and anti-oxidant activities. Crystals, 13(3), 398. [DOI:10.3390/cryst13030398] Rahchamani, R., Zarooni, S., & Borhani, M. S. (2024). The chemical composition and antibacterial effect of essential oils of rosemary and basil in milk. Iranian Journal of Veterinary Medicine. [Unpublished]. [Link] Raja, S., Ramesh, V., & Thivaharan, V. (2017). Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arabian Journal of Chemistry, 10(2), 253-261. [DOI:10.1016/j.arabjc.2015.06.023] Rani, R., Sharma, D., Chaturvedi, M., & Yadav, J. P. (2020). Green synthesis of silver nanoparticles using Tridax procumbens: their characterization, antioxidant and antibacterial activity against MDR and reference bacterial strains. Chemical Papers, 74, 1817-1830. [DOI:10.1007/s11696-019-01028-w] Razdan, K., Garcia-Lara, J., Sinha, V. R., & Singh, K. K. (2022). Pharmaceutical strategies for the treatment of bacterial biofilms in chronic wounds. Drug Discovery Today, 27(8), 2137-2150. [DOI:10.1016/j.drudis.2022.04.020] [PMID] Salem, M. I., El-Sebai, A., Elnagar, S. A., & Abd El-Hady, A. M. (2020). WITHDRAWN:Evaluation of lipid profile, antioxidant and immunity statuses of rabbits fed Moringa oleifera leaves. Asian-Australasian Journal of Animal Sciences,5713/ajas.20.0499. Advance online publication. [DOI:10.5713/ab.20.0499] [PMID] Samuel, M. S., Ravikumar, M., John J, A., Selvarajan, E., Patel, H., & Chander, P. S., et al. (2022). A review on green synthesis of nanoparticles and their diverse biomedical and environmental app Catalysts, 12(5), 459. [DOI:10.3390/catal12050459] Sato, H., Ebisawa, K., Takanari, K., Yagi, S., Toriyama, K., Yamawaki-Ogata, A., & Kamei, Y. (2015). Skin-derived precursor cells promote wound healing in diabetic mice. Annals of Plastic Surgery, 74(1), 114-120 [DOI:10.1097/SAP.0000000000000342] [PMID] Tanideh, N., Rokhsari, P., Mehrabani, D., Mohammadi Samani, S., Sabet Sarvestani, F., & Ashraf, M. J., et al. (2014). The healing effect of licorice on Pseudomonas aeruginosa infected burn wounds in experimental rat model. World Journal of Plastic Surgery, 3(2), 99-106. [PMID] Tao, B., Lin, C., Deng, Y., Yuan, Z., Shen, X., & Chen, M., et al. (2019). Copper-nanoparticle-embedded hydrogel for killing bacteria and promoting wound healing with photothermal therapy. Journal of Materials Chemistry B, 7(15), 2534-2548. [PMID] Treffon, J., Chaves‐Moreno, D., Niemann, S., Pieper, D. H., Vogl, T., & Roth, J., et al. (2020). Importance of superoxide dismutases A and M for protection of Staphylococcus aureus in the oxidative stressful environment of cystic fibrosis airways. Cellular Microbiology, 22(5), e13158. [DOI:10.1111/cmi.13158] [PMID] Vinelli, A., Primiceri, E., Brucale, M., Zuccheri, G., Rinaldi, R., & Samorì, B. (2008). Sample preparation for the quick sizing of metal nanoparticles by atomic force microscopy. Microscopy Research and Technique, 71(12), 870-879. [DOI:10.1002/jemt.20631] [PMID] Wassif, K., Elkayal, M., Shamma, R. N., & Elkheshen, S. A. (2021). Recent advances in the local antibiotics delivery systems for management of osteomyelitis. Drug Delivery, 28(1), 2392-2414. [DOI:10.1080/10717544.2021.1998246][PMID] Xiao, H., Chen, X., Liu, X., Wen, G., & Yu, Y. (2023). Recent advances in decellularized biomaterials for wound healing. Materials Today. Bio, 19,[DOI:10.1016/j.mtbio.2023.100589][PMID] Yaşayan, G., Nejati, O., Ceylan, A. F., Karasu, Ç., Ugur, P. K., & Bal-Öztürk, A., et (2023). Tackling chronic wound healing using nanomaterials: advancements, challenges, and future perspectives. Applied Materials Today, 32, 101829. [DOI:10.1016/j.apmt.2023.101829] Zhang, Q., Wang, P., Fang, X., Lin, F., Fang, J., & Xiong, C. (2022).Collagen gel contraction assays: From modelling wound healing to quantifying cellular interactions with three-dimensional extracellular matrices. European Journal of Cell Biology, 101(3), 151253. [DOI:10.1016/j.ejcb.2022.151253] [PMID] Zhang, W., Roy, S., & Rhim, J. W. (2023). Copper-based nanoparticles for biopolymer-based functional films in food packaging applications. Comprehensive Reviews in Food Science and Food Safety, 22(3), 1933-1952. [DOI:10.1111/1541-4337.13136] Zhao, H., Maruthupandy, M., Al-mekhlafi, F. A., Chackaravarthi, G., Ramachandran, G., & Chelliah, C. K. (2022). Biological synthesis of copper oxide nanoparticles using marine endophytic actinomycetes and evaluation of biofilm producing bacteria and A549 lung cancer cells. Journal of King Saud University-Science, 34(3), 101866. [DOI:10.1016/j.jksus.2022.101866] Zou, M. L., Teng, Y. Y., Wu, J. J., Liu, S. Y., Tang, X. Y., & Jia, Y., et al. (2021). Fibroblasts: Heterogeneous cells with potential in regenerative therapy for scarless wound heal Frontiers in Cell and Developmental Biology, 9, 713605. [DOI:10.3389/fcell.2021.713605] [PMID] | ||
مراجع | ||
Abdelghany, T. M., Al-Rajhi, A. M. H., Yahya, R., Bakri, M. M., Al Abboud, M. A., & Yahya, R., et al. (2023). Phytofabrication of zinc oxide nanoparticles with advanced characterization and its antioxidant, anticancer, and antimicrobial activity against pathogenic microorganisms. Biomass Conversion and Biorefinery, 13, 417-430. [DOI:10.1007/s13399-022-03412-1]
Alizadeh, S., Seyedalipour, B., Shafieyan, S., Kheime, A., Mohammadi, P., & Aghdami, N. (2019). Copper nanoparticles promote rapid wound healing in acute full thickness defect via acceleration of skin cell migration, proliferation, and neovascularization. Biochemical and Biophysical Research Communications, 517(4), 684-690. [DOI:10.1016/j.bbrc.2019.07.110] [PMID]
Al-Mousaw, M., Bustani, G. S., Barqaawee, M. J. A., & AL-Shamma, Y. M. (2022). Evaluation of histology and sperm parameters of testes treated by lycopene against cyclophosphamide that induced testicular toxicity in Male rats. AIP Conference Proceedings, 2386(1). [DOI:10.1063/5.0067059]
Al-Garawi, N. A. H. D., Suhail, A. A., Kareem, H. A., & Bustani, G. S. (2022). Study of Lipid Profile and Leptin hormone and Adiponectin hormone hypertensive patients in Najaf Governorate. Revista Electronica de Veterinaria, 23(3), 45-51. [Link]
Awwad, A. M., Salem, N. M., & Abdeen, A. O. (2013). Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. International Journal of Industrial Chemistry, 4(29), 1-6. [Link]
Badri, A., Slimi, S., Guergueb, M., Kahri, H., & Mateos, X. (2021). Green synthesis of copper oxide nanoparticles using Prickly Pear peel fruit extract: Characterization and catalytic activity. Inorganic Chemistry Communications, 134, [DOI:10.1016/j.inoche.2021.109027]
Behera, S. S., Nath, I., Nayak, S., Parija, S. C., Mishra, U. K., & Kundu, A. K., et al. (2019). Histomorphological study of cutaneous wound healing in rabbits using xenogenic adipose derived stem cells. Journal of Animal Research, 9(5), 645-652. [DOI:10.30954/2277-940X.05.2019.3]
Bukhari, S. I., Hamed, M. M., Al-Agamy, M. H., Gazwi, H. S., Radwan, H. H., & Youssif, A. M. (2021). Biosynthesis of copper oxide nanoparticles using Streptomyces MHM38 and its biological applic Journal of Nanomaterials, 2021(1), 6693302. [DOI:10.1155/2021/6693302]
Bustani, G. S., & Kashef Alghetaa, H. (2024). Exploring the Impact of Aryl Hydrocarbon Receptor (AhR) modulation on the blood-testis barrier integrity via tight junction protein-1 function. Iranian Journal of Veterinary Medicine. [Unpublished]. [Link]
Cardoso, C. G., Ayer, I. M., Jorge, A. T., Honsho, C. S., & Mattos-Junior, E. (2020). A comparative study of the cardiopulmonary and sedative effects of a single intramuscular dose of ketamine anesthetic combinations in rabbits. Research in Veterinary Science, 128, 177-182. [DOI:10.1016/j.rvsc.2019.11.016] [PMID]
Caroling, G., Tiwari, S. K., Ranjitham, A. M., & Suja, R. (2013). Biosynthesis of silver nanoparticles using aqueous broccoli extract-characterization and study of antimicrobial, cytotoxic effects. Asian Journal of Pharmaceutical and Clinical Research, 6(4), 165-172. [Link]
Chinnathambi, A., Awad Alahmadi, T., & Ali Alharbi, S. (2021).Biogenesis of copper nanoparticles (Cu-NPs) using leaf extract of Allium noeanum, antioxidant and in-vitro cytotoxicity. Artificial Cells, Nanomedicine, and Biotechnology, 49(1), 500-510. [DOI:10.1080/21691401.2021.1926275] [PMID]
Diniz, F. R., Maia, R. C. A. P., Rannier, L., Andrade, L. N., V Chaud, M., & da Silva, C. F., et al. (2020). Silver nanoparticles-composing alginate/gelatine hydrogel improves wound healing in vivo. Nanomaterials (Basel, Switzerland), 10(2), 390. [DOI:10.3390/nano10020390][PMID]
Foroutan, S., Eslampour, M. A., Emaneini, M., Jabalameli, F., & Akbari, G. (2022). Characterization of biofilm formation ability, virulence factors and antibiotic resistance pattern of staphylococcus aureus isolates from subclinical bovine mastitis. Iranian Journal of Veterinary Medicine, 16(2), 144-154. [Link]
Gaddafi, M. S., Yakubu, Y., Junaidu, A. U., Bello, M. B., Bitrus, A. A., & Musawa, A. I., et al. (2023). Occurrence of Methicillin-resistant Staphylococcus aureus (MRSA) from dairy cows in Kebbi, Nigeria. Iranian Journal of Veterinary Medicine, 17(1), 19-26. [DOI:10.22059/ijvm.17.1.1005256]
Gkanatsiou, C., Karamanoli, Κ., Menkissoglu-Spiroudi, U., & Dendrinou-Samara, C. (2019). Composition effect of Cu-based nanoparticles on phytopathogenic bacteria. Antibacterial studies and phytotoxicity evaluation. Polyhedron, 170, 395-403. [DOI:10.1016/j.poly.2019.06.002]
Guan, G., Zhang, L., Zhu, J., Wu, H., Li, W., & Sun, Q. (2021).Antibacterial properties and mechanism of biopolymer-based films functionalized by CuO/ZnO nanoparticles against Escherichia coli and Staphylococcus aureus. Journal of Hazardous Materials, 402, [DOI:10.1016/j.jhazmat.2020.123542] [PMID]
Hasanin, M., Al Abboud, M. A., Alawlaqi, M. M., Abdelghany, T. M., & Hashem, A. H. (2022). Ecofriendly synthesis of biosynthesized copper nanoparticles with starch-based nanocomposite: Antimicrobial, antioxidant, and anticancer activities. Biological Trace Element Research, 200(5), 2099–2112. [DOI:10.1007/s12011-021-02812-0] [PMID]
Hussain, Z., Thu, H. E., Rawas-Qalaji, M., Naseem, M., Khan, S., & Sohail, M. (2022). Recent developments and advanced strategies for promoting burn wound healing. Journal of Drug Delivery Science and Technology, 68, [DOI:10.1016/j.jddst.2022.103092]
Hossieni, M., Kiani, S. J., Tavakoli, A., Kachooei, A., Habib, Z., & Monavari, S. H. (2024). In vitro inhibition of rotavirus multiplication by copper oxide nanoparticles. Archives of Razi Institute, 79(1), 83-91.[DOI:10.32592/ARI.2024.79.1.83][PMID]
Islam, F., Shohag, S., Uddin, M. J., Islam, M. R., Nafady, M. H., & Akter, A., S., et al. (2022). Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials, 15(6), 2160. [DOI:10.3390/ma15062160][PMID]
Liu, L., Shen, X., Yu, J., Cao, X., Zhan, Q., & Guo, Y., et (2020). Subinhibitory concentrations of fusidic acid may reduce the virulence of S. aureus by down-regulating sara and saers to reduce biofilm formation and α-toxin expression. Frontiers in Microbiology, 11, 25. [DOI:10.3389/fmicb.2020.00025][PMID]
Mali, S. C., Dhaka, A., Githala, C. K., & Trivedi, R. (2020). Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnology Reports, 27,[DOI:10.1016/j.btre.2020.e00518][PMID]
Mirnezami, M., Rahimi, H., Fakhar, H. E., & Rezaei, K. (2018). The role of topical estrogen, phenytoin, and silver sulfadiazine in time to wound healing in rats. Ostomy/Wound Management, 64(8), 30-34. [PMID] [DOI:10.26855/ijcemr.2023.04.023]
Moradifar, N., Moayyedkazemi, A., Mohammadi, H., Ahmadi, S., & Raziani, Y. (2024). Investigating the potential application of organic and inorganic nanoparticles for gastric cancer treatment: An evidence-based review. Archives of Razi Institute, 79(2), 264-271.[DOI:10.32592/ARI.2024.79.2.264][PMID]
Pal, M., Shuramo, M. Y., Tewari, A., Srivastava, J. P., & Steinmetz, C. H. (2023). Staphylococcus aureus from a commensal to zoonotic pathogen: A critical appraisal. International Journal of Clinical and Experimental Medicine Research, 7(2), 220-228. [Link]
Rafi, R., Zulfiqar, S., Asad, M., Zeeshan, R., Zehra, M., & Khalid, H., et al. (2023). Smart wound dressings based on carbon doped copper nanoparticles for selective bacterial detection and eradication for efficient wound healing application. Materials Today Communications, 35, [DOI:10.1016/j.mtcomm.2023.105914]
Rahman, H., Rauf, A., Khan, S. A., Ahmad, Z., Alshammari, A., & Alharbi, M., et al. (2023). Green synthesis of silver nanoparticles using rhazya stricta decne extracts and their anti-microbial and anti-oxidant activities. Crystals, 13(3), 398. [DOI:10.3390/cryst13030398]
Rahchamani, R., Zarooni, S., & Borhani, M. S. (2024). The chemical composition and antibacterial effect of essential oils of rosemary and basil in milk. Iranian Journal of Veterinary Medicine. [Unpublished]. [Link]
Raja, S., Ramesh, V., & Thivaharan, V. (2017). Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arabian Journal of Chemistry, 10(2), 253-261. [DOI:10.1016/j.arabjc.2015.06.023]
Rani, R., Sharma, D., Chaturvedi, M., & Yadav, J. P. (2020). Green synthesis of silver nanoparticles using Tridax procumbens: their characterization, antioxidant and antibacterial activity against MDR and reference bacterial strains. Chemical Papers, 74, 1817-1830. [DOI:10.1007/s11696-019-01028-w]
Razdan, K., Garcia-Lara, J., Sinha, V. R., & Singh, K. K. (2022). Pharmaceutical strategies for the treatment of bacterial biofilms in chronic wounds. Drug Discovery Today, 27(8), 2137-2150. [DOI:10.1016/j.drudis.2022.04.020] [PMID]
Salem, M. I., El-Sebai, A., Elnagar, S. A., & Abd El-Hady, A. M. (2020). WITHDRAWN:Evaluation of lipid profile, antioxidant and immunity statuses of rabbits fed Moringa oleifera leaves. Asian-Australasian Journal of Animal Sciences,5713/ajas.20.0499. Advance online publication. [DOI:10.5713/ab.20.0499] [PMID]
Samuel, M. S., Ravikumar, M., John J, A., Selvarajan, E., Patel, H., & Chander, P. S., et al. (2022). A review on green synthesis of nanoparticles and their diverse biomedical and environmental app Catalysts, 12(5), 459. [DOI:10.3390/catal12050459]
Sato, H., Ebisawa, K., Takanari, K., Yagi, S., Toriyama, K., Yamawaki-Ogata, A., & Kamei, Y. (2015). Skin-derived precursor cells promote wound healing in diabetic mice. Annals of Plastic Surgery, 74(1), 114-120 [DOI:10.1097/SAP.0000000000000342] [PMID]
Tanideh, N., Rokhsari, P., Mehrabani, D., Mohammadi Samani, S., Sabet Sarvestani, F., & Ashraf, M. J., et al. (2014). The healing effect of licorice on Pseudomonas aeruginosa infected burn wounds in experimental rat model. World Journal of Plastic Surgery, 3(2), 99-106. [PMID]
Tao, B., Lin, C., Deng, Y., Yuan, Z., Shen, X., & Chen, M., et al. (2019). Copper-nanoparticle-embedded hydrogel for killing bacteria and promoting wound healing with photothermal therapy. Journal of Materials Chemistry B, 7(15), 2534-2548. [PMID]
Treffon, J., Chaves‐Moreno, D., Niemann, S., Pieper, D. H., Vogl, T., & Roth, J., et al. (2020). Importance of superoxide dismutases A and M for protection of Staphylococcus aureus in the oxidative stressful environment of cystic fibrosis airways. Cellular Microbiology, 22(5), e13158. [DOI:10.1111/cmi.13158] [PMID]
Vinelli, A., Primiceri, E., Brucale, M., Zuccheri, G., Rinaldi, R., & Samorì, B. (2008). Sample preparation for the quick sizing of metal nanoparticles by atomic force microscopy. Microscopy Research and Technique, 71(12), 870-879. [DOI:10.1002/jemt.20631] [PMID]
Wassif, K., Elkayal, M., Shamma, R. N., & Elkheshen, S. A. (2021). Recent advances in the local antibiotics delivery systems for management of osteomyelitis. Drug Delivery, 28(1), 2392-2414. [DOI:10.1080/10717544.2021.1998246][PMID]
Xiao, H., Chen, X., Liu, X., Wen, G., & Yu, Y. (2023). Recent advances in decellularized biomaterials for wound healing. Materials Today. Bio, 19,[DOI:10.1016/j.mtbio.2023.100589][PMID]
Yaşayan, G., Nejati, O., Ceylan, A. F., Karasu, Ç., Ugur, P. K., & Bal-Öztürk, A., et (2023). Tackling chronic wound healing using nanomaterials: advancements, challenges, and future perspectives. Applied Materials Today, 32, 101829. [DOI:10.1016/j.apmt.2023.101829]
Zhang, Q., Wang, P., Fang, X., Lin, F., Fang, J., & Xiong, C. (2022).Collagen gel contraction assays: From modelling wound healing to quantifying cellular interactions with three-dimensional extracellular matrices. European Journal of Cell Biology, 101(3), 151253. [DOI:10.1016/j.ejcb.2022.151253] [PMID]
Zhang, W., Roy, S., & Rhim, J. W. (2023). Copper-based nanoparticles for biopolymer-based functional films in food packaging applications. Comprehensive Reviews in Food Science and Food Safety, 22(3), 1933-1952. [DOI:10.1111/1541-4337.13136]
Zhao, H., Maruthupandy, M., Al-mekhlafi, F. A., Chackaravarthi, G., Ramachandran, G., & Chelliah, C. K. (2022). Biological synthesis of copper oxide nanoparticles using marine endophytic actinomycetes and evaluation of biofilm producing bacteria and A549 lung cancer cells. Journal of King Saud University-Science, 34(3), 101866. [DOI:10.1016/j.jksus.2022.101866]
Zou, M. L., Teng, Y. Y., Wu, J. J., Liu, S. Y., Tang, X. Y., & Jia, Y., et al. (2021). Fibroblasts: Heterogeneous cells with potential in regenerative therapy for scarless wound heal Frontiers in Cell and Developmental Biology, 9, 713605. [DOI:10.3389/fcell.2021.713605] [PMID] | ||
آمار تعداد مشاهده مقاله: 117 تعداد دریافت فایل اصل مقاله: 1,058 |